Skip to main content
Erschienen in: Translational Stroke Research 4/2018

26.10.2017 | Review Article

Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell

verfasst von: Deepaneeta Sarmah, Harpreet Kaur, Jackson Saraf, Kanta Pravalika, Avirag Goswami, Kiran Kalia, Anupom Borah, Xin Wang, Kunjan R. Dave, Dileep R. Yavagal, Pallab Bhattacharya

Erschienen in: Translational Stroke Research | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Literatur
1.
Zurück zum Zitat Guzik A, Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum: Lifelong Learn Neurol. 2017;23(1, Cerebrovascular Disease):15–39. Guzik A, Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum: Lifelong Learn Neurol. 2017;23(1, Cerebrovascular Disease):15–39.
2.
Zurück zum Zitat Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133(4):e38–e360.PubMed Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133(4):e38–e360.PubMed
3.
Zurück zum Zitat Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007;6(12):1106–14.PubMedCrossRef Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007;6(12):1106–14.PubMedCrossRef
4.
Zurück zum Zitat Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.PubMedPubMedCentralCrossRef Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.PubMedCrossRef Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.PubMedCrossRef
6.
Zurück zum Zitat Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8(8):1193–201.PubMedCrossRef Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8(8):1193–201.PubMedCrossRef
7.
Zurück zum Zitat Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21.PubMedCrossRef Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21.PubMedCrossRef
8.
Zurück zum Zitat Meurer WJ, Barth BE, Gaddis G, Vilke GM, Lam SH. Rapid systematic review: intra-arterial thrombectomy (“Clot Retrieval”) for selected patients with acute ischemic stroke. J Emerg Med. 2017;52(2):255–61.PubMedCrossRef Meurer WJ, Barth BE, Gaddis G, Vilke GM, Lam SH. Rapid systematic review: intra-arterial thrombectomy (“Clot Retrieval”) for selected patients with acute ischemic stroke. J Emerg Med. 2017;52(2):255–61.PubMedCrossRef
9.
Zurück zum Zitat Nagpal A, Choy FC, Howell S, Hillier S, Chan F, Hamilton-Bruce MA, et al. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Res Ther. 2017;8(1):191.PubMedPubMedCentralCrossRef Nagpal A, Choy FC, Howell S, Hillier S, Chan F, Hamilton-Bruce MA, et al. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Res Ther. 2017;8(1):191.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI. Systematic review and meta-analysis of bone marrow-derived mononuclear cells in animal models of ischemic stroke. Stroke. 2016;47(6):1632–9.PubMedPubMedCentralCrossRef Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI. Systematic review and meta-analysis of bone marrow-derived mononuclear cells in animal models of ischemic stroke. Stroke. 2016;47(6):1632–9.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2010;40(1):7–13.PubMedCrossRef Banerjee S, Williamson D, Habib N, Gordon M, Chataway J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 2010;40(1):7–13.PubMedCrossRef
12.
Zurück zum Zitat Kalladka D, Muir KW. Brain repair: cell therapy in stroke. Stem Cells and Cloning: Adv Appl. 2014;7:31. Kalladka D, Muir KW. Brain repair: cell therapy in stroke. Stem Cells and Cloning: Adv Appl. 2014;7:31.
13.
Zurück zum Zitat Hsuan YC, Lin CH, Chang CP, Lin MT. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav. 2016;6(10):e00526. Hsuan YC, Lin CH, Chang CP, Lin MT. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav. 2016;6(10):e00526.
14.
Zurück zum Zitat Tögel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol-Renal Physiol. 2007;292(5):F1626–F35.PubMedCrossRef Tögel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol-Renal Physiol. 2007;292(5):F1626–F35.PubMedCrossRef
15.
Zurück zum Zitat van Velthoven CT, Van De Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol. 2012;71(6):785–96.PubMedCrossRef van Velthoven CT, Van De Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol. 2012;71(6):785–96.PubMedCrossRef
16.
Zurück zum Zitat Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47.PubMedCrossRefPubMedCentral Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47.PubMedCrossRefPubMedCentral
17.
Zurück zum Zitat Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JIV. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.PubMedCrossRef Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JIV. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.PubMedCrossRef
18.
Zurück zum Zitat Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.PubMedCrossRef Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.PubMedCrossRef
19.
Zurück zum Zitat Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci. 2012;316(1):141–9.PubMedCrossRef Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci. 2012;316(1):141–9.PubMedCrossRef
20.
Zurück zum Zitat Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–8.PubMedCrossRef Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–8.PubMedCrossRef
21.
Zurück zum Zitat Zhao Y, Lai W, Xu Y, Li L, Chen Z, Wu W. Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28(4):655–66.PubMedCrossRef Zhao Y, Lai W, Xu Y, Li L, Chen Z, Wu W. Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28(4):655–66.PubMedCrossRef
22.
Zurück zum Zitat Tsai L-K, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang D-M. Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke. 2011;42(10):2932–9.PubMedPubMedCentralCrossRef Tsai L-K, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang D-M. Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke. 2011;42(10):2932–9.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.PubMedCrossRef Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.PubMedCrossRef
24.
Zurück zum Zitat Neuhuber B, Himes BT, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035(1):73–85.PubMedCrossRef Neuhuber B, Himes BT, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035(1):73–85.PubMedCrossRef
25.
Zurück zum Zitat Tsai M-J, Tsai S-K, B-R H, Liou D-Y, Huang S-L, Huang M-C, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci. 2014;21(1):5.PubMedPubMedCentralCrossRef Tsai M-J, Tsai S-K, B-R H, Liou D-Y, Huang S-L, Huang M-C, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci. 2014;21(1):5.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res. 2008;86(5):1024–35.PubMedCrossRef Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res. 2008;86(5):1024–35.PubMedCrossRef
27.
Zurück zum Zitat Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells. 2014;32(12):3150–62.PubMedCrossRef Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells. 2014;32(12):3150–62.PubMedCrossRef
28.
Zurück zum Zitat Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Park JK. Human mesenchymal stem cell transplantation promote neural differentiation and behavioral performance in the photothrombotic mouse model. Biotechnol J. 2016;11(11):1397–404. Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Park JK. Human mesenchymal stem cell transplantation promote neural differentiation and behavioral performance in the photothrombotic mouse model. Biotechnol J. 2016;11(11):1397–404.
29.
Zurück zum Zitat Kurozumi KNK, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104.PubMedCrossRef Kurozumi KNK, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104.PubMedCrossRef
30.
Zurück zum Zitat Moisan A, Favre I, Rome C, De Fraipont F, Grillon E, Coquery N, et al. Intravenous injection of clinical grade human MSCs after experimental stroke: functional benefit and microvascular effect. Cell Transplant. 2016;25(12):2157–71.PubMedCrossRef Moisan A, Favre I, Rome C, De Fraipont F, Grillon E, Coquery N, et al. Intravenous injection of clinical grade human MSCs after experimental stroke: functional benefit and microvascular effect. Cell Transplant. 2016;25(12):2157–71.PubMedCrossRef
31.
Zurück zum Zitat Lee N, Jo K, Kim K, Yang J, Chang J, Na D. Intra-arterial delivery of human mesenchymal stem cells into the brains of New Zealand white rabbits. Cytotherapy. 2017;19(5):S201.CrossRef Lee N, Jo K, Kim K, Yang J, Chang J, Na D. Intra-arterial delivery of human mesenchymal stem cells into the brains of New Zealand white rabbits. Cytotherapy. 2017;19(5):S201.CrossRef
32.
Zurück zum Zitat Fukuda Y, Horie N, Satoh K, Yamaguchi S, Morofuji Y, Hiu T, et al. Intra-arterial transplantation of low-dose stem cells provides functional recovery without adverse effects after stroke. Cell Mol Neurobiol. 2015;35(3):399–406.PubMedCrossRef Fukuda Y, Horie N, Satoh K, Yamaguchi S, Morofuji Y, Hiu T, et al. Intra-arterial transplantation of low-dose stem cells provides functional recovery without adverse effects after stroke. Cell Mol Neurobiol. 2015;35(3):399–406.PubMedCrossRef
33.
Zurück zum Zitat Park HW, Kim Y, Chang JW, Yang YS, Oh W, Lee JM, et al. Effect of single and double administration of human umbilical cord blood-derived mesenchymal stem cells following focal cerebral ischemia in rats. Experimental Neurobiol. 2017;26(1):55–65.CrossRef Park HW, Kim Y, Chang JW, Yang YS, Oh W, Lee JM, et al. Effect of single and double administration of human umbilical cord blood-derived mesenchymal stem cells following focal cerebral ischemia in rats. Experimental Neurobiol. 2017;26(1):55–65.CrossRef
34.
Zurück zum Zitat Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Namioka T, Namioka A et al. Intravenous infusion of mesenchymal stem cells inhibits intracranial hemorrhage after recombinant tissue plasminogen activator therapy for transient middle cerebral artery occlusion in rats. J Neurosurg 2017:1-10. Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Namioka T, Namioka A et al. Intravenous infusion of mesenchymal stem cells inhibits intracranial hemorrhage after recombinant tissue plasminogen activator therapy for transient middle cerebral artery occlusion in rats. J Neurosurg 2017:1-10.
35.
Zurück zum Zitat Chen J, Zhang ZG, Li Y, Wang L, YX X, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.PubMedCrossRef Chen J, Zhang ZG, Li Y, Wang L, YX X, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.PubMedCrossRef
36.
Zurück zum Zitat Yavagal DR, Lin B, Raval AP, Garza PS, Dong C, Zhao W, et al. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One. 2014;9(5):e93735.PubMedPubMedCentralCrossRef Yavagal DR, Lin B, Raval AP, Garza PS, Dong C, Zhao W, et al. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One. 2014;9(5):e93735.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, et al. Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS One. 2015;10(6):e0127302.PubMedPubMedCentralCrossRef Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, et al. Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS One. 2015;10(6):e0127302.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Feng N, Hao G, Yang F, Qu F, Zheng H, Liang S, et al. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Experimental Ther Med. 2016;11(5):1595–600.CrossRef Feng N, Hao G, Yang F, Qu F, Zheng H, Liang S, et al. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Experimental Ther Med. 2016;11(5):1595–600.CrossRef
39.
Zurück zum Zitat Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Therapy-Methods Clin. 2017;6:102–11.CrossRef Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Therapy-Methods Clin. 2017;6:102–11.CrossRef
40.
Zurück zum Zitat Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402.PubMedCrossRef Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402.PubMedCrossRef
41.
Zurück zum Zitat Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, et al. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. J Transl Med. 2015;13(1):46.PubMedPubMedCentralCrossRef Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, et al. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. J Transl Med. 2015;13(1):46.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat He X, Jiang L, Dan Q-Q, Lv Q, Hu Y, Liu J, et al. Bone marrow stromal cells promote neuroplasticity of cerebral ischemic rats via a phosphorylated CRMP2-mediated mechanism. Behav Brain Res. 2017;320:494–503.PubMedCrossRef He X, Jiang L, Dan Q-Q, Lv Q, Hu Y, Liu J, et al. Bone marrow stromal cells promote neuroplasticity of cerebral ischemic rats via a phosphorylated CRMP2-mediated mechanism. Behav Brain Res. 2017;320:494–503.PubMedCrossRef
43.
Zurück zum Zitat Chen K-H, Chen C-H, Wallace CG, Yuen C-M, Kao G-S, Chen Y-L, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget. 2016;7(46):74537.PubMedPubMedCentral Chen K-H, Chen C-H, Wallace CG, Yuen C-M, Kao G-S, Chen Y-L, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget. 2016;7(46):74537.PubMedPubMedCentral
44.
Zurück zum Zitat Kasahara Y, Yamahara K, Soma T, Stern DM, Nakagomi T, Matsuyama T, et al. Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res. 2016;176:69–80.PubMedCrossRef Kasahara Y, Yamahara K, Soma T, Stern DM, Nakagomi T, Matsuyama T, et al. Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res. 2016;176:69–80.PubMedCrossRef
45.
Zurück zum Zitat Drury-Stewart D, Song M, Mohamad O, Guo Y, Gu X, Chen D, et al. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther. 2013;4(4):93.PubMedPubMedCentralCrossRef Drury-Stewart D, Song M, Mohamad O, Guo Y, Gu X, Chen D, et al. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther. 2013;4(4):93.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Bühnemann CSA, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006;129(12):3238–48.PubMedCrossRef Bühnemann CSA, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006;129(12):3238–48.PubMedCrossRef
47.
Zurück zum Zitat Chu KPK, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, et al. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res. 2005;53:384–90.PubMedCrossRef Chu KPK, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, et al. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res. 2005;53:384–90.PubMedCrossRef
48.
Zurück zum Zitat Abeysinghe HC, Bokhari L, Quigley A, Choolani M, Chan J, Dusting GJ, et al. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res Ther. 2015;6(1):186.PubMedPubMedCentralCrossRef Abeysinghe HC, Bokhari L, Quigley A, Choolani M, Chan J, Dusting GJ, et al. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res Ther. 2015;6(1):186.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32(12):3075–87.PubMedCrossRef Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32(12):3075–87.PubMedCrossRef
50.
Zurück zum Zitat Chen JSP, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.PubMedCrossRef Chen JSP, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.PubMedCrossRef
51.
Zurück zum Zitat Napoli E, Borlongan CV. Recent advances in stem cell-based therapeutics for stroke. Springer; 2016. Napoli E, Borlongan CV. Recent advances in stem cell-based therapeutics for stroke. Springer; 2016.
52.
Zurück zum Zitat Katakowski M, Chen J, Zhang ZG, Santra M, Wang Y, Chopp M. Stroke-induced subventricular zone proliferation is promoted by tumor necrosis factor-α-converting enzyme protease activity. J Cereb Blood Flow Metab. 2007;27(4):669–78.PubMedCrossRef Katakowski M, Chen J, Zhang ZG, Santra M, Wang Y, Chopp M. Stroke-induced subventricular zone proliferation is promoted by tumor necrosis factor-α-converting enzyme protease activity. J Cereb Blood Flow Metab. 2007;27(4):669–78.PubMedCrossRef
53.
Zurück zum Zitat Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963.PubMedCrossRef Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963.PubMedCrossRef
54.
Zurück zum Zitat Mahabadi VP, Movahedin M, Semnanian S, Mirnajafi-zadeh J, Faizi M. vitro differentiation of neural stem cells into noradrenergic-like cells. International Journal of molecular and cellular medicine. 2015;4(1):22. Mahabadi VP, Movahedin M, Semnanian S, Mirnajafi-zadeh J, Faizi M. vitro differentiation of neural stem cells into noradrenergic-like cells. International Journal of molecular and cellular medicine. 2015;4(1):22.
55.
Zurück zum Zitat Goh ELK, Ma D, Ming G-L, Song H. Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res. 2003;12(6):671–9.PubMedCrossRef Goh ELK, Ma D, Ming G-L, Song H. Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res. 2003;12(6):671–9.PubMedCrossRef
56.
Zurück zum Zitat Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(6):1777–89.PubMedPubMedCentralCrossRef Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(6):1777–89.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Takahashi K, Yasuhara T, Shingo T, Muraoka K, Kameda M, Takeuchi A, et al. Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res. 2008;1234:172–82.PubMedCrossRef Takahashi K, Yasuhara T, Shingo T, Muraoka K, Kameda M, Takeuchi A, et al. Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res. 2008;1234:172–82.PubMedCrossRef
58.
Zurück zum Zitat Kelly S, Bliss T, Shah A, Sun G, Ma M, Foo W, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32):11839–44.PubMedPubMedCentralCrossRef Kelly S, Bliss T, Shah A, Sun G, Ma M, Foo W, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32):11839–44.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis. 2005;18(2):366–74.PubMedCrossRef Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis. 2005;18(2):366–74.PubMedCrossRef
60.
Zurück zum Zitat Jakel RJ, Schneider BL, Svendsen CN. Using human neural stem cells to model neurological disease. Nat Rev Genet. 2004;5(2):136.PubMedCrossRef Jakel RJ, Schneider BL, Svendsen CN. Using human neural stem cells to model neurological disease. Nat Rev Genet. 2004;5(2):136.PubMedCrossRef
61.
Zurück zum Zitat Vroemen M, Aigner L, Winkler J, Weidner N. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci. 2003;18(4):743–51.PubMedCrossRef Vroemen M, Aigner L, Winkler J, Weidner N. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci. 2003;18(4):743–51.PubMedCrossRef
62.
Zurück zum Zitat Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage. 2004;21(1):311–7.PubMedCrossRef Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage. 2004;21(1):311–7.PubMedCrossRef
63.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRef
64.
Zurück zum Zitat Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014 Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014
65.
Zurück zum Zitat Yanagisawa D, Qi M, Kim D-h, Kitamura Y, Inden M, Tsuchiya D, et al. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neurosci Lett. 2006;407(1):74–9.PubMedCrossRef Yanagisawa D, Qi M, Kim D-h, Kitamura Y, Inden M, Tsuchiya D, et al. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neurosci Lett. 2006;407(1):74–9.PubMedCrossRef
66.
Zurück zum Zitat Allegrucci C, Y-Z W, Thurston A, Denning CN, Priddle H, Mummery CL, et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet. 2007;16(10):1253–68.PubMedCrossRef Allegrucci C, Y-Z W, Thurston A, Denning CN, Priddle H, Mummery CL, et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet. 2007;16(10):1253–68.PubMedCrossRef
67.
Zurück zum Zitat Wei L, Cui L, Snider BJ, Rivkin M, Steven SY, Lee C-S, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1):183–93.PubMedCrossRef Wei L, Cui L, Snider BJ, Rivkin M, Steven SY, Lee C-S, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1):183–93.PubMedCrossRef
68.
Zurück zum Zitat Daadi MM, Maag A-L, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One. 2008;3(2):e1644.PubMedPubMedCentralCrossRef Daadi MM, Maag A-L, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One. 2008;3(2):e1644.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ, et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci. 2008;28(26):6557–68.PubMedPubMedCentralCrossRef Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ, et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci. 2008;28(26):6557–68.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70.PubMedCrossRef Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70.PubMedCrossRef
71.
Zurück zum Zitat Chen S-J, Chang C-M, Tsai S-K, Chang Y-L, Chou S-J, Huang S-S, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19(11):1757–67.PubMedCrossRef Chen S-J, Chang C-M, Tsai S-K, Chang Y-L, Chou S-J, Huang S-S, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19(11):1757–67.PubMedCrossRef
72.
Zurück zum Zitat Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, et al. Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem. 2011;354(1-2):67–75.PubMedCrossRef Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, et al. Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem. 2011;354(1-2):67–75.PubMedCrossRef
73.
Zurück zum Zitat Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73–82.PubMedPubMedCentralCrossRef Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73–82.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke. 2013;44(6 suppl 1):S74–S8.PubMedCrossRef Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke. 2013;44(6 suppl 1):S74–S8.PubMedCrossRef
75.
Zurück zum Zitat Qin J, Ma X, Qi H, Song B, Wang Y, Wen X, et al. Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One. 2015;10(6):e0129881.PubMedPubMedCentralCrossRef Qin J, Ma X, Qi H, Song B, Wang Y, Wen X, et al. Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One. 2015;10(6):e0129881.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol. 2003;16(6):699–704.PubMedCrossRef Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol. 2003;16(6):699–704.PubMedCrossRef
77.
Zurück zum Zitat Eckert A, Huang L, Gonzalez R, Kim H-S, Hamblin MH, Lee J-P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl Med. 2015;4(7):841–51.PubMedPubMedCentralCrossRef Eckert A, Huang L, Gonzalez R, Kim H-S, Hamblin MH, Lee J-P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl Med. 2015;4(7):841–51.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12(4):407–12.PubMedCrossRef Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12(4):407–12.PubMedCrossRef
79.
Zurück zum Zitat Sundberg M, Andersson P-H, Åkesson E, Odeberg J, Holmberg L, Inzunza J, et al. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant. 2011;20(2):177–91.PubMedCrossRef Sundberg M, Andersson P-H, Åkesson E, Odeberg J, Holmberg L, Inzunza J, et al. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant. 2011;20(2):177–91.PubMedCrossRef
80.
Zurück zum Zitat Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, et al. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. 2012;7(7):582–8.PubMedCrossRef Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, et al. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. 2012;7(7):582–8.PubMedCrossRef
82.
Zurück zum Zitat Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1–like immunostimulation. J Exp Med. 2003;198(5):725–36.PubMedPubMedCentralCrossRef Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1–like immunostimulation. J Exp Med. 2003;198(5):725–36.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al. Ischemic stroke activates hematopoietic bone marrow stem cellsnovelty and significance. Circ Res. 2015;116(3):407–17.PubMedCrossRef Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al. Ischemic stroke activates hematopoietic bone marrow stem cellsnovelty and significance. Circ Res. 2015;116(3):407–17.PubMedCrossRef
84.
Zurück zum Zitat Dunac A, Frelin C, Popolo-Blondeau M, Chatel M, Mahagne MH, Philip PJ-M. Neurological and functional recovery in human stroke are associated with peripheral blood CD34+ cell mobilization. J Neurol. 2007;254(3):327–32.PubMedCrossRef Dunac A, Frelin C, Popolo-Blondeau M, Chatel M, Mahagne MH, Philip PJ-M. Neurological and functional recovery in human stroke are associated with peripheral blood CD34+ cell mobilization. J Neurol. 2007;254(3):327–32.PubMedCrossRef
85.
Zurück zum Zitat Felfly H, Muotri A, Yao H, Haddad GG. Hematopoietic stem cell transplantation protects mice from lethal stroke. Exp Neurol. 2010;225(2):284–93.PubMedPubMedCentralCrossRef Felfly H, Muotri A, Yao H, Haddad GG. Hematopoietic stem cell transplantation protects mice from lethal stroke. Exp Neurol. 2010;225(2):284–93.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Doycheva D, Shih G, Chen H, Applegate R, Zhang JH, Tang J. Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic–ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res. 2013;4(2):171–8.PubMedCrossRef Doycheva D, Shih G, Chen H, Applegate R, Zhang JH, Tang J. Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic–ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res. 2013;4(2):171–8.PubMedCrossRef
87.
Zurück zum Zitat Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–5.PubMedCrossRef Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–5.PubMedCrossRef
88.
Zurück zum Zitat Taguchi A, Nakagomi N, Matsuyama T, Kikuchi-Taura A, Yoshikawa H, Kasahara Y, et al. Circulating CD34-positive cells have prognostic value for neurologic function in patients with past cerebral infarction. J Cereb Blood Flow Metab. 2009;29(1):34–8.PubMedCrossRef Taguchi A, Nakagomi N, Matsuyama T, Kikuchi-Taura A, Yoshikawa H, Kasahara Y, et al. Circulating CD34-positive cells have prognostic value for neurologic function in patients with past cerebral infarction. J Cereb Blood Flow Metab. 2009;29(1):34–8.PubMedCrossRef
89.
Zurück zum Zitat Garzón-Muvdi T, Quiñones-Hinojosa A. Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J. 2010;51(1):3–23.CrossRef Garzón-Muvdi T, Quiñones-Hinojosa A. Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J. 2010;51(1):3–23.CrossRef
90.
Zurück zum Zitat Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC. Enhancement of neovascularization with cord blood CD133^+ cell-derived endothelial progenitor cell transplantation. Thromb Haemostasis-Stuttgart. 2004;91:1202–12. Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC. Enhancement of neovascularization with cord blood CD133^+ cell-derived endothelial progenitor cell transplantation. Thromb Haemostasis-Stuttgart. 2004;91:1202–12.
91.
Zurück zum Zitat Cho S-W, Moon S-H, Lee S-H, Kang S-W, Kim J, Lim JM, et al. Improvement of postnatal neovascularization by human embryonic stem cell–derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation. 2007;116(21):2409–19.PubMedCrossRef Cho S-W, Moon S-H, Lee S-H, Kang S-W, Kim J, Lim JM, et al. Improvement of postnatal neovascularization by human embryonic stem cell–derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation. 2007;116(21):2409–19.PubMedCrossRef
92.
Zurück zum Zitat Li J, Tang Y, Wang Y, Tang R, Jiang W, Yang G-Y, et al. Neurovascular recovery via cotransplanted neural and vascular progenitors leads to improved functional restoration after ischemic stroke in rats. Stem Cell Rep. 2014;3(1):101–14.CrossRef Li J, Tang Y, Wang Y, Tang R, Jiang W, Yang G-Y, et al. Neurovascular recovery via cotransplanted neural and vascular progenitors leads to improved functional restoration after ischemic stroke in rats. Stem Cell Rep. 2014;3(1):101–14.CrossRef
93.
Zurück zum Zitat Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97.PubMedPubMedCentralCrossRef Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Tilling L, Chowienczyk P, Clapp B. Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. Br J Clin Pharmacol. 2009;68(4):484–92.PubMedPubMedCentralCrossRef Tilling L, Chowienczyk P, Clapp B. Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. Br J Clin Pharmacol. 2009;68(4):484–92.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J 2005;19(14). Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J 2005;19(14).
96.
Zurück zum Zitat Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesisin a mouse model. J Clin Investig. 2004;114(3):330.PubMedCrossRefPubMedCentral Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesisin a mouse model. J Clin Investig. 2004;114(3):330.PubMedCrossRefPubMedCentral
97.
Zurück zum Zitat Chen C, Lin X, Wang J, Tang G, Mu Z, Chen X, et al. Effect of HMGB1 on the paracrine action of EPC promotes post-ischemic neovascularization in mice. Stem Cells. 2014;32(10):2679–89.PubMedCrossRef Chen C, Lin X, Wang J, Tang G, Mu Z, Chen X, et al. Effect of HMGB1 on the paracrine action of EPC promotes post-ischemic neovascularization in mice. Stem Cells. 2014;32(10):2679–89.PubMedCrossRef
98.
Zurück zum Zitat Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells. 2017;35(1):61–7.PubMedCrossRef Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells. 2017;35(1):61–7.PubMedCrossRef
99.
Zurück zum Zitat Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3):177–87.PubMedPubMedCentralCrossRef Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3):177–87.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Fang C-z, Yang Y-J, Wang Q-H, Yao Y, Zhang X-Y, He X-H. Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS One. 2013;8(6):e66748.PubMedPubMedCentralCrossRef Fang C-z, Yang Y-J, Wang Q-H, Yao Y, Zhang X-Y, He X-H. Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS One. 2013;8(6):e66748.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Pimentel-Coelho PM, Mendez-Otero R. Cell therapy for neonatal hypoxic–ischemic encephalopathy. Stem Cells Dev. 2010;19(3):299–310.PubMedCrossRef Pimentel-Coelho PM, Mendez-Otero R. Cell therapy for neonatal hypoxic–ischemic encephalopathy. Stem Cells Dev. 2010;19(3):299–310.PubMedCrossRef
102.
Zurück zum Zitat Park KI, Lachyankar M, Nissim S, Snyder EY. Neural stem cells for CNS repair: state of the art and future directions. Lacrimal Gland Tear Film and Dry Eye Syndromes 3. Springer; 2002. p. 1291-6. Park KI, Lachyankar M, Nissim S, Snyder EY. Neural stem cells for CNS repair: state of the art and future directions. Lacrimal Gland Tear Film and Dry Eye Syndromes 3. Springer; 2002. p. 1291-6.
103.
Zurück zum Zitat Englund U, Björklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci. 2002;99(26):17089–94.PubMedCrossRefPubMedCentral Englund U, Björklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci. 2002;99(26):17089–94.PubMedCrossRefPubMedCentral
104.
Zurück zum Zitat Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol. 2011;70(5):698–712.PubMedCrossRef Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol. 2011;70(5):698–712.PubMedCrossRef
105.
Zurück zum Zitat Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, et al. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett. 2004;366(3):287–91.PubMedCrossRef Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, et al. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett. 2004;366(3):287–91.PubMedCrossRef
106.
Zurück zum Zitat Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.PubMedCrossRef Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.PubMedCrossRef
107.
Zurück zum Zitat Pluchino S, Quattrini A, Brambilla E, Gritti A. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688.PubMedCrossRef Pluchino S, Quattrini A, Brambilla E, Gritti A. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688.PubMedCrossRef
108.
Zurück zum Zitat Liska MG, Crowley MG, Borlongan CV. Regulated and unregulated clinical trials of stem cell therapies for stroke. Transl Stroke Res. 2017;8(2):293–103.CrossRef Liska MG, Crowley MG, Borlongan CV. Regulated and unregulated clinical trials of stem cell therapies for stroke. Transl Stroke Res. 2017;8(2):293–103.CrossRef
109.
Zurück zum Zitat Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3(9):e3145.PubMedPubMedCentralCrossRef Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3(9):e3145.PubMedPubMedCentralCrossRef
110.
111.
Zurück zum Zitat Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6.PubMedCrossRef Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6.PubMedCrossRef
112.
Zurück zum Zitat Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, et al. Stem cell therapy in stroke. Cell Mol Life Sci. 2009;66(5):757–72.PubMedCrossRef Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, et al. Stem cell therapy in stroke. Cell Mol Life Sci. 2009;66(5):757–72.PubMedCrossRef
113.
Zurück zum Zitat Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic Ü, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(8):2239–51.PubMedCrossRef Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic Ü, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(8):2239–51.PubMedCrossRef
114.
Zurück zum Zitat Pluchino S, Cusimano M, Bacigaluppi M, Martino G. Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches. Arch Ital Biol. 2010;148(2):173–83.PubMed Pluchino S, Cusimano M, Bacigaluppi M, Martino G. Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches. Arch Ital Biol. 2010;148(2):173–83.PubMed
115.
Zurück zum Zitat Lee S-T, Chu K, Jung K-H, Kim S-J, Kim D-H, Kang K-M, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2007;131(3):616–29.PubMedCrossRef Lee S-T, Chu K, Jung K-H, Kim S-J, Kim D-H, Kang K-M, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2007;131(3):616–29.PubMedCrossRef
116.
Zurück zum Zitat Prowse AB, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6(1):1–12.PubMedCrossRef Prowse AB, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6(1):1–12.PubMedCrossRef
117.
Zurück zum Zitat Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali M, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med. 2010;14(4):914–21.PubMedPubMedCentralCrossRef Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali M, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med. 2010;14(4):914–21.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Sanberg CD, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.PubMedCrossRef Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Sanberg CD, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.PubMedCrossRef
119.
Zurück zum Zitat Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19(9):1073–84.PubMedCrossRef Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19(9):1073–84.PubMedCrossRef
120.
Zurück zum Zitat Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705.PubMedCrossRefPubMedCentral Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705.PubMedCrossRefPubMedCentral
121.
Zurück zum Zitat Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35(10):2385–9.PubMedCrossRef Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35(10):2385–9.PubMedCrossRef
122.
Zurück zum Zitat Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S, et al. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol Dis. 2011;41(3):717–24.PubMedCrossRef Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S, et al. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol Dis. 2011;41(3):717–24.PubMedCrossRef
123.
Zurück zum Zitat McGuckin CP, Jurga M, Miller A-M, Sarnowska A, Wiedner M, Boyle NT, et al. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys. 2013;534(1):88–97.PubMedCrossRef McGuckin CP, Jurga M, Miller A-M, Sarnowska A, Wiedner M, Boyle NT, et al. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys. 2013;534(1):88–97.PubMedCrossRef
124.
Zurück zum Zitat Chang D-J, Lee N, Park I-H, Choi C, Jeon I, Kwon J, et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22(8):1427–40.PubMedCrossRef Chang D-J, Lee N, Park I-H, Choi C, Jeon I, Kwon J, et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22(8):1427–40.PubMedCrossRef
125.
Zurück zum Zitat Franco EC, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neurosci Res. 2012;73(2):122–32.PubMedCrossRef Franco EC, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neurosci Res. 2012;73(2):122–32.PubMedCrossRef
126.
Zurück zum Zitat Hirko AC, Dallasen R, Jomura S, Xu Y. Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells. Stem Cells. 2008;26(11):2893–901.PubMedPubMedCentralCrossRef Hirko AC, Dallasen R, Jomura S, Xu Y. Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells. Stem Cells. 2008;26(11):2893–901.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008:2564–78. Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008:2564–78.
128.
Zurück zum Zitat Takagi T, Yoshimura S, Sakuma R, Nakano-Doi A, Matsuyama T, Nakagomi T. Novel regenerative therapies based on regionally induced multipotent stem cells in post-stroke brains: their origin, characterization, and perspective. Transl Stroke Res 2017. doi: https://doi.org/10.1007/s12975-017-0556-0. . Takagi T, Yoshimura S, Sakuma R, Nakano-Doi A, Matsuyama T, Nakagomi T. Novel regenerative therapies based on regionally induced multipotent stem cells in post-stroke brains: their origin, characterization, and perspective. Transl Stroke Res 2017. doi: https://​doi.​org/​10.​1007/​s12975-017-0556-0. .
129.
Zurück zum Zitat Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem cell therapy and administration routes after stroke. Transl Stroke Res. 2016;7(5):378–87.PubMedCrossRef Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem cell therapy and administration routes after stroke. Transl Stroke Res. 2016;7(5):378–87.PubMedCrossRef
131.
Zurück zum Zitat Delavaran H, Aked J, Sjunnesson H, Lindvall O, Norrving B, Kokaia Z et al. Spontaneous recovery of upper extremity motor impairment after ischemic stroke: implications for stem cell-based therapeutic approaches. Transl Stroke Res 2017:1-11. Delavaran H, Aked J, Sjunnesson H, Lindvall O, Norrving B, Kokaia Z et al. Spontaneous recovery of upper extremity motor impairment after ischemic stroke: implications for stem cell-based therapeutic approaches. Transl Stroke Res 2017:1-11.
132.
Zurück zum Zitat Karp JM, Teo GSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.PubMedCrossRef Karp JM, Teo GSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.PubMedCrossRef
133.
134.
Zurück zum Zitat Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581–7.PubMedCrossRef Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581–7.PubMedCrossRef
135.
Zurück zum Zitat Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.PubMedCrossRef Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.PubMedCrossRef
136.
Zurück zum Zitat Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1):49–57.PubMedCrossRef Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1):49–57.PubMedCrossRef
137.
Zurück zum Zitat Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.PubMedCrossRef Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.PubMedCrossRef
138.
Zurück zum Zitat Li Y, Chopp M, Chen J, Wang L, Gautam SC, Y-X X, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRef Li Y, Chopp M, Chen J, Wang L, Gautam SC, Y-X X, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRef
139.
Zurück zum Zitat Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedCrossRef Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedCrossRef
140.
Zurück zum Zitat Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35(10):2390–5.PubMedCrossRef Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35(10):2390–5.PubMedCrossRef
141.
Zurück zum Zitat Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, et al. Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant. 2006;15(3):231–8.PubMedCrossRef Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, et al. Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant. 2006;15(3):231–8.PubMedCrossRef
142.
Zurück zum Zitat Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases. Transl Res. 2010;156(3):155–60.PubMedCrossRef Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases. Transl Res. 2010;156(3):155–60.PubMedCrossRef
143.
Zurück zum Zitat Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, et al. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab. 2013;33(6):921–7.PubMedPubMedCentralCrossRef Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, et al. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab. 2013;33(6):921–7.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Chen C, Lee Y, Chiu S, Shyu W, Lee M, Huang S, et al. The application of stem cells in the treatment of ischemic diseases. Histol Histopathol. 2006;21(10/12):1209.PubMed Chen C, Lee Y, Chiu S, Shyu W, Lee M, Huang S, et al. The application of stem cells in the treatment of ischemic diseases. Histol Histopathol. 2006;21(10/12):1209.PubMed
145.
Zurück zum Zitat Newcomb JD, Ajmo Jr CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15(3):213–23.PubMedCrossRef Newcomb JD, Ajmo Jr CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15(3):213–23.PubMedCrossRef
146.
Zurück zum Zitat Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20(2):101–7.PubMedCrossRef Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20(2):101–7.PubMedCrossRef
147.
Zurück zum Zitat Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094.PubMedCrossRef Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094.PubMedCrossRef
148.
Zurück zum Zitat Smith EJ, Stroemer RP, Gorenkova N, Nakajima M, Crum WR, Tang E, et al. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells. 2012;30(4):785–96.PubMedCrossRef Smith EJ, Stroemer RP, Gorenkova N, Nakajima M, Crum WR, Tang E, et al. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells. 2012;30(4):785–96.PubMedCrossRef
149.
Zurück zum Zitat Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow–derived mesenchymal stem cells to the infarcted myocardium. Circulation. 2003;108(7):863–8.PubMedCrossRef Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow–derived mesenchymal stem cells to the infarcted myocardium. Circulation. 2003;108(7):863–8.PubMedCrossRef
150.
Zurück zum Zitat Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):1122–30.PubMedPubMedCentralCrossRef Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):1122–30.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke. 2013;44(3):720–6.PubMedCrossRef Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke. 2013;44(3):720–6.PubMedCrossRef
152.
Zurück zum Zitat Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, et al. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J Cereb Blood Flow Metab. 2011;31(5):1263–71.PubMedCrossRef Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, et al. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J Cereb Blood Flow Metab. 2011;31(5):1263–71.PubMedCrossRef
153.
Zurück zum Zitat Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88(6):315–24.PubMedCrossRef Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88(6):315–24.PubMedCrossRef
154.
Zurück zum Zitat Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. Cell transplantation for stroke. Ann Neurol. 2002;52(3):266–75.PubMedCrossRef Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. Cell transplantation for stroke. Ann Neurol. 2002;52(3):266–75.PubMedCrossRef
155.
Zurück zum Zitat Hadani M, Freeman T, Munsiff A, Young W, Flamm E. Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats. J Neurotrauma. 1992;9(2):107–12.PubMedCrossRef Hadani M, Freeman T, Munsiff A, Young W, Flamm E. Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats. J Neurotrauma. 1992;9(2):107–12.PubMedCrossRef
156.
Zurück zum Zitat Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.PubMedCrossRef Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.PubMedCrossRef
157.
Zurück zum Zitat Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci. 2002;22(2):455–63.PubMedCrossRefPubMedCentral Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci. 2002;22(2):455–63.PubMedCrossRefPubMedCentral
158.
Zurück zum Zitat Plate KH. Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol. 1999;58(4):313–20.PubMedCrossRef Plate KH. Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol. 1999;58(4):313–20.PubMedCrossRef
159.
Zurück zum Zitat Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.PubMedCrossRef Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.PubMedCrossRef
160.
Zurück zum Zitat Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–84.PubMedCrossRef Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–84.PubMedCrossRef
161.
Zurück zum Zitat Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9(6):702–12.PubMedCrossRef Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9(6):702–12.PubMedCrossRef
162.
Zurück zum Zitat Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38(11):3032–9.PubMedCrossRef Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38(11):3032–9.PubMedCrossRef
163.
Zurück zum Zitat Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.PubMedCrossRef Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.PubMedCrossRef
164.
Zurück zum Zitat Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRef Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRef
165.
Zurück zum Zitat Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33.PubMedCrossRef Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33.PubMedCrossRef
166.
Zurück zum Zitat Van Sandwijk M, Bemelman F, Ten Berge I. Immunosuppressive drugs after solid organ transplantation. Neth J Med. 2013;71(6):281–9.PubMed Van Sandwijk M, Bemelman F, Ten Berge I. Immunosuppressive drugs after solid organ transplantation. Neth J Med. 2013;71(6):281–9.PubMed
167.
Zurück zum Zitat Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med. 2006;12(11):1237–8.PubMedCrossRef Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med. 2006;12(11):1237–8.PubMedCrossRef
168.
Zurück zum Zitat Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003;23(7):780–5.PubMedCrossRef Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003;23(7):780–5.PubMedCrossRef
169.
Zurück zum Zitat Takagi Y, Nishimura M, Morizane A, Takahashi J, Nozaki K, Hayashi J, et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. J Neurosurg. 2005;103(2):304–10.PubMedCrossRef Takagi Y, Nishimura M, Morizane A, Takahashi J, Nozaki K, Hayashi J, et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. J Neurosurg. 2005;103(2):304–10.PubMedCrossRef
170.
Zurück zum Zitat Lepore A, Neuhuber B, Connors T, Han S, Liu Y, Daniels M, et al. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience. 2006;142(1):287–304.PubMedCrossRef Lepore A, Neuhuber B, Connors T, Han S, Liu Y, Daniels M, et al. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience. 2006;142(1):287–304.PubMedCrossRef
171.
Zurück zum Zitat Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty. Account Res. 2009;16(4):175–98.PubMedCrossRef Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty. Account Res. 2009;16(4):175–98.PubMedCrossRef
172.
Zurück zum Zitat Low CB, Liou YC, Tang BL. Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J Neurosci Res. 2008;86(8):1670–9.PubMedCrossRef Low CB, Liou YC, Tang BL. Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J Neurosci Res. 2008;86(8):1670–9.PubMedCrossRef
173.
Zurück zum Zitat Gruen L, Grabel L. Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells. 2006;24(10):2162–9.PubMedCrossRef Gruen L, Grabel L. Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells. 2006;24(10):2162–9.PubMedCrossRef
174.
Zurück zum Zitat Chen J, Ye X, Yan T, Zhang C, Yang X-P, Cui X, et al. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke. 2011;42(12):3551–8.PubMedPubMedCentralCrossRef Chen J, Ye X, Yan T, Zhang C, Yang X-P, Cui X, et al. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke. 2011;42(12):3551–8.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Popa-Wagner A, Buga A-M, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci. 2014;8 Popa-Wagner A, Buga A-M, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci. 2014;8
176.
Zurück zum Zitat Li F, Guo X, Chen SY. Function and therapeutic potential of mesenchymal stem cells in atherosclerosis. Frontiers Cardiovasc Med. 2017;4(32):1–10. Li F, Guo X, Chen SY. Function and therapeutic potential of mesenchymal stem cells in atherosclerosis. Frontiers Cardiovasc Med. 2017;4(32):1–10.
177.
Zurück zum Zitat Angelini A, Castellani C, Ravara B, Franzin C, Pozzobon M, Tavano R, et al. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart and Lung Transplant. 2011;30(11):1281–93.CrossRef Angelini A, Castellani C, Ravara B, Franzin C, Pozzobon M, Tavano R, et al. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart and Lung Transplant. 2011;30(11):1281–93.CrossRef
178.
Zurück zum Zitat Kim H, Cooke MJ, Shoichet MS. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol. 2012;30(1):55–63.PubMedCrossRef Kim H, Cooke MJ, Shoichet MS. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol. 2012;30(1):55–63.PubMedCrossRef
179.
Zurück zum Zitat Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther. 2014;141(1):21–31.PubMedCrossRef Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther. 2014;141(1):21–31.PubMedCrossRef
180.
Zurück zum Zitat Wei L, Fraser JL, Z-Y L, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.PubMedPubMedCentralCrossRef Wei L, Fraser JL, Z-Y L, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat SP Y, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88.CrossRef SP Y, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88.CrossRef
182.
Zurück zum Zitat Zhang J, Chen G, Wang Y, Zhao J, Duan H, Liao L, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125(19):3472–8.PubMed Zhang J, Chen G, Wang Y, Zhao J, Duan H, Liao L, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125(19):3472–8.PubMed
183.
Zurück zum Zitat Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, et al. Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells. 2014;32(2):462–72.PubMedPubMedCentralCrossRef Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, et al. Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells. 2014;32(2):462–72.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, et al. BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant. 2015;24(12):2449–61.PubMedCrossRef Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, et al. BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant. 2015;24(12):2449–61.PubMedCrossRef
185.
Zurück zum Zitat Petridis AK, El Maarouf A. Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci. 2011;18(2):265–70.PubMedCrossRef Petridis AK, El Maarouf A. Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci. 2011;18(2):265–70.PubMedCrossRef
186.
Zurück zum Zitat Doeppner TR, Ewert TA, Tönges L, Herz J, Zechariah A, El Ali A, et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells. 2012;30(6):1297–310.PubMedCrossRef Doeppner TR, Ewert TA, Tönges L, Herz J, Zechariah A, El Ali A, et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells. 2012;30(6):1297–310.PubMedCrossRef
187.
Zurück zum Zitat McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O'Toole D, et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24(10):840–51.PubMedPubMedCentralCrossRef McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O'Toole D, et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24(10):840–51.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2(9):645.PubMedCrossRef Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2(9):645.PubMedCrossRef
189.
Zurück zum Zitat Hino M, Kurogi K, Okubo M-A, Murata-Hori M, Hosoya H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun. 2000;271(1):164–9.PubMedCrossRef Hino M, Kurogi K, Okubo M-A, Murata-Hori M, Hosoya H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun. 2000;271(1):164–9.PubMedCrossRef
190.
Zurück zum Zitat Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem. 1993;268(32):24210–4.PubMed Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem. 1993;268(32):24210–4.PubMed
191.
Zurück zum Zitat Perng MD, Cairns L, van den lJssel P, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 1999;112(13):2099–112.PubMed Perng MD, Cairns L, van den lJssel P, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 1999;112(13):2099–112.PubMed
192.
Zurück zum Zitat Ni X, Ou C, Guo J, Liu B, Zhang J, Wu Z, et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro. Int J Mol Med. 2017;40(2):418–26.PubMedPubMedCentralCrossRef Ni X, Ou C, Guo J, Liu B, Zhang J, Wu Z, et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro. Int J Mol Med. 2017;40(2):418–26.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Haider HK, Jiang S, Idris NM, Ashraf M. IGF-1–overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300–8.PubMedCrossRef Haider HK, Jiang S, Idris NM, Ashraf M. IGF-1–overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300–8.PubMedCrossRef
194.
Zurück zum Zitat Fiedler J, Brill C, Blum WF, Brenner RE. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun. 2006;345(3):1177–83.PubMedCrossRef Fiedler J, Brill C, Blum WF, Brenner RE. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun. 2006;345(3):1177–83.PubMedCrossRef
195.
Zurück zum Zitat Song H, Song B-W, Cha M-J, Choi I-G, Hwang K-C. Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther. 2010;10(3):309–19.PubMedCrossRef Song H, Song B-W, Cha M-J, Choi I-G, Hwang K-C. Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther. 2010;10(3):309–19.PubMedCrossRef
196.
Zurück zum Zitat Brunt KR, Wu J, Chen Z, Poeckel D, Dercho RA, Melo LG, et al. Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. Cell Transplant. 2012;21(7):1443–61.PubMedCrossRef Brunt KR, Wu J, Chen Z, Poeckel D, Dercho RA, Melo LG, et al. Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. Cell Transplant. 2012;21(7):1443–61.PubMedCrossRef
197.
Zurück zum Zitat Zimmermann W-H, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomater. 2004;25(9):1639–47.CrossRef Zimmermann W-H, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomater. 2004;25(9):1639–47.CrossRef
198.
Zurück zum Zitat Jin J, Jeong SI, Shin YM, Lim KS, Lee YM, Koh HC, et al. Transplantation of mesenchymal stem cells within a poly (lactide-co-ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail. 2009;11(2):147–53.PubMedPubMedCentralCrossRef Jin J, Jeong SI, Shin YM, Lim KS, Lee YM, Koh HC, et al. Transplantation of mesenchymal stem cells within a poly (lactide-co-ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail. 2009;11(2):147–53.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomater. 2012;33(1):80–90.CrossRef Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomater. 2012;33(1):80–90.CrossRef
200.
Zurück zum Zitat McCreedy D, Wilems T, Xu H, Butts J, Brown C, Smith A, et al. Survival, differentiation, and migration of high-purity mouse embryonic stem cell-derived progenitor motor neurons in fibrin scaffolds after sub-acute spinal cord injury. Biomater Sci. 2014;2(11):1672–82.PubMedPubMedCentralCrossRef McCreedy D, Wilems T, Xu H, Butts J, Brown C, Smith A, et al. Survival, differentiation, and migration of high-purity mouse embryonic stem cell-derived progenitor motor neurons in fibrin scaffolds after sub-acute spinal cord injury. Biomater Sci. 2014;2(11):1672–82.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Feng J-F, Liu J, Zhang L, Jiang J-Y, Russell M, Lyeth BG, et al. Electrical guidance of human stem cells in the rat brain. Stem Cell Rep. 2017;9(1):177–89.CrossRef Feng J-F, Liu J, Zhang L, Jiang J-Y, Russell M, Lyeth BG, et al. Electrical guidance of human stem cells in the rat brain. Stem Cell Rep. 2017;9(1):177–89.CrossRef
202.
Zurück zum Zitat Won Y-W, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials. 2014;35(21):5627–35.PubMedCrossRef Won Y-W, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials. 2014;35(21):5627–35.PubMedCrossRef
203.
Zurück zum Zitat Landázuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small. 2013;9(23):4017–26.PubMedCrossRef Landázuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small. 2013;9(23):4017–26.PubMedCrossRef
205.
Zurück zum Zitat Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One. 2012;7(4):e34608.PubMedPubMedCentralCrossRef Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One. 2012;7(4):e34608.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Wang Z, Wang Y, Wang Z, Gutkind JS, Wang Z, Wang F, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells. 2015;33(2):456–67.PubMedCrossRef Wang Z, Wang Y, Wang Z, Gutkind JS, Wang Z, Wang F, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells. 2015;33(2):456–67.PubMedCrossRef
207.
Zurück zum Zitat Daadi MM, Klausner JQ, Bajar B, Goshen I, Lee-Messer C, Lee SY, et al. Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant. 2016;25(7):1371–80.PubMedCrossRef Daadi MM, Klausner JQ, Bajar B, Goshen I, Lee-Messer C, Lee SY, et al. Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant. 2016;25(7):1371–80.PubMedCrossRef
208.
Zurück zum Zitat Modo M, Beech J, Meade T, Williams S, Price JA. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. NeuroImage. 2009;47(02):T133–42.PubMedCrossRef Modo M, Beech J, Meade T, Williams S, Price JA. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. NeuroImage. 2009;47(02):T133–42.PubMedCrossRef
209.
Zurück zum Zitat Bulte JW. In vivo MRI cell tracking: clinical studies. Am J Roentgenol. 2009;193(2):314–25.CrossRef Bulte JW. In vivo MRI cell tracking: clinical studies. Am J Roentgenol. 2009;193(2):314–25.CrossRef
210.
Zurück zum Zitat Gu E, Chen W-Y, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2(4):335.PubMedPubMedCentralCrossRef Gu E, Chen W-Y, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2(4):335.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging in Med Surg. 2011;1(1):35. Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging in Med Surg. 2011;1(1):35.
212.
Zurück zum Zitat Sutton EJ, Boddington SE, Nedopil AJ, Henning TD, Demos SG, Baehner R, et al. An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. Opt Express. 2009;17(26):24403–13.PubMedCrossRef Sutton EJ, Boddington SE, Nedopil AJ, Henning TD, Demos SG, Baehner R, et al. An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. Opt Express. 2009;17(26):24403–13.PubMedCrossRef
213.
Zurück zum Zitat Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther. 2016;7(1):143.PubMedPubMedCentralCrossRef Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther. 2016;7(1):143.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Kitchener Wilson JY, Lee A, Wu JC. In vitro and in vivo bioluminescence reporter gene imaging of human embryonic stem cells. J Visualized Experiments: JOVE. 2008;14 Kitchener Wilson JY, Lee A, Wu JC. In vitro and in vivo bioluminescence reporter gene imaging of human embryonic stem cells. J Visualized Experiments: JOVE. 2008;14
215.
Zurück zum Zitat Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A, et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci. 2008;28(17):4406–13.PubMedPubMedCentralCrossRef Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A, et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci. 2008;28(17):4406–13.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Shanthly N, Aruva M, Zhang K, Mathew B, Thakur M. Stem cells: a regenerative pharmaceutical. Q J Nuc Med Mol Imaging. 2006;50(3):205. Shanthly N, Aruva M, Zhang K, Mathew B, Thakur M. Stem cells: a regenerative pharmaceutical. Q J Nuc Med Mol Imaging. 2006;50(3):205.
218.
Zurück zum Zitat Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRef Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRef
220.
Zurück zum Zitat Bang OY. Clinical trials of adult stem cell therapy in patients with ischemic stroke. J Clin Neurol. 2016;12(1):14–20.PubMedCrossRef Bang OY. Clinical trials of adult stem cell therapy in patients with ischemic stroke. J Clin Neurol. 2016;12(1):14–20.PubMedCrossRef
221.
Zurück zum Zitat Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(6):1790–807.PubMedPubMedCentralCrossRef Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(6):1790–807.PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014;2014. Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014;2014.
223.
Zurück zum Zitat Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):2207–18.PubMedPubMedCentralCrossRef Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):2207–18.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014;82(14):1277–86.PubMedPubMedCentralCrossRef Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014;82(14):1277–86.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Jeong H, Yim HW, Cho Y-S, Kim Y-I, Jeong S-N, Kim H-B, et al. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells. 2014;7(2):63.PubMedPubMedCentralCrossRef Jeong H, Yim HW, Cho Y-S, Kim Y-I, Jeong S-N, Kim H-B, et al. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells. 2014;7(2):63.PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96.PubMedCrossRef Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96.PubMedCrossRef
227.
Zurück zum Zitat Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res. 2017;8(1):33–46.PubMedCrossRef Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res. 2017;8(1):33–46.PubMedCrossRef
228.
Zurück zum Zitat Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.PubMedPubMedCentralCrossRef Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.PubMedPubMedCentralCrossRef
229.
Zurück zum Zitat Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:337. Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:337.
230.
Zurück zum Zitat Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017;5. Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017;5.
231.
Zurück zum Zitat Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells. 2016;34(3):601–13.PubMedPubMedCentralCrossRef Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells. 2016;34(3):601–13.PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.PubMedPubMedCentralCrossRef Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Doeppner TR, Traut V, Heidenreich A, Kaltwasser B, Bosche B, Bähr M, et al. Conditioned medium derived from neural progenitor cells induces long-term post-ischemic neuroprotection, sustained neurological recovery, neurogenesis, and angiogenesis. Mol Neurobiol. 2017;54(2):1531–40.PubMedCrossRef Doeppner TR, Traut V, Heidenreich A, Kaltwasser B, Bosche B, Bähr M, et al. Conditioned medium derived from neural progenitor cells induces long-term post-ischemic neuroprotection, sustained neurological recovery, neurogenesis, and angiogenesis. Mol Neurobiol. 2017;54(2):1531–40.PubMedCrossRef
234.
Zurück zum Zitat Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F, et al. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res. 2015;1624:489–96.PubMedCrossRef Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F, et al. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res. 2015;1624:489–96.PubMedCrossRef
235.
Zurück zum Zitat Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg CD, et al. Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 2012;21(5):845–56.PubMedCrossRef Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg CD, et al. Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 2012;21(5):845–56.PubMedCrossRef
236.
Zurück zum Zitat dela Peña I, Borlongan CV. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke. Transl Stroke Res. 2015;6(6):421–9.PubMedCrossRef dela Peña I, Borlongan CV. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke. Transl Stroke Res. 2015;6(6):421–9.PubMedCrossRef
237.
Zurück zum Zitat Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 2017. Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 2017.
238.
Zurück zum Zitat Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv. 2017;7(30):18668–80.CrossRef Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv. 2017;7(30):18668–80.CrossRef
239.
Zurück zum Zitat Boisserand LS, Kodama T, Papassin J, Auzely R, Moisan A, Rome C et al. Biomaterial applications in cell-based therapy in experimental stroke. Stem Cells Int 2016;2016. Boisserand LS, Kodama T, Papassin J, Auzely R, Moisan A, Rome C et al. Biomaterial applications in cell-based therapy in experimental stroke. Stem Cells Int 2016;2016.
240.
Zurück zum Zitat Osanai T. Role of biomaterials as scaffolding in cell therapy for stroke. Cell Against Cereb Stroke. Springer; 2017. p. 87-99. Osanai T. Role of biomaterials as scaffolding in cell therapy for stroke. Cell Against Cereb Stroke. Springer; 2017. p. 87-99.
241.
Zurück zum Zitat Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, et al. Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec. 2010;293(5):911–7.CrossRef Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, et al. Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec. 2010;293(5):911–7.CrossRef
242.
Zurück zum Zitat Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials. 2009;30(16):2985–94.PubMedCrossRef Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials. 2009;30(16):2985–94.PubMedCrossRef
243.
Zurück zum Zitat Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30(3):534–44.PubMedCrossRef Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30(3):534–44.PubMedCrossRef
244.
Zurück zum Zitat Osanai T, Kuroda S, Yasuda H, Chiba Y, Maruichi K, Hokari M, et al. Noninvasive transplantation of bone marrow stromal cells for ischemic stroke: preliminary study with a thermoreversible gelation polymer hydrogel. Neurosurgery. 2010;66(6):1140–7.PubMedCrossRef Osanai T, Kuroda S, Yasuda H, Chiba Y, Maruichi K, Hokari M, et al. Noninvasive transplantation of bone marrow stromal cells for ischemic stroke: preliminary study with a thermoreversible gelation polymer hydrogel. Neurosurgery. 2010;66(6):1140–7.PubMedCrossRef
Metadaten
Titel
Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell
verfasst von
Deepaneeta Sarmah
Harpreet Kaur
Jackson Saraf
Kanta Pravalika
Avirag Goswami
Kiran Kalia
Anupom Borah
Xin Wang
Kunjan R. Dave
Dileep R. Yavagal
Pallab Bhattacharya
Publikationsdatum
26.10.2017
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 4/2018
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-017-0580-0

Weitere Artikel der Ausgabe 4/2018

Translational Stroke Research 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.