Skip to main content
Erschienen in: Tumor Biology 4/2015

01.04.2015 | Research Article

Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer

verfasst von: Jianjun Lei, Lin Fan, Guangbing Wei, Xin Chen, Wanxing Duan, Qinhong Xu, Wei Sheng, Kang Wang, Xuqi Li

Erschienen in: Tumor Biology | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Hypoxia can induce HIF-1α expression and promote the epithelial-mesenchymal transition (EMT) and invasion of cancer cells. However, their mechanisms remain unclear. The objective of this study was to evaluate the role of Gli-1, an effector of the Hedgehog pathway, in the hypoxia-induced EMT and invasion of breast cancer cells. Human breast cancer MDA-MB-231 cells were transfected with HIF-1α or Gli-1-specific small interfering RNA (siRNA) and cultured under a normoxic or hypoxic condition. The relative levels of HIF-1α, Gli-1, E-cadherin, and vimentin in the cells were characterized by quantitative RT-PCR and Western blot assays, and the invasion of MDA-MB-231 cells was determined. Data was analyzed by Student T test, one-way ANOVA, and post hoc LSD test or Mann-Whitney U when applicable. We observed that hypoxia significantly upregulated the relative levels of vimentin expression, but downregulated E-cadherin expression and promoted the invasion of MDA-MB-231 cells, associated with upregulated HIF-1α translation and Gil-1 expression. Knockdown of HIF-1α mitigated hypoxia-modulated Gil-1, vimentin and E-cadherin expression, and invasion of MDA-MB-231 cells. Knockdown of Gil-1 did not significantly change hypoxia-upregulated HIF-1α translation but completely eliminated hypoxia-modulated vimentin and E-cadherin expression and invasion of MDA-MB-231 cells. These data indicate that Gil-1 is crucial for hypoxia-induced EMT and invasion of breast cancer cells and may be a therapeutic target for intervention of breast cancer metastasis.
Literatur
1.
Zurück zum Zitat Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;6(8):697–702.CrossRef Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;6(8):697–702.CrossRef
2.
Zurück zum Zitat Youlden DR, Cramb SM, Dunn NA, et al. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012;3(36):237–48.CrossRef Youlden DR, Cramb SM, Dunn NA, et al. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012;3(36):237–48.CrossRef
3.
Zurück zum Zitat Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;6(119):1420–8.CrossRef Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;6(119):1420–8.CrossRef
4.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;5(139):871–90.CrossRef Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;5(139):871–90.CrossRef
6.
Zurück zum Zitat Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;12(112):1776–84.CrossRef Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;12(112):1776–84.CrossRef
7.
Zurück zum Zitat Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe. Cell Cycle. 2009;20(8):3291–6.CrossRef Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe. Cell Cycle. 2009;20(8):3291–6.CrossRef
8.
Zurück zum Zitat Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;4(3):347–61.CrossRef Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;4(3):347–61.CrossRef
9.
Zurück zum Zitat Esteban MA, Tran MG, Harten SK, et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 2006;7(66):3567–75.CrossRef Esteban MA, Tran MG, Harten SK, et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 2006;7(66):3567–75.CrossRef
10.
Zurück zum Zitat Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;10(3):721–32.CrossRef Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;10(3):721–32.CrossRef
11.
Zurück zum Zitat Cheng ZX, Sun B, Wang SJ, et al. Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE. 2011;8(6):e23752.CrossRef Cheng ZX, Sun B, Wang SJ, et al. Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE. 2011;8(6):e23752.CrossRef
12.
Zurück zum Zitat Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 2003;4(163):1437–47.CrossRef Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 2003;4(163):1437–47.CrossRef
13.
Zurück zum Zitat Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 2004;6(5):437–48.CrossRef Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 2004;6(5):437–48.CrossRef
14.
Zurück zum Zitat Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;4(8):S62-7. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;4(8):S62-7.
15.
Zurück zum Zitat Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;1(2):38–47.CrossRef Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;1(2):38–47.CrossRef
16.
Zurück zum Zitat Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;4(127):679–95.CrossRef Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;4(127):679–95.CrossRef
17.
Zurück zum Zitat Harmon EB, Ko AH, Kim SK. Hedgehog signaling in gastrointestinal development and disease. Curr Mol Med. 2002;1(2):67–82.CrossRef Harmon EB, Ko AH, Kim SK. Hedgehog signaling in gastrointestinal development and disease. Curr Mol Med. 2002;1(2):67–82.CrossRef
18.
Zurück zum Zitat Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet. 2001;7(10):757–62.CrossRef Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet. 2001;7(10):757–62.CrossRef
19.
Zurück zum Zitat Jeng KS, Sheen IS, Jeng WJ, et al. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther. 2013;7:79–86.CrossRefPubMedPubMedCentral Jeng KS, Sheen IS, Jeng WJ, et al. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther. 2013;7:79–86.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Ten HA, Bektas N, Von SS, et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 2009;9:298.CrossRef Ten HA, Bektas N, Von SS, et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 2009;9:298.CrossRef
21.
Zurück zum Zitat Lei J, Ma J, Ma Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer. 2013;12:66.CrossRefPubMedPubMedCentral Lei J, Ma J, Ma Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer. 2013;12:66.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;6(42):1339–48.CrossRef Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;6(42):1339–48.CrossRef
23.
Zurück zum Zitat Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol. 2007;6(170):1942–53.CrossRef Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol. 2007;6(170):1942–53.CrossRef
24.
Zurück zum Zitat Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;6(3):1101–8.CrossRef Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;6(3):1101–8.CrossRef
25.
Zurück zum Zitat Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;5(17):548–58.CrossRef Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;5(17):548–58.CrossRef
26.
Zurück zum Zitat Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;4(9):265–73.CrossRef Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;4(9):265–73.CrossRef
27.
Zurück zum Zitat Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;3(270):1230–7.CrossRef Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;3(270):1230–7.CrossRef
28.
Zurück zum Zitat Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;12(92):5510–4.CrossRef Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;12(92):5510–4.CrossRef
29.
Zurück zum Zitat Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;5516(292):464–8.CrossRef Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;5516(292):464–8.CrossRef
30.
Zurück zum Zitat Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;5516(292):468–72.CrossRef Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;5516(292):468–72.CrossRef
31.
Zurück zum Zitat Yu F, White SB, Zhao Q, et al. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A. 2001;17(98):9630–5.CrossRef Yu F, White SB, Zhao Q, et al. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A. 2001;17(98):9630–5.CrossRef
32.
Zurück zum Zitat Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006;5(66):2725–31.CrossRef Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006;5(66):2725–31.CrossRef
33.
Zurück zum Zitat Chen J, Imanaka N, Chen J, et al. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;2(102):351–60.CrossRef Chen J, Imanaka N, Chen J, et al. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;2(102):351–60.CrossRef
34.
Zurück zum Zitat Wang G, Zhang Z, Xu Z, et al. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. Biochim Biophys Acta. 2010;12(1803):1359–67.CrossRef Wang G, Zhang Z, Xu Z, et al. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. Biochim Biophys Acta. 2010;12(1803):1359–67.CrossRef
35.
Zurück zum Zitat Bijlsma MF, Groot AP, Oduro JP, et al. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med. 2009;8B(13):2053–60.CrossRef Bijlsma MF, Groot AP, Oduro JP, et al. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med. 2009;8B(13):2053–60.CrossRef
36.
Zurück zum Zitat Sims-Mourtada J, Yang D, Tworowska I, et al. Detection of canonical hedgehog signaling in breast cancer by 131-iodine-labeled derivatives of the sonic hedgehog protein. J Biomed Biotechnol. 2012; 2012: 639562. Sims-Mourtada J, Yang D, Tworowska I, et al. Detection of canonical hedgehog signaling in breast cancer by 131-iodine-labeled derivatives of the sonic hedgehog protein. J Biomed Biotechnol. 2012; 2012: 639562.
37.
Zurück zum Zitat Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;5285(274):255–9.CrossRef Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;5285(274):255–9.CrossRef
38.
Zurück zum Zitat Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell. 1996;3(87):553–63.CrossRef Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell. 1996;3(87):553–63.CrossRef
39.
Zurück zum Zitat Stone DM, Hynes M, Armanini M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;6605(384):129–34.CrossRef Stone DM, Hynes M, Armanini M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;6605(384):129–34.CrossRef
40.
Zurück zum Zitat Li X, Ma Q, Duan W, et al. Paracrine sonic hedgehog signaling derived from tumor epithelial cells: a key regulator in the pancreatic tumor microenvironment. Crit Rev Eukaryot Gene Expr. 2012;2(22):97–108.CrossRef Li X, Ma Q, Duan W, et al. Paracrine sonic hedgehog signaling derived from tumor epithelial cells: a key regulator in the pancreatic tumor microenvironment. Crit Rev Eukaryot Gene Expr. 2012;2(22):97–108.CrossRef
Metadaten
Titel
Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer
verfasst von
Jianjun Lei
Lin Fan
Guangbing Wei
Xin Chen
Wanxing Duan
Qinhong Xu
Wei Sheng
Kang Wang
Xuqi Li
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 4/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2948-z

Weitere Artikel der Ausgabe 4/2015

Tumor Biology 4/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.