Skip to main content
Erschienen in: Tumor Biology 9/2016

07.04.2016 | Original Article

Genome-wide mitochondrial DNA sequence variations and lower expression of OXPHOS genes predict mitochondrial dysfunction in oral cancer tissue

verfasst von: Esita Chattopadhyay, Navonil De Sarkar, Richa Singh, Anindita Ray, Roshni Roy, Ranjan Rashmi Paul, Mousumi Pal, Sandip Ghose, Subhrendu Ghosh, Debajyoti Kabiraj, Raja Banerjee, Bidyut Roy

Erschienen in: Tumor Biology | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

Several studies reported that mtDNA mutations may play important roles in carcinogenesis although the mechanism is not clear yet. Most of the studies compared mtDNA sequences in a tumor with those in normal tissues from different individuals ignoring inter-individual variations. In this study, 271 SNPs, 7 novel SNPs (or SNVs), and 15 somatic mutations were detected in mtDNA of 8 oral cancer tissues with respect to reference (rCRS) and adjacent normal tissues, respectively, using Ion PGM next generation sequencing method. Most of the sequence variations (76 SNPs and 1 somatic) are present in D-loop region followed by CyB (36 SNPs), ATP6 (24 SNPs), ND5 (17 SNPs and 5 somatic), ND4 (18 coding and 2 somatic) and other non-coding and coding DNA sequences. A total of 53 and 8 non-synonymous SNPs and somatic mutations, respectively, were detected in tumor tissues and some of these variations may have deleterious effects on the protein function as predicted by bioinformatic analysis. Moreover, significantly low mtDNA contents and expression of several mitochondrial genes in tumor compared to adjacent normal tissues may have also affected mitochondrial functions. Taken together, this study suggests that mtDNA mutations as well as low expression of mtDNA coded genes may play important roles in tumor growth. Although the sample size is low, an important aspect of the study is the use of adjacent control tissues to find out somatic mutations and a change in the expression of mitochondrial genes, to rule out inter-individual and inter-tissue variations which are important issues in the study of mitochondrial genomics.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Gupta B, Ariyawardana A, Johnson NW. Oral cancer in India continues in epidemic proportions: evidence base and policy initiatives. Int Dent J. 2013;63:12–25.CrossRefPubMed Gupta B, Ariyawardana A, Johnson NW. Oral cancer in India continues in epidemic proportions: evidence base and policy initiatives. Int Dent J. 2013;63:12–25.CrossRefPubMed
3.
Zurück zum Zitat Ranjith Raveendran SGN. Precipitants of oral cancer in India. Clinical Cancer Investigation Journal. 2012;1:111–3.CrossRef Ranjith Raveendran SGN. Precipitants of oral cancer in India. Clinical Cancer Investigation Journal. 2012;1:111–3.CrossRef
4.
Zurück zum Zitat Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.CrossRefPubMed Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.CrossRefPubMed
5.
Zurück zum Zitat Biswas NK, Dey B, Majumder PP. Using HapMap data: a cautionary note. Eur J Hum Genet. 2007;15:246–9.CrossRefPubMed Biswas NK, Dey B, Majumder PP. Using HapMap data: a cautionary note. Eur J Hum Genet. 2007;15:246–9.CrossRefPubMed
6.
Zurück zum Zitat Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.CrossRefPubMedPubMedCentral Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. Swiss-model: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRefPubMedPubMedCentral Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. Swiss-model: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRefPubMed Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRefPubMed
9.
Zurück zum Zitat Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014;42:D336–46.CrossRefPubMed Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014;42:D336–46.CrossRefPubMed
10.
11.
Zurück zum Zitat Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, et al. UCSF Chimera, Modeller, and Imp: an integrated modeling system. J Struct Biol. 2012;179:269–78.CrossRefPubMed Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, et al. UCSF Chimera, Modeller, and Imp: an integrated modeling system. J Struct Biol. 2012;179:269–78.CrossRefPubMed
12.
Zurück zum Zitat Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–637.CrossRefPubMed Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–637.CrossRefPubMed
13.
Zurück zum Zitat Maiti R, Van Domselaar GH, Zhang H, Wishart DS. Superpose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 2004;32:W590–4.CrossRefPubMedPubMedCentral Maiti R, Van Domselaar GH, Zhang H, Wishart DS. Superpose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 2004;32:W590–4.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Krishnan KJ, Bender A, Taylor RW, Turnbull DM. A multiplex real-time pcr method to detect and quantify mitochondrial DNA deletions in individual cells. Anal Biochem. 2007;370:127–9.CrossRefPubMed Krishnan KJ, Bender A, Taylor RW, Turnbull DM. A multiplex real-time pcr method to detect and quantify mitochondrial DNA deletions in individual cells. Anal Biochem. 2007;370:127–9.CrossRefPubMed
15.
Zurück zum Zitat Datta S, Ray A, Roy R, Roy B: Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer. Gene 2015 Datta S, Ray A, Roy R, Roy B: Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer. Gene 2015
16.
Zurück zum Zitat Sikdar N, Paul RR, Roy B. Glutathione s-transferase m3 (a/a) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109:95–101.CrossRefPubMed Sikdar N, Paul RR, Roy B. Glutathione s-transferase m3 (a/a) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109:95–101.CrossRefPubMed
17.
Zurück zum Zitat Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. 2014;16:73–82.CrossRefPubMed Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. 2014;16:73–82.CrossRefPubMed
18.
Zurück zum Zitat Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A. 2012;109:14087–91.CrossRefPubMedPubMedCentral Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A. 2012;109:14087–91.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Pugach I, Delfin F, Gunnarsdottir E, Kayser M, Stoneking M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc Natl Acad Sci U S A. 2013;110:1803–8.CrossRefPubMedPubMedCentral Pugach I, Delfin F, Gunnarsdottir E, Kayser M, Stoneking M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc Natl Acad Sci U S A. 2013;110:1803–8.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Challen C, Brown H, Cai C, Betts G, Paterson I, Sloan P, et al. Mitochondrial DNA mutations in head and neck cancer are infrequent and lack prognostic utility. Br J Cancer. 2011;104:1319–24.CrossRefPubMedPubMedCentral Challen C, Brown H, Cai C, Betts G, Paterson I, Sloan P, et al. Mitochondrial DNA mutations in head and neck cancer are infrequent and lack prognostic utility. Br J Cancer. 2011;104:1319–24.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E, Gundem G, Shlien A, Bolli N, Behjati S, Tarpey PS, Nangalia J, Massie CE, Butler AP, Teague JW, Vassiliou GS, Green AR, Du MQ, Unnikrishnan A, Pimanda JE, Teh BT, Munshi N, Greaves M, Vyas P, El-Naggar AK, Santarius T, Collins VP, Grundy R, Taylor JA, Hayes DN, Malkin D, Foster CS, Warren AY, Whitaker HC, Brewer D, Eeles R, Cooper C, Neal D, Visakorpi T, Isaacs WB, Bova GS, Flanagan AM, Futreal PA, Lynch AG, Chinnery PF, McDermott U, Stratton MR, Campbell PJ: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 2014;3 Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E, Gundem G, Shlien A, Bolli N, Behjati S, Tarpey PS, Nangalia J, Massie CE, Butler AP, Teague JW, Vassiliou GS, Green AR, Du MQ, Unnikrishnan A, Pimanda JE, Teh BT, Munshi N, Greaves M, Vyas P, El-Naggar AK, Santarius T, Collins VP, Grundy R, Taylor JA, Hayes DN, Malkin D, Foster CS, Warren AY, Whitaker HC, Brewer D, Eeles R, Cooper C, Neal D, Visakorpi T, Isaacs WB, Bova GS, Flanagan AM, Futreal PA, Lynch AG, Chinnery PF, McDermott U, Stratton MR, Campbell PJ: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 2014;3
22.
Zurück zum Zitat Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 2011;6:e23401.CrossRefPubMedPubMedCentral Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 2011;6:e23401.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A. 2005;102:719–24.CrossRefPubMedPubMedCentral Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A. 2005;102:719–24.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Dasgupta S, Koch R, Westra WH, Califano JA, Ha PK, Sidransky D, et al. Mitochondrial DNA mutation in normal margins and tumors of recurrent head and neck squamous cell carcinoma patients. Cancer Prev Res (Phila). 2010;3:1205–11.CrossRef Dasgupta S, Koch R, Westra WH, Califano JA, Ha PK, Sidransky D, et al. Mitochondrial DNA mutation in normal margins and tumors of recurrent head and neck squamous cell carcinoma patients. Cancer Prev Res (Phila). 2010;3:1205–11.CrossRef
25.
Zurück zum Zitat Kloss-Brandstatter A, Weissensteiner H, Erhart G, Schafer G, Forer L, Schonherr S, et al. Validation of next-generation sequencing of entire mitochondrial genomes and the diversity of mitochondrial DNA mutations in oral squamous cell carcinoma. PLoS One. 2015;10:e0135643.CrossRefPubMedPubMedCentral Kloss-Brandstatter A, Weissensteiner H, Erhart G, Schafer G, Forer L, Schonherr S, et al. Validation of next-generation sequencing of entire mitochondrial genomes and the diversity of mitochondrial DNA mutations in oral squamous cell carcinoma. PLoS One. 2015;10:e0135643.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Allegra E, Garozzo A, Lombardo N, De Clemente M, Carey TE. Mutations and polymorphisms in mitochondrial DNA in head and neck cancer cell lines. Acta Otorhinolaryngol Ital. 2006;26:185–90.PubMedPubMedCentral Allegra E, Garozzo A, Lombardo N, De Clemente M, Carey TE. Mutations and polymorphisms in mitochondrial DNA in head and neck cancer cell lines. Acta Otorhinolaryngol Ital. 2006;26:185–90.PubMedPubMedCentral
27.
Zurück zum Zitat Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25:4647–62.CrossRefPubMed Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25:4647–62.CrossRefPubMed
28.
Zurück zum Zitat Hosgood 3rd HD, Liu CS, Rothman N, Weinstein SJ, Bonner MR, Shen M, et al. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study. Carcinogenesis. 2010;31:847–9.CrossRefPubMedPubMedCentral Hosgood 3rd HD, Liu CS, Rothman N, Weinstein SJ, Bonner MR, Shen M, et al. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study. Carcinogenesis. 2010;31:847–9.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006;95:1087–91.CrossRefPubMedPubMedCentral Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006;95:1087–91.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the d-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004;547:71–8.CrossRefPubMed Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the d-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004;547:71–8.CrossRefPubMed
31.
Zurück zum Zitat Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer. 2006;45:629–38.CrossRefPubMed Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer. 2006;45:629–38.CrossRefPubMed
32.
Zurück zum Zitat Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer. 2005;44:19–28.CrossRefPubMed Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer. 2005;44:19–28.CrossRefPubMed
33.
Zurück zum Zitat Tang Y, Schon EA, Wilichowski E, Vazquez-Memije ME, Davidson E, King MP. Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell. 2000;11:1471–85.CrossRefPubMedPubMedCentral Tang Y, Schon EA, Wilichowski E, Vazquez-Memije ME, Davidson E, King MP. Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell. 2000;11:1471–85.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet. 1991;48:492–501.PubMedPubMedCentral Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet. 1991;48:492–501.PubMedPubMedCentral
35.
Zurück zum Zitat Cline SD. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta. 1819;2012:979–91. Cline SD. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta. 1819;2012:979–91.
36.
Zurück zum Zitat Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002;23:759–68.CrossRefPubMed Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002;23:759–68.CrossRefPubMed
37.
Zurück zum Zitat Sanchez MI, Mercer TR, Davies SM, Shearwood AM, Nygard KK, Richman TR, et al. RNA processing in human mitochondria. Cell Cycle. 2011;10:2904–16.CrossRefPubMed Sanchez MI, Mercer TR, Davies SM, Shearwood AM, Nygard KK, Richman TR, et al. RNA processing in human mitochondria. Cell Cycle. 2011;10:2904–16.CrossRefPubMed
38.
Zurück zum Zitat Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res. 2001;61:1299–304.PubMed Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res. 2001;61:1299–304.PubMed
39.
Zurück zum Zitat Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006;25:4663–74.CrossRefPubMed Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006;25:4663–74.CrossRefPubMed
40.
Zurück zum Zitat Gasparre G, Hervouet E, de Laplanche E, Demont J, Pennisi LF, Colombel M, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet. 2008;17:986–95.CrossRefPubMed Gasparre G, Hervouet E, de Laplanche E, Demont J, Pennisi LF, Colombel M, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet. 2008;17:986–95.CrossRefPubMed
41.
Zurück zum Zitat Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG. Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet. 2004;13:659–67.CrossRefPubMed Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG. Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet. 2004;13:659–67.CrossRefPubMed
Metadaten
Titel
Genome-wide mitochondrial DNA sequence variations and lower expression of OXPHOS genes predict mitochondrial dysfunction in oral cancer tissue
verfasst von
Esita Chattopadhyay
Navonil De Sarkar
Richa Singh
Anindita Ray
Roshni Roy
Ranjan Rashmi Paul
Mousumi Pal
Sandip Ghose
Subhrendu Ghosh
Debajyoti Kabiraj
Raja Banerjee
Bidyut Roy
Publikationsdatum
07.04.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 9/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5026-x

Weitere Artikel der Ausgabe 9/2016

Tumor Biology 9/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.