Skip to main content
main-content

01.12.2017 | Research | Ausgabe 1/2017 Open Access

Antimicrobial Resistance & Infection Control 1/2017

Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1

Zeitschrift:
Antimicrobial Resistance & Infection Control > Ausgabe 1/2017
Autoren:
Amr T. M. Saeb, Khalid A. Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa T. Tayeb
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13756-017-0277-x) contains supplementary material, which is available to authorized users.

Abstract

Background

P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in Diabetic foot ulcer (DFU) patients. We isolated P. mirabilis SCDR1 from a Diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against Nanosilver colloids, the commercial Nanosilver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the characterization of the infectious pathogen.

Results

P. mirabilis SCDR1 was the first Nanosilver resistant isolate collected from a diabetic patient polyclonal infection. P. mirabilis SCDR1 showed high levels of resistance against Nanosilver colloids, Nanosilver chitosan composite and the commercially available Nanosilver and silver bandages. The P. mirabilis -SCDR1 genome size is 3,815,621 bp. with G + C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3533 genes, 3414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, the wound, can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance, including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification.

Conclusion

P. mirabilis SCDR1 is the first reported spontaneous Nanosilver resistant bacterial strain. P. mirabilis SCDR1 possesses several mechanisms that may lead to the observed Nanosilver resistance.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise