Skip to main content
Erschienen in: Virology Journal 1/2020

Open Access 01.12.2020 | Short report

Genomic organization of a Gamma-6 papillomavirus metagenomic discovered from vaginal swab samples of Chinese pregnant women

verfasst von: Yu Ling, Jianqiang Wang, Jun Yin, Jianpu Xu, Yufan Wu, Rui Zhou, Juan Lu, Shixing Yang, Xiaochun Wang, Quan Shen, Wen Zhang

Erschienen in: Virology Journal | Ausgabe 1/2020

Abstract

A complete genome sequence of human papillomaviruses (HPV) named as HPV-ujs-21015 was determined by viral metagenomic and PCR methods. The complete genome is 7354 bp in length with GC content of 41.7%, of which the genome was predicted to contain six ORFs (Open Reading Frame, ORF) coding for four early proteins (E7, E1, E4, and E2) and two late proteins (L1 and L2). Phylogenetic analysis based on the complete genome and the L1 protein showed that HPV-ujs-21015 belongs to a type 214 member within genus Gamma-6 papillomavirus. It is the first complete genome of Gamma-6 papillomavirus discovered from pregnant women in China.
Hinweise
Yu Ling and Jianqiang Wang contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12985-020-01319-9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
aa
Amino acid
HPV
Human papillomaviruses
ORF
Open Reading Frame
ICTV
International Committee on Taxonomy of Viruses
nt
Nucleotide
pRb
Retinoblastoma protein

Main text

Human papillomavirus (HPVs), a member of the Papillomaviridae family, are nonenveloped, double-strand circular DNA viruses with an approximately 8 kb genome in length. In the circular genome of HPV, eight genes are typically encoded. L1 and L2 code capsid proteins of virus, which can help virus entry into the basal layer keratinocytes [1, 2]. E2 protein is required for the transcription of viral genes and replication, and also recruits the viral DNA helicase E1 to keeping viral genomes in host cells [3]. E6 and E7 are believed to drive cellular immortalization and maintain the transformed phenotype during tumor progression, to exert functions by binding with many cellular protein to activate cancer hallmarks [4]. HPVs are classified into genera (alpha, beta, gamma, mu, and nu), species, types and even variants based on the nucleotide similarity, with the different types having different life-cycle characteristics and disease associations [5, 6]. HPV persistent infection is the main risk factor for the development of many tumors especially cervical tumor [7]. Although there were numerous ways to prevent the infection of HPV, such as vaccination, over 600,000 cases per year of cervical cancer were recorded worldwide [8]. According to the data from International HPV Reference Center at the Karolinska Institute, Stockholm, Sweden, as of May 6, 2016, two hundred and twenty-six reference HPV types, ranging from HPV-1 to HPV-226, were officially recognized (https://​www.​hpvcenter.​se/​human_​reference_​clones/​). The determination of HPV genome can be helpful to understand the genomic characteristics and the clinical relevance of these new HPV strains. In recent years, in addition to frequently-used methods like PCR, some new methods including viral metagenomics were used to acquire the genome of HPV more efficiently [9, 10].
In our current study, the viral nucleic acid sequences from vaginal swabs were investigated through viral metagenomics. A total of 100 vaginal swabs were collected from the health pregnant women who visited hospital for antenatal follow-up of pregnancy in Shanghai City, China, in 2017. The total viral nucleic acid was isolated using QiaAmp Mini Viral RNA kit (Qiagen, USA) according to the manufacturer’s protocol after centrifugation, filtration and DNase and RNase digestion, as we described previously, and pooled into 10 libraries [9]. The produced nucleic acids (both DNA and RNA) were subjected to reverse transcript with N8 random primers (Sangon, Shanghai, China), and the second stand was generated using Klenow enzyme (NEB, Ipswich, USA). The libraries were then constructed by the Nextera XT DNA sample Preparation Kit (Illumina, CA, USA) following the protocol, and the prepared libraries were sequenced by Illumina Miseq platform with 250 bases paired ends with dual barcoding for each pool.
The total numbers of sequence reads generated for the 10 libraries were 73,264 (swab01), 45,462 (swab02), 100,518 (swab03), 111,398 (swab04), 82,612 (swab05), 436,560 (swab06), 903,618 (swab07), 71,544 (swab08), 273,046 (swab09), and 51,590 (swab10). Raw data were processed according to the standard procedure which included debarcoding, trimming and assembling [11]. Contigs and singlet reads were then matched against a customized viral proteome database using BLASTx with an E value cutoff of < 10− 5. Bioinformatics analysis was performed according to a previous study [9]. PCR and sanger sequencing were carried out to bridge the gaps between sequences as well as assess the prevalence of HPV strain identified in this study. Putative ORFs (Open Reading Frame, ORF) in the genome of HPV-ujs-21015 were predicted by Geneious Prime software (version 2020.0.4). The closest viral strains based on best BLASTx hits and the representative members of species and genera were selected to perform the phylogenetic analyses (Table 1). In order to construct the phylogenetic tree, sequence alignment was performed using Clustal W with the default settings. Phylogenetic tree was generated using the maximum likelihood method based on Jones-Taylor-Thornton (JTT) model by MEGA 7.0 with 1000 bootstrap. Bootstrap values for each node are given in the trees.
Table 1
The reference HPV strains and their genera and species. Classification was based on International Committee on Taxonomy of Viruses (https://​talk.​ictvonline.​org/​ictv-reports/​ictv_​online_​report/​dsdna-viruses/​w/​papillomaviridae​), International HPV Reference Center at the Karolinska Institute, Stockholm, Sweden (http://​www.​hpvcenter.​se), and Bernard et al., Virology. 2010 May 25; 401(1): 70–79
genus
species
abbreviation
GenBank
accession number
alphapapillomavirus
alpha-1
HPV32
NC_001586
alpha-2
HPV3
X74462
alpha-3
HPV61
NC_001694
alpha-4
HPV2
NC_001352
alpha-5
HPV26
NC_001583
alpha-6
HPV30
NC_038889
alpha-7
HPV18
NC_001357
alpha-7
HPV85
AF131950
alpha-8
HPV7
NC_001595
alpha-9
HPV16
NC_001526
alpha-9
HPV58
D90400
alpha-10
HPV6
NC_001355
alpha-11
HPV34
NC_001587
alpha-13
HPV54
NC_001676
alpha-14
HPV71
NC_039089
betapapillomavirus
beta-1
HPV5
NC_001531
beta-2
HPV9
NC_001596
beta-2
HPV23
U31781
beta-3
HPV49
NC_001591
beta-4
HPV92
NC_004500
beta-5
HPV96
NC_005134
unclassified
isol Ki88
EU410347ACC78262
gammapapillomavirus
gamma-1
HPV4
NC_001457
gamma-1
HPV95
AJ620210
gamma-2
HPV48
NC_001690
gamma-3
HPV50
NC_001691
gamma-4
HPV60
NC_001693
gamma-5
HPV88
NC_010329
gamma-6
HPV101
NC_008189
gamma-6
mw03c65
MF588697
gamma-7
HPV109
NC_012485
gamma-8
HPV112
NC_012486
gamma-9
HPV116
NC_013035
gamma-10
HPV121
NC_014185
gamma-11
HPV126
NC_016157
gamma-12
HPV127
NC_014469
gamma-12
HPV132
GU117632
gamma-12
HPV148
GU129016
gamma-12
HPV199
KJ913662
gamma-13
HPV128
NC_014952
gamma-14
HPV131
NC_014954
gamma-15
HPV135
NC_017993
gamma-16
HPV137
NC_017995
gamma-17
HPV144
NC_017997
gamma-18
HPV156
NC_033781
gamma-19
HPV161
NC_038522
gamma-19
HPV162
JX413108
gamma-19
HPV166
JX413104
gamma-20
HPV163
NC_028125
gamma-21
HPV167
NC_022892
gamma-22
HPV172
NC_038523
gamma-23
HPV175
NC_038524
gamma-24
HPV178
NC_023891
gamma-24
HPV197
KM085343
gamma-25
HPV184
NC_038914
gamma-27
HPV201
NC_027528
unclassified
HPV-ZJ01
KX082661
unclassified
isol CH2
KF791917
unclassified
isol Fi864
KC311731
unclassified
isol KC5
JX444073
mupapillomavirus
mu-1
HPV1
NC_001356
mu-2
HPV63
NC_001458
mu-3
HPV204
NC_038525
nupapillomavirus
nu-1
HPV41
NC_001354

Results and discussion

A strain of HPV named as HPV-ujs-21015 (GenBank accession no. MN400665, see Additional file 1) was determined in the vaginal swab (containing 1654 reads in library swab02), of which the complete genome is 7354 bp in length with GC content of 41.7%. The genome of HPV-ujs-21015 was predicted to contain six ORFs coding for four early proteins (E7, E1, E4, and E2) and two late proteins (L1 and L2) (Fig. 1). The nucleic acid lengths of these proteins were 300, 1905, 354, 1167, 1626 and 1614, respectively, and the positions on the genome were showed in Fig. 1. Notably, the E6 gene that plays a crucial role in the cell transformation through binding of p53 tumor suppressor protein was absent in this strain, which was consistence with other HPV214 strains [12, 13]. E6 as well as E7 is believed to be directly responsible for the development of HPV-induced carcinogenesis. In the high risk HPVs, they do this cooperatively by targeting diverse cellular pathways including the regulation of cell cycle control. Meanwhile, there is a view that the lost function of E6 in HPV214 may be compensated for in its E7 protein which has an LXCXE (Fig. 2a) motif that has been shown to bind pRB in HPV16 and other high risk HPV types.
According to the International Committee on Taxonomy of Viruses (ICTV), a viral type within a species has 71 to 89% identity with other types within the same species based on the comparative homology of the L1 DNA sequence. Additionally, there are several subtypes and variants within a type, which share 90 to 98% and more than 98% identity, respectively. In the current study, sequence analysis indicated that HPV-ujs-21015 shared the highest nucleotide (nt) sequence identity (99%) with a type 214 strain named CT06 isolated from South African strain (GenBank no. MF509819), as well as strain mw03c65 (GenBank accession no. MF588697), which was an unclassified strain detected in patients with immunodeficiency in USA.
Similar to mw03c65 and CT06 strain, the putative E7 protein of HPV-ujs-21015 strain contained one zinc-finger domain and an LXCXE sequence (Fig. 2a), which is critical for transforming activities by way of binding a number of important cellular regulatory proteins, including tumor suppressor: Retinoblastoma protein (pRb). Compared with these two strains, HPV-ujs-21015 had one amino acid deletion and three mutations (Fig. 2a). Whether the deletion and mutations affect the biological function of E7 will require more research. Intriguingly, another protein with significant diversity was L1, of which HPV-ujs-21015 had the 100% amino acid similarity with mw03c65, but was thirty consensus amino acid longer than that of CT06 strain in the 5’end (Fig. 2b).
To characterize the phylogenetic relationship between HPV-ujs-21015 and related HPV reference strains, two phylogenetic trees based on the complete genome and L1 protein were constructed, respectively, by MEGA 7.0. Both trees revealed that the reference HPVs were clustered well in their genera and types. The phylogenetic tree based on the complete genome showed that HPV-ujs-21015 belonged to Gamma-papillomavirus (Fig. 3a). The other phylogenetic tree based on the L1 protein further assigned HPV-ujs-21015 within the group of type 214 in Gamma-6, being closely related to mw03c65 strain (Fig. 3b). In summary, our results suggest that all of these three strains isolated from different countries were variants with the genotype 214.
HPVs comprise five evolutionary groups with different epithelial tropisms and disease associations. Traditionally, based on the location of the certain virus genome was found, HPVs have also been classified as mucosal or cutaneous types [1]. Increasing evidences revealed that Gamma-PVs showed broad tissue tropism, with the detection locations ranging from health skin and cutaneous lesions to genital lesions [10, 14, 15]. DNA of some Gamma-PVs types were detected in skin cancer raised concerns of some Gamma-PVs associations with cancers, especially in patients with immunodeficiency or immunosuppression [16, 17]. In the current study, HPV-ujs-21015 strain was identified from a health pregnant woman who visited hospital for antenatal follow-up. Vaginitis or other vaginal disease were not found by the attending gynecologist. Generally, both mucosal or cutaneous disease relied on the persistent infection of HPVs. Therefore, whether the infection of HPV-ujs-21015 can cause disease or not is still unknown. A total of one hundred of vaginal swab samples from health pregnant women who visited hospital for antenatal follow-up were screened by PCR method with a set of nested primers (data not showed) designed on HPV-ujs-21015 L1 gene. Result showed that two samples were positive (2/100). The prevalence and disease association of HPV-ujs-21015 need to be clarified through larger sample size, biological and histological experiments.
In conclusion, we determined and characterized the complete genome sequence of a genotype 214 Gamma-6 papillomavirus, which was isolated from a health pregnant woman of China. To the best of our knowledge, it is the first complete genome of Gamma-6 papillomavirus detected in Pregnant Women of China.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12985-020-01319-9.

Acknowledgements

Not applicable.
This study did not include experiments with human participants or animals performed by any of the authors.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(Suppl 5):F55–70.CrossRef Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(Suppl 5):F55–70.CrossRef
2.
Zurück zum Zitat Finnen RL, Erickson KD, Chen XJS, Garcea RL. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol. 2003;77(8):4818–26.CrossRef Finnen RL, Erickson KD, Chen XJS, Garcea RL. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol. 2003;77(8):4818–26.CrossRef
3.
Zurück zum Zitat Thomas Y, Androphy EJ. Acetylation of E2 by P300 Mediates Topoisomerase Entry at the Papillomavirus Replicon. J Virol. 2019;93(7):e02224–18. Thomas Y, Androphy EJ. Acetylation of E2 by P300 Mediates Topoisomerase Entry at the Papillomavirus Replicon. J Virol. 2019;93(7):e02224–18.
4.
Zurück zum Zitat Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26(2):158–68.CrossRef Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26(2):158–68.CrossRef
5.
Zurück zum Zitat Bernard HU, Burk RD, Chen ZG, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9.CrossRef Bernard HU, Burk RD, Chen ZG, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9.CrossRef
6.
Zurück zum Zitat Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Munoz N. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical Neoplasia. Vaccine. 2008;26:K1–K16.CrossRef Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Munoz N. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical Neoplasia. Vaccine. 2008;26:K1–K16.CrossRef
7.
Zurück zum Zitat Schwarz TF. AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev Vaccines. 2008;7(10):1465–73.CrossRef Schwarz TF. AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev Vaccines. 2008;7(10):1465–73.CrossRef
8.
Zurück zum Zitat Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRef Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRef
9.
Zurück zum Zitat Liu ZJ, Yang SX, Wang Y, Shen Q, Yang Y, Deng XT, Zhang W, Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol J. 2016;13:122. Liu ZJ, Yang SX, Wang Y, Shen Q, Yang Y, Deng XT, Zhang W, Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol J. 2016;13:122.
10.
Zurück zum Zitat Pastrana DV, Peretti A, Welch NL, Borgogna C, Olivero C, Badolato R, Notarangelo LD, Gariglio M, FitzGerald PC, McIntosh CE, et al. Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. Msphere. 2018;3(6). Pastrana DV, Peretti A, Welch NL, Borgogna C, Olivero C, Badolato R, Notarangelo LD, Gariglio M, FitzGerald PC, McIntosh CE, et al. Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. Msphere. 2018;3(6).
11.
Zurück zum Zitat Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43(7):e46.CrossRef Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43(7):e46.CrossRef
12.
Zurück zum Zitat Murahwa AT, Meiring TL, Mbulawa ZZA, Williamson AL. Discovery, characterisation and genomic variation of six novel Gammapapillomavirus types from penile swabs in South Africa. Papillomavirus Res. 2019;7:102–11.CrossRef Murahwa AT, Meiring TL, Mbulawa ZZA, Williamson AL. Discovery, characterisation and genomic variation of six novel Gammapapillomavirus types from penile swabs in South Africa. Papillomavirus Res. 2019;7:102–11.CrossRef
13.
Zurück zum Zitat Nobre RJ, Herraez-Hernandez E, Fei JW, Langbein L, Kaden S, Grone HJ, de Villiers EM. E7 oncoprotein of novel human papillomavirus type 108 lacking the E6 gene induces dysplasia in organotypic keratinocyte cultures. J Virol. 2009;83(7):2907–16.CrossRef Nobre RJ, Herraez-Hernandez E, Fei JW, Langbein L, Kaden S, Grone HJ, de Villiers EM. E7 oncoprotein of novel human papillomavirus type 108 lacking the E6 gene induces dysplasia in organotypic keratinocyte cultures. J Virol. 2009;83(7):2907–16.CrossRef
14.
Zurück zum Zitat Bolatti EM, Hosnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, et al. High prevalence of Gammapapillomaviruses (gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel gamma-PV type. Virology. 2018;525:182–91.CrossRef Bolatti EM, Hosnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, et al. High prevalence of Gammapapillomaviruses (gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel gamma-PV type. Virology. 2018;525:182–91.CrossRef
15.
Zurück zum Zitat Bolatti EM, Chouhy D, Casal PE, Perez GR, Stella EJ, Sanchez A, Gorosito M, Bussy RF, Giri AA. Characterization of novel human papillomavirus types 157, 158 and 205 from healthy skin and recombination analysis in genus gamma-papillomavirus. Infect Genet Evol. 2016;42:20–9.CrossRef Bolatti EM, Chouhy D, Casal PE, Perez GR, Stella EJ, Sanchez A, Gorosito M, Bussy RF, Giri AA. Characterization of novel human papillomavirus types 157, 158 and 205 from healthy skin and recombination analysis in genus gamma-papillomavirus. Infect Genet Evol. 2016;42:20–9.CrossRef
16.
Zurück zum Zitat Bottalico D, Chen ZG, Dunne A, Ostoloza J, McKinney S, Sun C, Schlecht NF, Fatahzadeh M, Herrero R, Schiffman M, et al. The Oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. 2011;204(5):787–92.CrossRef Bottalico D, Chen ZG, Dunne A, Ostoloza J, McKinney S, Sun C, Schlecht NF, Fatahzadeh M, Herrero R, Schiffman M, et al. The Oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. 2011;204(5):787–92.CrossRef
17.
Zurück zum Zitat Dutta S, Robitaille A, Aubin F, Fouere S, Galicier L, Boutboul D, Luzi F, Di Bonito P, Tommasino M, Gheit T. Identification and characterization of two novel Gammapapillomavirus genomes in skin of an immunosuppressed Epidermodysplasia Verruciformis patient. Virus Res. 2018;249:66–8.CrossRef Dutta S, Robitaille A, Aubin F, Fouere S, Galicier L, Boutboul D, Luzi F, Di Bonito P, Tommasino M, Gheit T. Identification and characterization of two novel Gammapapillomavirus genomes in skin of an immunosuppressed Epidermodysplasia Verruciformis patient. Virus Res. 2018;249:66–8.CrossRef
Metadaten
Titel
Genomic organization of a Gamma-6 papillomavirus metagenomic discovered from vaginal swab samples of Chinese pregnant women
verfasst von
Yu Ling
Jianqiang Wang
Jun Yin
Jianpu Xu
Yufan Wu
Rui Zhou
Juan Lu
Shixing Yang
Xiaochun Wang
Quan Shen
Wen Zhang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2020
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01319-9

Weitere Artikel der Ausgabe 1/2020

Virology Journal 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.