Skip to main content

06.09.2024 | Original Article

Global registration of kidneys in 3D ultrasound and CT images

verfasst von: William Ndzimbong, Nicolas Thome, Cyril Fourniol, Yvonne Keeza, Benoît Sauer, Jacques Marescaux, Daniel George, Alexandre Hostettler, Toby Collins

Erschienen in: International Journal of Computer Assisted Radiology and Surgery

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Automatic registration between abdominal ultrasound (US) and computed tomography (CT) images is needed to enhance interventional guidance of renal procedures, but it remains an open research challenge. We propose a novel method that doesn’t require an initial registration estimate (a global method) and also handles registration ambiguity caused by the organ’s natural symmetry. Combined with a registration refinement algorithm, this method achieves robust and accurate kidney registration while avoiding manual initialization.

Methods

We propose solving global registration in a three-step approach: (1) Automatic anatomical landmark localization, where 2 deep neural networks (DNNs) localize a set of landmarks in each modality. (2) Registration hypothesis generation, where potential registrations are computed from the landmarks with a deterministic variant of RANSAC. Due to the Kidney’s strong bilateral symmetry, there are usually 2 compatible solutions. Finally, in Step (3), the correct solution is determined automatically, using a DNN classifier that resolves the geometric ambiguity. The registration may then be iteratively improved with a registration refinement method. Results are presented with state-of-the-art surface-based refinement—Bayesian coherent point drift (BCPD).

Results

This automatic global registration approach gives better results than various competitive state-of-the-art methods, which, additionally, require organ segmentation. The results obtained on 59 pairs of 3D US/CT kidney images show that the proposed method, combined with BCPD refinement, achieves a target registration error (TRE) of an internal kidney landmark (the renal pelvis) of 5.78 mm and an average nearest neighbor surface distance (nndist) of 2.42 mm.

Conclusion

This work presents the first approach for automatic kidney registration in US and CT images, which doesn’t require an initial manual registration estimate to be known a priori. The results show a fully automatic registration approach with performances comparable to manual methods is feasible.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The TRUSTED Dataset is described in the arXiv pre-print at https://​arxiv.​org/​pdf/​2310.​12646.
 
Literatur
1.
Zurück zum Zitat Yang H, Shi J, Carlone L (2020) TEASER: fast and certifiable point cloud registration. IEEE Trans Robot 37(2):314–333CrossRef Yang H, Shi J, Carlone L (2020) TEASER: fast and certifiable point cloud registration. IEEE Trans Robot 37(2):314–333CrossRef
2.
Zurück zum Zitat Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE international conference on robotics and automation, 3212–3217 Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE international conference on robotics and automation, 3212–3217
3.
Zurück zum Zitat Bai X, Luo Z, Zhou L, Fu H, Quan L, Tai C-L (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 6359–6367 Bai X, Luo Z, Zhou L, Fu H, Quan L, Tai C-L (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 6359–6367
4.
Zurück zum Zitat Poiesi F, Boscaini D (2021) Distinctive 3d local deep descriptors. In: 2020 25th international conference on pattern recognition (ICPR), 5720–5727 Poiesi F, Boscaini D (2021) Distinctive 3d local deep descriptors. In: 2020 25th international conference on pattern recognition (ICPR), 5720–5727
5.
Zurück zum Zitat Hu K, Yuan X, Chen S (2023) Real-time CNN-based keypoint detector with Sobel filter and descriptor trained with keypoint candidates. In: Fifteenth international conference on machine vision (ICMV 2022), vol. 12701, p. 127010 Hu K, Yuan X, Chen S (2023) Real-time CNN-based keypoint detector with Sobel filter and descriptor trained with keypoint candidates. In: Fifteenth international conference on machine vision (ICMV 2022), vol. 12701, p. 127010
6.
Zurück zum Zitat Markova V, Ronchetti M, Wein W, Zettinig O, Prevost R (2022) Global multi-modal 2d/3d registration via local descriptors learning. In: International conference on medical image computing and computer-assisted intervention, 269–279. Springer Markova V, Ronchetti M, Wein W, Zettinig O, Prevost R (2022) Global multi-modal 2d/3d registration via local descriptors learning. In: International conference on medical image computing and computer-assisted intervention, 269–279. Springer
7.
Zurück zum Zitat Zhao Q, Pizer S, Niethammer M, Rosenman J (2014) Geometric-feature-based spectral graph matching in pharyngeal surface registration. In: Medical image computing and computer-assisted intervention, 259–266 Zhao Q, Pizer S, Niethammer M, Rosenman J (2014) Geometric-feature-based spectral graph matching in pharyngeal surface registration. In: Medical image computing and computer-assisted intervention, 259–266
8.
Zurück zum Zitat Rehman HZU, Lee S (2018) Automatic image alignment using principal component analysis. IEEE Access 6:72063–72072CrossRef Rehman HZU, Lee S (2018) Automatic image alignment using principal component analysis. IEEE Access 6:72063–72072CrossRef
9.
Zurück zum Zitat Wang Y, Solomon JM (2019) Deep closest point: Learning representations for point cloud registration. In: Proceedings of the IEEE/CVF international conference on computer vision, 3523–3532 Wang Y, Solomon JM (2019) Deep closest point: Learning representations for point cloud registration. In: Proceedings of the IEEE/CVF international conference on computer vision, 3523–3532
10.
Zurück zum Zitat Müller M, Helljesen LES, Prevost R, Viola I, Nylund K, Gilja OH, Navab N, Wein W (2014) Deriving anatomical context from 4d ultrasound. In: VCBM, 173–180 Müller M, Helljesen LES, Prevost R, Viola I, Nylund K, Gilja OH, Navab N, Wein W (2014) Deriving anatomical context from 4d ultrasound. In: VCBM, 173–180
11.
Zurück zum Zitat Gao Y, Sandhu R, Fichtinger G, Tannenbaum AR (2010) A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE Trans Med Imaging 29(10):1781–1794CrossRefPubMedPubMedCentral Gao Y, Sandhu R, Fichtinger G, Tannenbaum AR (2010) A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE Trans Med Imaging 29(10):1781–1794CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Leroy A, Mozer P, Payan Y, Troccaz J (2004) Rigid registration of freehand 3d ultrasound and ct-scan kidney images. In: International conference on medical image computing and computer-assisted intervention, 837–844 Leroy A, Mozer P, Payan Y, Troccaz J (2004) Rigid registration of freehand 3d ultrasound and ct-scan kidney images. In: International conference on medical image computing and computer-assisted intervention, 837–844
13.
Zurück zum Zitat Leroy A, Mozer P, Payan Y, Richard F, Chartier-Kastler E, Troccaz J (2006) Percutaneous renal puncture: requirements and preliminary results. arXiv preprint physics/0610209 Leroy A, Mozer P, Payan Y, Richard F, Chartier-Kastler E, Troccaz J (2006) Percutaneous renal puncture: requirements and preliminary results. arXiv preprint physics/0610209
14.
Zurück zum Zitat Leroy A, Mozer P, Payan Y, Troccaz J (2007) Intensity-based registration of freehand 3d ultrasound and CT-scan images of the kidney. Int J Comput Assist Radiol Surg 2(1):31–41CrossRef Leroy A, Mozer P, Payan Y, Troccaz J (2007) Intensity-based registration of freehand 3d ultrasound and CT-scan images of the kidney. Int J Comput Assist Radiol Surg 2(1):31–41CrossRef
15.
Zurück zum Zitat Xing S, Cambranis-Romero J, Roy P, Cool D, Tessier D, Chen E, Peters T, Fenster A (2023) 3D US-CT/MRI registration for percutaneous focal liver tumor ablations. Int J Comput Assist Radiol Surg 18:1159–1166CrossRefPubMed Xing S, Cambranis-Romero J, Roy P, Cool D, Tessier D, Chen E, Peters T, Fenster A (2023) 3D US-CT/MRI registration for percutaneous focal liver tumor ablations. Int J Comput Assist Radiol Surg 18:1159–1166CrossRefPubMed
16.
Zurück zum Zitat Joutard S, Pheiffer T, Audigier C, Wohlfahrt P, Dorent R, Piat S, Vercauteren T, Modat M, Mansi T (2022) A multi-organ point cloud registration algorithm for abdominal CT registration. In: International workshop on biomedical image registration, 75–84 Joutard S, Pheiffer T, Audigier C, Wohlfahrt P, Dorent R, Piat S, Vercauteren T, Modat M, Mansi T (2022) A multi-organ point cloud registration algorithm for abdominal CT registration. In: International workshop on biomedical image registration, 75–84
17.
Zurück zum Zitat Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz CP (2021) Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations. J Am Coll Radiol 18(3):413–424CrossRefPubMed Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz CP (2021) Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations. J Am Coll Radiol 18(3):413–424CrossRefPubMed
18.
Zurück zum Zitat Hirose O (2021) A Bayesian formulation of coherent point drift. IEEE Trans Pattern Anal Mach Intell 43(7):2269–2286CrossRefPubMed Hirose O (2021) A Bayesian formulation of coherent point drift. IEEE Trans Pattern Anal Mach Intell 43(7):2269–2286CrossRefPubMed
20.
Zurück zum Zitat Asman AJ, Lauzon CB, Landman BA (2013) Robust inter-modality multi-atlas segmentation for PACS-based DTI quality control. Proc. SPIE 8674 Asman AJ, Lauzon CB, Landman BA (2013) Robust inter-modality multi-atlas segmentation for PACS-based DTI quality control. Proc. SPIE 8674
21.
Zurück zum Zitat Payer C, Štern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using CNNs. In: International conference on medical image computing and computer-assisted intervention, 230–238 Payer C, Štern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using CNNs. In: International conference on medical image computing and computer-assisted intervention, 230–238
22.
Zurück zum Zitat Wang X, Yang X, Dou H, Li S, Heng P-A, Ni D (2019) Joint segmentation and landmark localization of fetal femur in ultrasound volumes. In: 2019 IEEE EMBS international conference on biomedical and health informatics (BHI), 1–5 Wang X, Yang X, Dou H, Li S, Heng P-A, Ni D (2019) Joint segmentation and landmark localization of fetal femur in ultrasound volumes. In: 2019 IEEE EMBS international conference on biomedical and health informatics (BHI), 1–5
23.
Zurück zum Zitat Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-NET: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-NET: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed
24.
Zurück zum Zitat Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: ICML Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: ICML
25.
26.
Zurück zum Zitat Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38(8):1788–1800CrossRef Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38(8):1788–1800CrossRef
27.
Zurück zum Zitat Mauri G, Monfardini L, Della Vigna P, Montano F, Bonomo G, Buccimazza G, Camisassi N, Rossi D, Maiettini D, Varano GM, Solbiati L, Orsi F (2021) Real-Time US-CT fusion imaging for guidance of thermal ablation in of renal tumors invisible or poorly visible with US: results in 97 cases. Int J Hyperth 38(1):771–776 Mauri G, Monfardini L, Della Vigna P, Montano F, Bonomo G, Buccimazza G, Camisassi N, Rossi D, Maiettini D, Varano GM, Solbiati L, Orsi F (2021) Real-Time US-CT fusion imaging for guidance of thermal ablation in of renal tumors invisible or poorly visible with US: results in 97 cases. Int J Hyperth 38(1):771–776
28.
Zurück zum Zitat Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, Goldberg SN, Solbiati L (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Radiol 38(1):143–151CrossRef Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, Goldberg SN, Solbiati L (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Radiol 38(1):143–151CrossRef
29.
Zurück zum Zitat Monfardini L, Orsi F, Caserta R, Sallemi C, Della Vigna P, Bonomo G, Varano G, Solbiati L, Mauri G (2018) Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperth 35(1):500–504CrossRef Monfardini L, Orsi F, Caserta R, Sallemi C, Della Vigna P, Bonomo G, Varano G, Solbiati L, Mauri G (2018) Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperth 35(1):500–504CrossRef
Metadaten
Titel
Global registration of kidneys in 3D ultrasound and CT images
verfasst von
William Ndzimbong
Nicolas Thome
Cyril Fourniol
Yvonne Keeza
Benoît Sauer
Jacques Marescaux
Daniel George
Alexandre Hostettler
Toby Collins
Publikationsdatum
06.09.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03255-3

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.