Skip to main content
Erschienen in: Inflammation 4/2017

27.05.2017 | ORIGINAL ARTICLE

Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs

verfasst von: Huaping Zhang, Zhenxiang Zhao, Xuefen Pang, Jian Yang, Haixia Yu, Yinhong Zhang, Hui Zhou, Jiahui Zhao

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Genistein plays an important role in the prevention of atherosclerosis. However, the underlying mechanisms have not been fully investigated. In this study, human umbilical vein endothelial cells (HUVECs) were pretreated with genistein (10, 100, and 1000 nM) for 6 h and then exposed to ox-LDL (50 mg/L) for another 24 h. Results showed that ox-LDL induced the expressions of E-selectin, P-selectin, monocyte chemotactic protein-1, interleukin-8, vascular adhesion molecule-1, and intercellular adhesion molecule-1, which were counteracted by genistein. The inhibitory effect was further enhanced with the augment of genistein (10, 100, and 1000 nM). Further analyses demonstrated the effect of genistein was associated with reducing miR-155 and elevating SOCS1, and miR-155 mimics or SOCS1 siRNA acted similarly in genistein ameliorating inflammation. Moreover, the effect of genistein was accompanied with the inhibition of the NF-ĸB signaling pathway. The present study indicates that genistein could reverse ox-LDL-induced inflammation through miR-155/SOCS1-mediated repression of the NF-ĸB signaling pathway in HUVECs.
Literatur
2.
Zurück zum Zitat Gimbrone, M.A. Jr., and G. García-Cardeña. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4): 620–636.CrossRefPubMedPubMedCentral Gimbrone, M.A. Jr., and G. García-Cardeña. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4): 620–636.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Soeki, T., and M. Sata. 2016. Inflammatory biomarkers and atherosclerosis. International Heart Journal 57 (2): 134–139.CrossRefPubMed Soeki, T., and M. Sata. 2016. Inflammatory biomarkers and atherosclerosis. International Heart Journal 57 (2): 134–139.CrossRefPubMed
4.
Zurück zum Zitat Taleb, S. 2016. Inflammation in atherosclerosis. Archives of Cardiovascular Diseases 109 (12): 708–715.CrossRefPubMed Taleb, S. 2016. Inflammation in atherosclerosis. Archives of Cardiovascular Diseases 109 (12): 708–715.CrossRefPubMed
5.
Zurück zum Zitat Tousoulis, D., E. Oikonomou, E.K. Economou, F. Crea, and J.C. Kaski. 2016. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal 37 (22): 1723–1732.CrossRefPubMed Tousoulis, D., E. Oikonomou, E.K. Economou, F. Crea, and J.C. Kaski. 2016. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal 37 (22): 1723–1732.CrossRefPubMed
6.
Zurück zum Zitat Goya, L., M.A. Martín, B. Sarriá, S. Ramos, R. Mateos, and L. Bravo. 2016. Effect of cocoa and its flavonoids on biomarkers of inflammation: studies of cell culture, animals and humans. Nutrients 8 (4): 212.CrossRefPubMedPubMedCentral Goya, L., M.A. Martín, B. Sarriá, S. Ramos, R. Mateos, and L. Bravo. 2016. Effect of cocoa and its flavonoids on biomarkers of inflammation: studies of cell culture, animals and humans. Nutrients 8 (4): 212.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Gupta, S.K., S. Dongare, R. Mathur, I.R. Mohanty, S. Srivastava, S. Mathur, and T.C. Nag. 2015. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Molecular and Cellular Biochemistry 408 (1–2): 63–72.CrossRefPubMed Gupta, S.K., S. Dongare, R. Mathur, I.R. Mohanty, S. Srivastava, S. Mathur, and T.C. Nag. 2015. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Molecular and Cellular Biochemistry 408 (1–2): 63–72.CrossRefPubMed
8.
Zurück zum Zitat Ji, G., Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang. 2012. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-ĸB following AMP kinase activation in RAW 264.7 macrophages. PloS One 7 (12): e53101.CrossRefPubMedPubMedCentral Ji, G., Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang. 2012. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-ĸB following AMP kinase activation in RAW 264.7 macrophages. PloS One 7 (12): e53101.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Liu, X.J., H.R. Bao, X.L. Zeng, and J.M. Wei. 2016. Effects of resveratrol and genistein on nuclear factor-ĸB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease. Molecular Medicine Reports 13 (5): 4266–4272.PubMedPubMedCentral Liu, X.J., H.R. Bao, X.L. Zeng, and J.M. Wei. 2016. Effects of resveratrol and genistein on nuclear factor-ĸB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease. Molecular Medicine Reports 13 (5): 4266–4272.PubMedPubMedCentral
10.
Zurück zum Zitat Dragone, T., A. Cianciulli, R. Calvello, C. Porro, T. Trotta, and M.A. Panaro. 2014. Resveratrol counteracts lipopolysaccharide mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology In Vitro 28 (6): 1126–1135.CrossRefPubMed Dragone, T., A. Cianciulli, R. Calvello, C. Porro, T. Trotta, and M.A. Panaro. 2014. Resveratrol counteracts lipopolysaccharide mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology In Vitro 28 (6): 1126–1135.CrossRefPubMed
11.
Zurück zum Zitat Liu, X., J. Li, X. Peng, B. Lv, P. Wang, X. Zhao, and B. Yu. 2016. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway. Inflammation 39 (4): 1421–1433.CrossRefPubMed Liu, X., J. Li, X. Peng, B. Lv, P. Wang, X. Zhao, and B. Yu. 2016. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway. Inflammation 39 (4): 1421–1433.CrossRefPubMed
12.
Zurück zum Zitat Ortiz-Muñoz, G., J.L. Martin-Ventura, P. Hernandez-Vargas, B. Mallavia, V. Lopez-Parra, O. Lopez-Franco, B. Muñoz-Garcia, et al. 2009. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 29 (4): 525–531.CrossRefPubMed Ortiz-Muñoz, G., J.L. Martin-Ventura, P. Hernandez-Vargas, B. Mallavia, V. Lopez-Parra, O. Lopez-Franco, B. Muñoz-Garcia, et al. 2009. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 29 (4): 525–531.CrossRefPubMed
13.
Zurück zum Zitat Maine, G.N., X. Mao, C.M. Komarck, and E. Burstein. 2007. COMMD1 promotes the ubiquitination of NF-kappa B subunits through a cullin-containing ubiquitin ligase. The EMBO Journal 26 (2): 436–447.CrossRefPubMed Maine, G.N., X. Mao, C.M. Komarck, and E. Burstein. 2007. COMMD1 promotes the ubiquitination of NF-kappa B subunits through a cullin-containing ubiquitin ligase. The EMBO Journal 26 (2): 436–447.CrossRefPubMed
14.
Zurück zum Zitat Oh, J., S.H. Kim, S. Ahn, and C.E. Lee. 2012. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-ĸB and mitochondrial Bfl-1 in leukemic T cells. Journal of Immunology 189 (12): 5561–5571.CrossRef Oh, J., S.H. Kim, S. Ahn, and C.E. Lee. 2012. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-ĸB and mitochondrial Bfl-1 in leukemic T cells. Journal of Immunology 189 (12): 5561–5571.CrossRef
15.
Zurück zum Zitat Schweitzer, K., and M. Naumann. 2015. CSN-associated USP48 confers stability to nuclear NF-ĸB/RelA by trimming K48-linked Ub-chains. Biochimica et Biophysica Acta 1853 (2): 453–469.CrossRefPubMed Schweitzer, K., and M. Naumann. 2015. CSN-associated USP48 confers stability to nuclear NF-ĸB/RelA by trimming K48-linked Ub-chains. Biochimica et Biophysica Acta 1853 (2): 453–469.CrossRefPubMed
16.
Zurück zum Zitat Du, F., F. Yu, Y. Wang, Y. Hui, K. Carnevale, M. Fu, H. Lu, et al. 2014. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (4): 759–767.CrossRefPubMedPubMedCentral Du, F., F. Yu, Y. Wang, Y. Hui, K. Carnevale, M. Fu, H. Lu, et al. 2014. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (4): 759–767.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Liu, Y., Q. Pan, Y. Zhao, C. He, K. Bi, Y. Chen, B. Zhao, et al. 2015. MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions. Journal of Cellular Biochemistry 116 (12): 2870–2881.CrossRefPubMed Liu, Y., Q. Pan, Y. Zhao, C. He, K. Bi, Y. Chen, B. Zhao, et al. 2015. MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions. Journal of Cellular Biochemistry 116 (12): 2870–2881.CrossRefPubMed
18.
Zurück zum Zitat Nazari-Jahantigh, M., Y. Wei, H. Noels, S. Akhtar, Z. Zhou, R.R. Koenen, K. Heyll, et al. 2012. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. The Journal of Clinical Investigation 122 (11): 4190–4202.CrossRefPubMedPubMedCentral Nazari-Jahantigh, M., Y. Wei, H. Noels, S. Akhtar, Z. Zhou, R.R. Koenen, K. Heyll, et al. 2012. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. The Journal of Clinical Investigation 122 (11): 4190–4202.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sun, X., N. Belkin, and M.W. Feinberg. 2013. Endothelial microRNAs and atherosclerosis. Current Atherosclerosis Reports 15 (12): 372.CrossRefPubMed Sun, X., N. Belkin, and M.W. Feinberg. 2013. Endothelial microRNAs and atherosclerosis. Current Atherosclerosis Reports 15 (12): 372.CrossRefPubMed
20.
Zurück zum Zitat Tan, Y., J. Yang, K. Xiang, Q. Tan, and Q. Guo. 2015. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signaling pathway. Neurochemical Research 40 (3): 550–560.CrossRefPubMed Tan, Y., J. Yang, K. Xiang, Q. Tan, and Q. Guo. 2015. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signaling pathway. Neurochemical Research 40 (3): 550–560.CrossRefPubMed
21.
Zurück zum Zitat Yang, Y., L. Yang, X. Liang, and G. Zhu. 2015. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cellular Physiology and Biochemistry 36 (4): 1371–1381.CrossRefPubMed Yang, Y., L. Yang, X. Liang, and G. Zhu. 2015. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cellular Physiology and Biochemistry 36 (4): 1371–1381.CrossRefPubMed
22.
Zurück zum Zitat Sandoval, M.J., P.H. Cutini, M.B. Rauschemberger, and V.L. Massheimer. 2010. The soyabean isoflavone genistein modulates endothelial cell behavior. British Journal of Nutrition 104 (2): 171–179.CrossRefPubMed Sandoval, M.J., P.H. Cutini, M.B. Rauschemberger, and V.L. Massheimer. 2010. The soyabean isoflavone genistein modulates endothelial cell behavior. British Journal of Nutrition 104 (2): 171–179.CrossRefPubMed
23.
Zurück zum Zitat Zhang, H.P., F.L. Zheng, J.H. Zhao, D.X. Guo, and X.L. Chen. 2013. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Archives of Medical Research 44 (1): 13–20.CrossRefPubMed Zhang, H.P., F.L. Zheng, J.H. Zhao, D.X. Guo, and X.L. Chen. 2013. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Archives of Medical Research 44 (1): 13–20.CrossRefPubMed
24.
Zurück zum Zitat Du, J., Y. Huang, H. Yan, Q. Zhang, M. Zhao, M. Zhu, J. Liu, et al. 2014. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor ĸB (NF-ĸB) pathway. The Journal of Biological Chemistry 289 (14): 9741–9753.CrossRefPubMedPubMedCentral Du, J., Y. Huang, H. Yan, Q. Zhang, M. Zhao, M. Zhu, J. Liu, et al. 2014. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor ĸB (NF-ĸB) pathway. The Journal of Biological Chemistry 289 (14): 9741–9753.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Huang, C.S., A.H. Lin, T.C. Yang, K.L. Liu, H.W. Chen, and C.K. Lii. 2015. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NF-ĸB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochemical Pharmacology 93 (3): 352–361.CrossRefPubMed Huang, C.S., A.H. Lin, T.C. Yang, K.L. Liu, H.W. Chen, and C.K. Lii. 2015. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NF-ĸB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochemical Pharmacology 93 (3): 352–361.CrossRefPubMed
26.
Zurück zum Zitat Yurdagul, A. Jr., F.J. Sulzmaier, X.L. Chen, C.B. Pattillo, D.D. Schlaepfer, and A.W. Orr. 2016. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-ĸB activation and VCAM-1 expression. Journal of Cell Science 129 (8): 1580–1591.CrossRefPubMedPubMedCentral Yurdagul, A. Jr., F.J. Sulzmaier, X.L. Chen, C.B. Pattillo, D.D. Schlaepfer, and A.W. Orr. 2016. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-ĸB activation and VCAM-1 expression. Journal of Cell Science 129 (8): 1580–1591.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Chung, M.H., D.H. Kim, H.K. Na, J.H. Kim, H.N. Kim, G. Haegeman, and Y.J. Surh. 2014. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutation Research 768: 74–83.CrossRefPubMed Chung, M.H., D.H. Kim, H.K. Na, J.H. Kim, H.N. Kim, G. Haegeman, and Y.J. Surh. 2014. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutation Research 768: 74–83.CrossRefPubMed
28.
Zurück zum Zitat Han, S., H. Wu, W. Li, and P. Gao. 2015. Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Molecular and Cellular Biochemistry 403 (1–2): 43–49.CrossRefPubMed Han, S., H. Wu, W. Li, and P. Gao. 2015. Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Molecular and Cellular Biochemistry 403 (1–2): 43–49.CrossRefPubMed
29.
Zurück zum Zitat Collins, P.E., I. Mitxitorena, and R.J. Carmody. 2016. The ubiquitination of NF-κB subunits in the control of transcription. Cells 5(2): 23. Collins, P.E., I. Mitxitorena, and R.J. Carmody. 2016. The ubiquitination of NF-κB subunits in the control of transcription. Cells 5(2): 23.
30.
Zurück zum Zitat Strebovsky, J., P. Walker, R. Lang, and A.H. Dalpke. 2011. Suppressor of cytokine signaling 1 (SOCS1) limits NF-kappaB signaling by decreasing p65 stability within the cell nucleus. The FASEB Journal 25 (3): 863–874.CrossRefPubMed Strebovsky, J., P. Walker, R. Lang, and A.H. Dalpke. 2011. Suppressor of cytokine signaling 1 (SOCS1) limits NF-kappaB signaling by decreasing p65 stability within the cell nucleus. The FASEB Journal 25 (3): 863–874.CrossRefPubMed
31.
Zurück zum Zitat Andrade, C.M., M.F. Sá, and M.R. Toloi. 2012. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC. Climacteric 15 (2): 186–194.CrossRefPubMed Andrade, C.M., M.F. Sá, and M.R. Toloi. 2012. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC. Climacteric 15 (2): 186–194.CrossRefPubMed
32.
Zurück zum Zitat Babu, P.V., H. Si, Z. Fu, W. Zhen, and D. Liu. 2012. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. The Journal of Nutrition 142 (4): 724–730.CrossRefPubMedPubMedCentral Babu, P.V., H. Si, Z. Fu, W. Zhen, and D. Liu. 2012. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. The Journal of Nutrition 142 (4): 724–730.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Jia, Z., P.V. Babu, H. Si, P. Nallasamy, H. Zhu, W. Zhen, H.P. Misra, et al. 2013. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. International Journal of Cardiology 168 (3): 2637–2645.CrossRefPubMedPubMedCentral Jia, Z., P.V. Babu, H. Si, P. Nallasamy, H. Zhu, W. Zhen, H.P. Misra, et al. 2013. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. International Journal of Cardiology 168 (3): 2637–2645.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Yi, L., C.Y. Chen, X. Jin, T. Zhang, Y. Zhou, Q.Y. Zhang, J.D. Zhu, et al. 2012. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie 94 (9): 2035–2044.CrossRefPubMed Yi, L., C.Y. Chen, X. Jin, T. Zhang, Y. Zhou, Q.Y. Zhang, J.D. Zhu, et al. 2012. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie 94 (9): 2035–2044.CrossRefPubMed
36.
37.
Zurück zum Zitat Rao, R., P. Nagarkatti, and M. Nagarkatti. 2014. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infection and Immunity 82 (7): 2971–2979.CrossRefPubMedPubMedCentral Rao, R., P. Nagarkatti, and M. Nagarkatti. 2014. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infection and Immunity 82 (7): 2971–2979.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Li, X.C., F. Tian, and F. Wang. 2013. Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-α and IL-1β in PBMCs. International Journal of Molecular Sciences 14 (12): 23910–23921.CrossRefPubMedPubMedCentral Li, X.C., F. Tian, and F. Wang. 2013. Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-α and IL-1β in PBMCs. International Journal of Molecular Sciences 14 (12): 23910–23921.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Pathak, S., A.R. Grillo, M. Scarpa, P. Brun, R. D’Incà, L. Nai, A. Banerjee, et al. 2015. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Experimental & Molecular Medicine 47: e164.CrossRef Pathak, S., A.R. Grillo, M. Scarpa, P. Brun, R. D’Incà, L. Nai, A. Banerjee, et al. 2015. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Experimental & Molecular Medicine 47: e164.CrossRef
40.
Zurück zum Zitat Ma, C., Y. Wang, A. Shen, and W. Cai. 2017. Resveratrol upregulates SOCS1 production by lipopolysaccharide stimulated RAW264.7 macrophages by inhibiting miR-155. International Journal of Molecular Medicine 39 (1): 231–237.PubMed Ma, C., Y. Wang, A. Shen, and W. Cai. 2017. Resveratrol upregulates SOCS1 production by lipopolysaccharide stimulated RAW264.7 macrophages by inhibiting miR-155. International Journal of Molecular Medicine 39 (1): 231–237.PubMed
41.
Zurück zum Zitat Pourgholi, F., M. Hajivalili, R. Razavi, S. Esmaeili, B. Baradaran, A.A. Movasaghpour, S. Sadreddini, et al. 2017. The role of M2000 as an anti-inflammatory agent in toll-like receptor 2/microRNA-155 pathway. Avicenna J Med Biotechnol 9 (1): 8–12.PubMedPubMedCentral Pourgholi, F., M. Hajivalili, R. Razavi, S. Esmaeili, B. Baradaran, A.A. Movasaghpour, S. Sadreddini, et al. 2017. The role of M2000 as an anti-inflammatory agent in toll-like receptor 2/microRNA-155 pathway. Avicenna J Med Biotechnol 9 (1): 8–12.PubMedPubMedCentral
42.
Zurück zum Zitat Xu, H.F., X.Y. Fang, S.H. Zhu, X.H. Xu, Z.X. Zhang, Z.F. Wang, Z.Q. Zhao, et al. 2016. Glucocorticoid treatment inhibits intracerebral hemorrhage-induced inflammation by targeting the microRNA-155/SOCS-1 signaling pathway. Molecular Medicine Reports 14 (4): 3798–3804.PubMed Xu, H.F., X.Y. Fang, S.H. Zhu, X.H. Xu, Z.X. Zhang, Z.F. Wang, Z.Q. Zhao, et al. 2016. Glucocorticoid treatment inhibits intracerebral hemorrhage-induced inflammation by targeting the microRNA-155/SOCS-1 signaling pathway. Molecular Medicine Reports 14 (4): 3798–3804.PubMed
43.
Zurück zum Zitat Wen, Y., X. Zhang, L. Dong, J. Zhao, C. Zhang, and C. Zhu. 2015. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 18 (21): 197–209. Wen, Y., X. Zhang, L. Dong, J. Zhao, C. Zhang, and C. Zhu. 2015. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 18 (21): 197–209.
44.
Zurück zum Zitat Park, E.J., S.Y. Park, E.H. Joe, and I. Jou. 2003. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. The Journal of Biological Chemistry 278 (17): 14747–14752.CrossRefPubMed Park, E.J., S.Y. Park, E.H. Joe, and I. Jou. 2003. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. The Journal of Biological Chemistry 278 (17): 14747–14752.CrossRefPubMed
45.
Zurück zum Zitat Zhang, X., J. Wu, B. Ye, Q. Wang, X. Xie, and H. Shen. 2016. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complementary and Alternative Medicine 16 (1): 299.CrossRefPubMedPubMedCentral Zhang, X., J. Wu, B. Ye, Q. Wang, X. Xie, and H. Shen. 2016. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complementary and Alternative Medicine 16 (1): 299.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Baig, M.S., S.V. Zaichick, M. Mao, A.L. de Abreu, F.R. Bakhshi, P.C. Hart, U. Saqib, et al. 2015. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. The Journal of Experimental Medicine 212 (10): 1725–1738.CrossRefPubMedPubMedCentral Baig, M.S., S.V. Zaichick, M. Mao, A.L. de Abreu, F.R. Bakhshi, P.C. Hart, U. Saqib, et al. 2015. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. The Journal of Experimental Medicine 212 (10): 1725–1738.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Filgueiras, L.R., J.O. Martins Jr., C.H. Serezani, V.L. Capelozzi, M.B. Montes, and S. Jancar. 2012. Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NF-ĸB activation. PloS One 7 (9): e44987.CrossRefPubMed Filgueiras, L.R., J.O. Martins Jr., C.H. Serezani, V.L. Capelozzi, M.B. Montes, and S. Jancar. 2012. Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NF-ĸB activation. PloS One 7 (9): e44987.CrossRefPubMed
48.
Zurück zum Zitat Serezani, C.H., C. Lewis, S. Jancar, and M. Peters-Golden. 2011. Leukotriene B4 amplifies NF-ĸB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88expression. The Journal of Clinical Investigation 121 (2): 671–682.CrossRefPubMedPubMedCentral Serezani, C.H., C. Lewis, S. Jancar, and M. Peters-Golden. 2011. Leukotriene B4 amplifies NF-ĸB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88expression. The Journal of Clinical Investigation 121 (2): 671–682.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Guimarães, M.R., F.R. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa Jr. 2013. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58 (10): 1309–1317.CrossRefPubMedPubMedCentral Guimarães, M.R., F.R. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa Jr. 2013. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58 (10): 1309–1317.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Choi, E.Y., S.H. Choe, J.Y. Hyeon, J.I. Choi, I.S. Choi, and S.J. Kim. 2015. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. Journal of Periodontal Research 50 (6): 737–747.CrossRefPubMed Choi, E.Y., S.H. Choe, J.Y. Hyeon, J.I. Choi, I.S. Choi, and S.J. Kim. 2015. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. Journal of Periodontal Research 50 (6): 737–747.CrossRefPubMed
Metadaten
Titel
Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs
verfasst von
Huaping Zhang
Zhenxiang Zhao
Xuefen Pang
Jian Yang
Haixia Yu
Yinhong Zhang
Hui Zhou
Jiahui Zhao
Publikationsdatum
27.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0588-3

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.