Skip to main content
Erschienen in: Diabetologia 8/2017

20.05.2017 | Article

GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice

verfasst von: Dan Kawamori, Jun Shirakawa, Chong Wee Liew, Jiang Hu, Tomoaki Morioka, Alokesh Duttaroy, Bryan Burkey, Rohit N. Kulkarni

Erschienen in: Diabetologia | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

We aimed to investigate potential interactions between insulin and glucagon-like peptide (GLP)-1 signalling pathways in the regulation of beta cell-cycle dynamics in vivo, in the context of the therapeutic potential of GLP-1 to modulate impaired beta cell function.

Methods

Beta cell-specific insulin receptor knockout (βIRKO) mice, which exhibit beta cell dysfunction and an age-dependent decrease in beta cell mass, were treated with the dipeptidyl peptidase-4 inhibitor vildagliptin. Following this, glucose homeostasis and beta cell proliferation were evaluated and underlying molecular mechanisms were investigated.

Results

The sustained elevation in circulating GLP-1 levels, caused by treatment of the knockout mice with vildagliptin for 6 weeks, significantly improved glucose tolerance secondary to enhanced insulin secretion and proliferation of beta cells. Treating βIRKO beta cell lines with the GLP-1 analogue, exendin-4, promoted Akt phosphorylation and protein expression of cyclins A, D1 and E two- to threefold, in addition to cyclin D2. Pancreases from the vildagliptin-treated βIRKO mice exhibited increased cyclin D1 expression, while cyclin D2 expression was impaired.

Conclusions/interpretation

Activation of GLP-1 signalling compensates for impaired growth factor (insulin) signalling and enhances expression of cyclins to promote beta cell proliferation. Together, these data indicate the potential of GLP-1-related therapies to enhance beta cell proliferation and promote beneficial outcomes in models with dysfunctional beta cells.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ (2005) Diabetes mellitus. Lippincott, Williams and Wilkins, New York Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ (2005) Diabetes mellitus. Lippincott, Williams and Wilkins, New York
2.
Zurück zum Zitat Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed
4.
Zurück zum Zitat Stoffers DA, Kieffer TJ, Hussain MA et al (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741–748CrossRefPubMed Stoffers DA, Kieffer TJ, Hussain MA et al (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741–748CrossRefPubMed
5.
Zurück zum Zitat Habener JF, Stoffers DA (1998) A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians 110:12–21PubMed Habener JF, Stoffers DA (1998) A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians 110:12–21PubMed
6.
Zurück zum Zitat Farilla L, Bulotta A, Hirshberg B et al (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158CrossRefPubMed Farilla L, Bulotta A, Hirshberg B et al (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158CrossRefPubMed
7.
Zurück zum Zitat Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455CrossRefPubMed Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455CrossRefPubMed
8.
Zurück zum Zitat Jhala US, Canettieri G, Screaton RA et al (2003) cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580CrossRefPubMedPubMedCentral Jhala US, Canettieri G, Screaton RA et al (2003) cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Ranta F, Avram D, Berchtold S et al (2006) Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55:1380–1390CrossRefPubMed Ranta F, Avram D, Berchtold S et al (2006) Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55:1380–1390CrossRefPubMed
10.
Zurück zum Zitat Assmann A, Hinault C, Kulkarni RN (2009) Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes 10:14–32CrossRefPubMed Assmann A, Hinault C, Kulkarni RN (2009) Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes 10:14–32CrossRefPubMed
11.
Zurück zum Zitat Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339CrossRefPubMed Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339CrossRefPubMed
12.
Zurück zum Zitat Kulkarni RN, Holzenberger M, Shih DQ et al (2002) β-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 31:111–115PubMed Kulkarni RN, Holzenberger M, Shih DQ et al (2002) β-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 31:111–115PubMed
13.
Zurück zum Zitat Xuan S, Kitamura T, Nakae J et al (2002) Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. J Clin Invest 110:1011–1019CrossRefPubMedPubMedCentral Xuan S, Kitamura T, Nakae J et al (2002) Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. J Clin Invest 110:1011–1019CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Shirakawa J, Fernandez M, Takatani T et al (2017) Insulin signaling regulates the FoxM1/PLK1/CENP-A pathway to promote adaptive pancreatic β cell proliferation. Cell Metab 25:868–882CrossRefPubMed Shirakawa J, Fernandez M, Takatani T et al (2017) Insulin signaling regulates the FoxM1/PLK1/CENP-A pathway to promote adaptive pancreatic β cell proliferation. Cell Metab 25:868–882CrossRefPubMed
15.
Zurück zum Zitat Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, Thorens B (2010) Glucagon-like peptide-1 increases β-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 285:10538–10545CrossRefPubMedPubMedCentral Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, Thorens B (2010) Glucagon-like peptide-1 increases β-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 285:10538–10545CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B (2009) Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58:1816–1825CrossRefPubMedPubMedCentral Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B (2009) Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58:1816–1825CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA et al (2006) Molecular control of cell cycle progression in the pancreatic β-cell. Endocr Rev 27:356–370CrossRefPubMed Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA et al (2006) Molecular control of cell cycle progression in the pancreatic β-cell. Endocr Rev 27:356–370CrossRefPubMed
18.
19.
Zurück zum Zitat Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 25:3752–3762CrossRefPubMedPubMedCentral Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 25:3752–3762CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Georgia S, Hinault C, Kawamori D et al (2010) Cyclin D2 is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents. Diabetes 59:987–996CrossRefPubMedPubMedCentral Georgia S, Hinault C, Kawamori D et al (2010) Cyclin D2 is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents. Diabetes 59:987–996CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC (2005) Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes 54:712–719CrossRefPubMed Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC (2005) Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes 54:712–719CrossRefPubMed
22.
Zurück zum Zitat Friedrichsen BN, Neubauer N, Lee YC et al (2006) Stimulation of pancreatic β-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 188:481–492CrossRefPubMed Friedrichsen BN, Neubauer N, Lee YC et al (2006) Stimulation of pancreatic β-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 188:481–492CrossRefPubMed
23.
Zurück zum Zitat Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283:8723–8735CrossRefPubMedPubMedCentral Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283:8723–8735CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Xie T, Chen M, Zhang QH, Ma Z, Weinstein LS (2007) β cell-specific deficiency of the stimulatory G protein α-subunit Gsα leads to reduced beta cell mass and insulin-deficient diabetes. Proc Natl Acad Sci U S A 104:19601–19606CrossRefPubMedPubMedCentral Xie T, Chen M, Zhang QH, Ma Z, Weinstein LS (2007) β cell-specific deficiency of the stimulatory G protein α-subunit Gsα leads to reduced beta cell mass and insulin-deficient diabetes. Proc Natl Acad Sci U S A 104:19601–19606CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Folli F, Okada T, Perego C et al (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6:e28050CrossRefPubMedPubMedCentral Folli F, Okada T, Perego C et al (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6:e28050CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed
28.
Zurück zum Zitat Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219CrossRefPubMed Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219CrossRefPubMed
29.
Zurück zum Zitat Assmann A, Ueki K, Winnay JN, Kadowaki T, Kulkarni RN (2009) Glucose effects on β-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol Cell Biol 29:3219–3228CrossRefPubMedPubMedCentral Assmann A, Ueki K, Winnay JN, Kadowaki T, Kulkarni RN (2009) Glucose effects on β-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol Cell Biol 29:3219–3228CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kawamori D, Kaneto H, Nakatani Y et al (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098CrossRefPubMed Kawamori D, Kaneto H, Nakatani Y et al (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098CrossRefPubMed
32.
Zurück zum Zitat Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed
33.
Zurück zum Zitat Yang J, Robert CE, Burkhardt BR et al (2005) Mechanisms of glucose-induced secretion of pancreatic-derived factor (PANDER or FAM3B) in pancreatic β-cells. Diabetes 54:3217–3228CrossRefPubMed Yang J, Robert CE, Burkhardt BR et al (2005) Mechanisms of glucose-induced secretion of pancreatic-derived factor (PANDER or FAM3B) in pancreatic β-cells. Diabetes 54:3217–3228CrossRefPubMed
35.
Zurück zum Zitat Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136CrossRefPubMed Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136CrossRefPubMed
36.
Zurück zum Zitat Marchetti P, Lupi R, Del Guerra S, Bugliani M, Marselli L, Boggi U (2010) The β-cell in human type 2 diabetes. Adv Exp Med Biol 654:501–514CrossRefPubMed Marchetti P, Lupi R, Del Guerra S, Bugliani M, Marselli L, Boggi U (2010) The β-cell in human type 2 diabetes. Adv Exp Med Biol 654:501–514CrossRefPubMed
37.
Zurück zum Zitat Flock G, Baggio LL, Longuet C, Drucker DJ (2007) Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes 56:3006–3013CrossRefPubMed Flock G, Baggio LL, Longuet C, Drucker DJ (2007) Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes 56:3006–3013CrossRefPubMed
38.
Zurück zum Zitat Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132CrossRefPubMed Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132CrossRefPubMed
39.
Zurück zum Zitat Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ (2005) β-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54:482–491CrossRefPubMed Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ (2005) β-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54:482–491CrossRefPubMed
40.
Zurück zum Zitat Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90CrossRefPubMed Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90CrossRefPubMed
41.
Zurück zum Zitat Drucker DJ (2007) Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care 30:1335–1343CrossRefPubMed Drucker DJ (2007) Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care 30:1335–1343CrossRefPubMed
42.
Zurück zum Zitat Itou M, Kawaguchi T, Taniguchi E, Sata M (2013) Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 19:2298–2306CrossRefPubMedPubMedCentral Itou M, Kawaguchi T, Taniguchi E, Sata M (2013) Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 19:2298–2306CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Lamers D, Famulla S, Wronkowitz N et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925CrossRefPubMedPubMedCentral Lamers D, Famulla S, Wronkowitz N et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Ryskjaer J, Deacon CF, Carr RD et al (2006) Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol 155:485–493CrossRefPubMed Ryskjaer J, Deacon CF, Carr RD et al (2006) Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol 155:485–493CrossRefPubMed
45.
Zurück zum Zitat Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A (2012) The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab 14:518–522CrossRefPubMed Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A (2012) The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab 14:518–522CrossRefPubMed
46.
Zurück zum Zitat Sell H, Bluher M, Kloting N et al (2013) Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 36:4083–4090CrossRefPubMedPubMedCentral Sell H, Bluher M, Kloting N et al (2013) Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 36:4083–4090CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Shirakawa J, Amo K, Ohminami H et al (2011) Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased beta cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes. J Biol Chem 286:25467–25476CrossRefPubMedPubMedCentral Shirakawa J, Amo K, Ohminami H et al (2011) Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased beta cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes. J Biol Chem 286:25467–25476CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Shirakawa J, Okuyama T, Kyohara M et al (2016) DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 8:16CrossRefPubMedPubMedCentral Shirakawa J, Okuyama T, Kyohara M et al (2016) DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 8:16CrossRefPubMedPubMedCentral
49.
50.
Zurück zum Zitat Susaki E, Nakayama K, Nakayama KI (2007) Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0-G1 transition. Mol Cell Biol 27:4626–4640CrossRefPubMedPubMedCentral Susaki E, Nakayama K, Nakayama KI (2007) Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0-G1 transition. Mol Cell Biol 27:4626–4640CrossRefPubMedPubMedCentral
Metadaten
Titel
GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice
verfasst von
Dan Kawamori
Jun Shirakawa
Chong Wee Liew
Jiang Hu
Tomoaki Morioka
Alokesh Duttaroy
Bryan Burkey
Rohit N. Kulkarni
Publikationsdatum
20.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 8/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4303-6

Weitere Artikel der Ausgabe 8/2017

Diabetologia 8/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.