Skip to main content
Erschienen in:

01.06.2019 | Current Opinion

Genome Editing: Promoting Responsible Research

verfasst von: François Hirsch, Christine Lemaitre, Hervé Chneiweiss, Lluis Montoliu

Erschienen in: Pharmaceutical Medicine | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

For more than 40 years, scientists have been developing tools and technologies for genome modification; however, initial progress was slow and few outside of the molecular biology community took an interest in the field. Everything has dramatically changed with the recent appearance of the so-called precision approaches, and especially with the ‘CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) revolution’. With great powers come great responsibilities. CRISPR-derived technologies have been proven efficient, cheap, rather easy and fast, and provided universal access to genome modification techniques beyond the leading research centers and reference laboratories. The popularization of techniques to manipulate the human genome and that of all other living beings consequently raises many essential questions, on the ethical and legal sides, both for the scientific community and the lay public. In order to mitigate excessive hype and concern among citizens, a call for the mobilization of the various stakeholders is now urgent through a global governance of genome editing.
Literatur
1.
Zurück zum Zitat Mak TW. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell. 2007;6:1027–31.CrossRef Mak TW. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell. 2007;6:1027–31.CrossRef
2.
Zurück zum Zitat Buehr M, Meek S, Blair K, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;7:1287–98.CrossRef Buehr M, Meek S, Blair K, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;7:1287–98.CrossRef
3.
Zurück zum Zitat Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.CrossRefPubMed Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.CrossRefPubMed
4.
5.
Zurück zum Zitat Beerli RR, Segal DJ, Dreier B, et al. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA. 1998;95:14628–33.CrossRefPubMedPubMedCentral Beerli RR, Segal DJ, Dreier B, et al. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA. 1998;95:14628–33.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993;9(3):613–21.CrossRefPubMed Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993;9(3):613–21.CrossRefPubMed
9.
Zurück zum Zitat Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.CrossRefPubMed Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.CrossRefPubMed
10.
Zurück zum Zitat Mojica FJ, Montoliu L. On the origin of CRISPR–Cas technology: from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811–20.CrossRefPubMed Mojica FJ, Montoliu L. On the origin of CRISPR–Cas technology: from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811–20.CrossRefPubMed
11.
Zurück zum Zitat Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346(6213):1258096.CrossRefPubMed Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346(6213):1258096.CrossRefPubMed
13.
Zurück zum Zitat Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9.CrossRefPubMed Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9.CrossRefPubMed
14.
Zurück zum Zitat Egli D, Zuccaro VM, Kosicki M, et al. Inter-homologue repair in fertilized human eggs? Nature. 2018;560(7717):E5–7.CrossRefPubMed Egli D, Zuccaro VM, Kosicki M, et al. Inter-homologue repair in fertilized human eggs? Nature. 2018;560(7717):E5–7.CrossRefPubMed
18.
Zurück zum Zitat Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530(7588):18.CrossRefPubMed Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530(7588):18.CrossRefPubMed
21.
Zurück zum Zitat Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Investig. 2017;127(7):2719–24.CrossRefPubMedPubMedCentral Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Investig. 2017;127(7):2719–24.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hainzl S, Peking P, Kocher T, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther. 2017;5(11):2573–84.CrossRef Hainzl S, Peking P, Kocher T, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther. 2017;5(11):2573–84.CrossRef
23.
Zurück zum Zitat Jain A, Zode G, Kasetti RB, et al. CRISPR–Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 2017;114(42):11199–204.CrossRefPubMedPubMedCentral Jain A, Zode G, Kasetti RB, et al. CRISPR–Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 2017;114(42):11199–204.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Hammond AM, Galizi R, Kyrou K, et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnol. 2016;34(1):78–83.CrossRef Hammond AM, Galizi R, Kyrou K, et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnol. 2016;34(1):78–83.CrossRef
28.
Zurück zum Zitat Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13(10):e1007039.CrossRefPubMedPubMedCentral Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13(10):e1007039.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kyrou K, Hammond AM, Roberto Galizi R, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnol. 2018;36:1062–6.CrossRef Kyrou K, Hammond AM, Roberto Galizi R, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnol. 2018;36:1062–6.CrossRef
30.
Zurück zum Zitat Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science. 2017;6357:1303–7.CrossRef Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science. 2017;6357:1303–7.CrossRef
34.
Zurück zum Zitat Hirsch F, Lévy Y, Chneiweiss H. CRISPR–Cas9: a European position on genome editing. Nature. 2017;541(7635):30.CrossRefPubMed Hirsch F, Lévy Y, Chneiweiss H. CRISPR–Cas9: a European position on genome editing. Nature. 2017;541(7635):30.CrossRefPubMed
35.
Zurück zum Zitat Chneiweiss H, Hirsch F, Montoliu L, et al. Fostering responsible research with genome editing technologies: a European perspective. Transgenic Res. 2017;5:709–13.CrossRef Chneiweiss H, Hirsch F, Montoliu L, et al. Fostering responsible research with genome editing technologies: a European perspective. Transgenic Res. 2017;5:709–13.CrossRef
36.
Zurück zum Zitat de Lecuona I, Casado M, Marfany G, et al. Gene editing in humans: towards a global and inclusive debate for responsible research. Yale J Biol Med. 2017;90(4):673–81.PubMedPubMedCentral de Lecuona I, Casado M, Marfany G, et al. Gene editing in humans: towards a global and inclusive debate for responsible research. Yale J Biol Med. 2017;90(4):673–81.PubMedPubMedCentral
41.
Zurück zum Zitat Smalley E. As CRISPR–Cas adoption soars, summit calls for genome editing oversight. Nature Biotechnol. 2018;36:485.CrossRef Smalley E. As CRISPR–Cas adoption soars, summit calls for genome editing oversight. Nature Biotechnol. 2018;36:485.CrossRef
42.
Zurück zum Zitat Hurlbut JB, Jasanoff S, Saha K, et al. Building capacity for a global genome editing observatory: conceptual challenges. Trends Biotechnol. 2018;36(7):639–41.CrossRefPubMedPubMedCentral Hurlbut JB, Jasanoff S, Saha K, et al. Building capacity for a global genome editing observatory: conceptual challenges. Trends Biotechnol. 2018;36(7):639–41.CrossRefPubMedPubMedCentral
Metadaten
Titel
Genome Editing: Promoting Responsible Research
verfasst von
François Hirsch
Christine Lemaitre
Hervé Chneiweiss
Lluis Montoliu
Publikationsdatum
01.06.2019
Verlag
Springer International Publishing
Erschienen in
Pharmaceutical Medicine / Ausgabe 3/2019
Print ISSN: 1178-2595
Elektronische ISSN: 1179-1993
DOI
https://doi.org/10.1007/s40290-019-00276-1