Skip to main content
Erschienen in: Clinical Reviews in Bone and Mineral Metabolism 1/2018

05.02.2018 | Review Paper

Glucocorticoid Excess in Bone and Muscle

verfasst von: Amy Y. Sato, Munro Peacock, Teresita Bellido

Erschienen in: Clinical & Translational Metabolism | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration, and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.
Literatur
2.
Zurück zum Zitat Soffer LJ, Iannacconone A, Gabrilove JL. Cushing's syndrome. Am J Med. 1961;30:129–46.CrossRef Soffer LJ, Iannacconone A, Gabrilove JL. Cushing's syndrome. Am J Med. 1961;30:129–46.CrossRef
3.
Zurück zum Zitat Ross EJ, Linch DC. Cushing's syndrome--killing disease: discriminatory value of signs and symptoms aiding early diagnosis. Lancet. 1982;2:646–9.PubMedCrossRef Ross EJ, Linch DC. Cushing's syndrome--killing disease: discriminatory value of signs and symptoms aiding early diagnosis. Lancet. 1982;2:646–9.PubMedCrossRef
7.
Zurück zum Zitat Overman RA, Gourlay ML, Deal CL, et al. Fracture rate associated with quality metric-based anti-osteoporosis treatment in glucocorticoid-induced osteoporosis. Osteoporos Int. 2015;26:1515–24.PubMedPubMedCentralCrossRef Overman RA, Gourlay ML, Deal CL, et al. Fracture rate associated with quality metric-based anti-osteoporosis treatment in glucocorticoid-induced osteoporosis. Osteoporos Int. 2015;26:1515–24.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Canalis E, Mazziotti G, Giustina A, et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.PubMedCrossRef Canalis E, Mazziotti G, Giustina A, et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.PubMedCrossRef
9.
Zurück zum Zitat Batchelor TT, Taylor LP, Thaler HT, et al. Steroid myopathy in cancer patients. Neurology. 1997;48:1234–8.PubMedCrossRef Batchelor TT, Taylor LP, Thaler HT, et al. Steroid myopathy in cancer patients. Neurology. 1997;48:1234–8.PubMedCrossRef
10.
Zurück zum Zitat Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol. 1985;76:234–42.PubMedCrossRef Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol. 1985;76:234–42.PubMedCrossRef
13.
Zurück zum Zitat Chapman K, Holmes M, Seckl J. 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev. 2013;93:1139–206.PubMedPubMedCentralCrossRef Chapman K, Holmes M, Seckl J. 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev. 2013;93:1139–206.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Tomlinson JW, Draper N, Mackie J, et al. Absence of Cushingoid phenotype in a patient with Cushing's disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab. 2002;87:57–62.PubMed Tomlinson JW, Draper N, Mackie J, et al. Absence of Cushingoid phenotype in a patient with Cushing's disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab. 2002;87:57–62.PubMed
16.
Zurück zum Zitat Arai H, Kobayashi N, Nakatsuru Y, et al. A case of cortisol producing adrenal adenoma without phenotype of Cushing's syndrome due to impaired 11beta-hydroxysteroid dehydrogenase 1 activity. Endocr J. 2008;55:709–15.PubMedCrossRef Arai H, Kobayashi N, Nakatsuru Y, et al. A case of cortisol producing adrenal adenoma without phenotype of Cushing's syndrome due to impaired 11beta-hydroxysteroid dehydrogenase 1 activity. Endocr J. 2008;55:709–15.PubMedCrossRef
17.
Zurück zum Zitat Draper N, Walker EA, Bujalska IJ, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet. 2003;34:434–9.PubMedCrossRef Draper N, Walker EA, Bujalska IJ, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet. 2003;34:434–9.PubMedCrossRef
18.
Zurück zum Zitat Lavery GG, Idkowiak J, Sherlock M, et al. Novel H6PDH mutations in two girls with premature adrenarche: 'apparent' and 'true' CRD can be differentiated by urinary steroid profiling. Eur J Endocrinol. 2013;168:K19–26.PubMedPubMedCentralCrossRef Lavery GG, Idkowiak J, Sherlock M, et al. Novel H6PDH mutations in two girls with premature adrenarche: 'apparent' and 'true' CRD can be differentiated by urinary steroid profiling. Eur J Endocrinol. 2013;168:K19–26.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Morgan SA, Hassan-Smith ZK, Lavery GG. Mechanisms in endocrinology: tissue-specific activation of cortisol in Cushing's syndrome. Eur J Endocrinol. 2016;175:R83–9.PubMedCrossRef Morgan SA, Hassan-Smith ZK, Lavery GG. Mechanisms in endocrinology: tissue-specific activation of cortisol in Cushing's syndrome. Eur J Endocrinol. 2016;175:R83–9.PubMedCrossRef
22.
Zurück zum Zitat Crilly RG, Marshall DH, Nordin BE. Metabolic effects of corticosteroid therapy in post-menopausal women. J Steroid Biochem. 1979;11:429–33.PubMedCrossRef Crilly RG, Marshall DH, Nordin BE. Metabolic effects of corticosteroid therapy in post-menopausal women. J Steroid Biochem. 1979;11:429–33.PubMedCrossRef
23.
Zurück zum Zitat Lukert BP, Johnson BE, Robinson RG. Estrogen and progesterone replacement therapy reduces glucocorticoid- induced bone loss. J Bone Miner Res. 1992;7:1063–9.PubMedCrossRef Lukert BP, Johnson BE, Robinson RG. Estrogen and progesterone replacement therapy reduces glucocorticoid- induced bone loss. J Bone Miner Res. 1992;7:1063–9.PubMedCrossRef
24.
Zurück zum Zitat Crilly RG, Marshall DH, Horsman A, Nordin BEC, Peacock M. Corticosteroid Osteoporosis. In: Dixon ASJ, Russell RGG, Stamp TCB, editors. Osteoporosis, A Multi-Disciplinary Problem. London: Academic press Inc and Royal Society of Medicine; 1983. p. 153–9. Crilly RG, Marshall DH, Horsman A, Nordin BEC, Peacock M. Corticosteroid Osteoporosis. In: Dixon ASJ, Russell RGG, Stamp TCB, editors. Osteoporosis, A Multi-Disciplinary Problem. London: Academic press Inc and Royal Society of Medicine; 1983. p. 153–9.
25.
Zurück zum Zitat Oikarinen A, Haapasaari KM, Sutinen M, et al. The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol. 1998;139:1106–10.PubMedCrossRef Oikarinen A, Haapasaari KM, Sutinen M, et al. The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol. 1998;139:1106–10.PubMedCrossRef
28.
Zurück zum Zitat Shi L, Sanchez-Guijo A, Hartmann MF, et al. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment. J Bone Miner Res. 2015;30:240–8.PubMedCrossRef Shi L, Sanchez-Guijo A, Hartmann MF, et al. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment. J Bone Miner Res. 2015;30:240–8.PubMedCrossRef
29.
Zurück zum Zitat Cooper MS, Rabbitt EH, Goddard PE, et al. Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res. 2002;17:979–86.PubMedCrossRef Cooper MS, Rabbitt EH, Goddard PE, et al. Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res. 2002;17:979–86.PubMedCrossRef
30.
Zurück zum Zitat Cooper MS, Syddall HE, Fall CH, et al. Circulating cortisone levels are associated with biochemical markers of bone formation and lumbar spine BMD: the Hertfordshire cohort study. Clin Endocrinol. 2005;62:692–7.CrossRef Cooper MS, Syddall HE, Fall CH, et al. Circulating cortisone levels are associated with biochemical markers of bone formation and lumbar spine BMD: the Hertfordshire cohort study. Clin Endocrinol. 2005;62:692–7.CrossRef
32.
Zurück zum Zitat Suman OE, Spies RJ, Celis MM, et al. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91:1168–75.CrossRef Suman OE, Spies RJ, Celis MM, et al. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91:1168–75.CrossRef
33.
Zurück zum Zitat Przkora R, Herndon DN, Sherrard DJ, et al. Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone. 2007;41:297–302.PubMedPubMedCentralCrossRef Przkora R, Herndon DN, Sherrard DJ, et al. Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone. 2007;41:297–302.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Norbury WB, Herndon DN, Branski LK, et al. Urinary cortisol and catecholamine excretion after burn injury in children. J Clin Endocrinol Metab. 2008;93:1270–5.PubMedPubMedCentralCrossRef Norbury WB, Herndon DN, Branski LK, et al. Urinary cortisol and catecholamine excretion after burn injury in children. J Clin Endocrinol Metab. 2008;93:1270–5.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Besemer F, Pereira AM, Smit JW. Alcohol-induced Cushing syndrome. Hypercortisolism caused by alcohol abuse. Neth J Med. 2011;69:318–23.PubMed Besemer F, Pereira AM, Smit JW. Alcohol-induced Cushing syndrome. Hypercortisolism caused by alcohol abuse. Neth J Med. 2011;69:318–23.PubMed
39.
Zurück zum Zitat Walsh LJ, Wong CA, Oborne J, et al. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56:279–84.PubMedPubMedCentralCrossRef Walsh LJ, Wong CA, Oborne J, et al. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56:279–84.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Hubbard RB, Smith CJ, Smeeth L, et al. Inhaled corticosteroids and hip fracture: a population-based case-control study. Am J Respir Crit Care Med. 2002;166:1563–6.PubMedCrossRef Hubbard RB, Smith CJ, Smeeth L, et al. Inhaled corticosteroids and hip fracture: a population-based case-control study. Am J Respir Crit Care Med. 2002;166:1563–6.PubMedCrossRef
42.
Zurück zum Zitat Luengo M, Picado C, Del Rio L, et al. Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study. Thorax. 1991;46:803–6.PubMedPubMedCentralCrossRef Luengo M, Picado C, Del Rio L, et al. Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study. Thorax. 1991;46:803–6.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Selby PL, Halsey JP, Adams KR, et al. Corticosteroids do not alter the threshold for vertebral fracture. J Bone Miner Res. 2000;15:952–6.PubMedCrossRef Selby PL, Halsey JP, Adams KR, et al. Corticosteroids do not alter the threshold for vertebral fracture. J Bone Miner Res. 2000;15:952–6.PubMedCrossRef
45.
Zurück zum Zitat Zhu K, Hunter M, James A, et al. Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton healthy ageing study. Bone. 2015;74:146–52.PubMedCrossRef Zhu K, Hunter M, James A, et al. Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton healthy ageing study. Bone. 2015;74:146–52.PubMedCrossRef
46.
Zurück zum Zitat Cosman F, Nieves J, Herbert J, et al. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res. 1994;9:1097–105.PubMedCrossRef Cosman F, Nieves J, Herbert J, et al. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res. 1994;9:1097–105.PubMedCrossRef
47.
Zurück zum Zitat Dovio A, Perazzolo L, Osella G, et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89:4923–8.PubMedCrossRef Dovio A, Perazzolo L, Osella G, et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89:4923–8.PubMedCrossRef
48.
Zurück zum Zitat Aaron JE, Francis RM, Peacock M, et al. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res. 1989:294–305. Aaron JE, Francis RM, Peacock M, et al. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res. 1989:294–305.
49.
Zurück zum Zitat Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.PubMedCrossRef Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.PubMedCrossRef
50.
Zurück zum Zitat Cooper C, Steinbuch M, Stevenson R, et al. The epidemiology of osteonecrosis: findings from the GPRD and THIN databases in the UK. Osteoporos Int. 2010;21:569–77.PubMedCrossRef Cooper C, Steinbuch M, Stevenson R, et al. The epidemiology of osteonecrosis: findings from the GPRD and THIN databases in the UK. Osteoporos Int. 2010;21:569–77.PubMedCrossRef
51.
Zurück zum Zitat Ikeuchi K, Hasegawa Y, Seki T, et al. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Mod Rheumatol. 2015;25:278–81.PubMedCrossRef Ikeuchi K, Hasegawa Y, Seki T, et al. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Mod Rheumatol. 2015;25:278–81.PubMedCrossRef
52.
Zurück zum Zitat Kubo T, Ueshima K, Saito M, et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan. J Orthop Sci. 2016;21:407–13.PubMedCrossRef Kubo T, Ueshima K, Saito M, et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan. J Orthop Sci. 2016;21:407–13.PubMedCrossRef
55.
Zurück zum Zitat Murphey MD, Foreman KL, Klassen-Fischer MK, et al. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics. 2014;34:1003–28.PubMedCrossRef Murphey MD, Foreman KL, Klassen-Fischer MK, et al. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics. 2014;34:1003–28.PubMedCrossRef
56.
Zurück zum Zitat Dilisio MF. Osteonecrosis following short-term, low-dose oral corticosteroids: a population-based study of 24 million patients. Orthopedics. 2014;37:e631–6.PubMedCrossRef Dilisio MF. Osteonecrosis following short-term, low-dose oral corticosteroids: a population-based study of 24 million patients. Orthopedics. 2014;37:e631–6.PubMedCrossRef
57.
Zurück zum Zitat Chen CH, Chang JK, Lai KA, et al. Alendronate in the prevention of collapse of the femoral head in nontraumatic osteonecrosis: a two-year multicenter, prospective, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2012;64:1572–8.PubMedCrossRef Chen CH, Chang JK, Lai KA, et al. Alendronate in the prevention of collapse of the femoral head in nontraumatic osteonecrosis: a two-year multicenter, prospective, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2012;64:1572–8.PubMedCrossRef
58.
Zurück zum Zitat Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol. 1983;18:155–66.CrossRef Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol. 1983;18:155–66.CrossRef
61.
Zurück zum Zitat Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.PubMedCrossRef Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.PubMedCrossRef
63.
Zurück zum Zitat Morgan SA, Hassan-Smith ZK, Doig CL, et al. Glucocorticoids and 11beta-HSD1 are major regulators of intramyocellular protein metabolism. J Endocrinol. 2016;229:277–86.PubMedPubMedCentralCrossRef Morgan SA, Hassan-Smith ZK, Doig CL, et al. Glucocorticoids and 11beta-HSD1 are major regulators of intramyocellular protein metabolism. J Endocrinol. 2016;229:277–86.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109:1041–8.PubMedPubMedCentralCrossRef Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109:1041–8.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85:2907–12.PubMed Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85:2907–12.PubMed
66.
Zurück zum Zitat O'Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.PubMedCrossRef O'Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.PubMedCrossRef
68.
Zurück zum Zitat Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–74.PubMedPubMedCentralCrossRef Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–74.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Mazziotti G, Angeli A, Bilezikian JP, et al. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17:144–9.PubMedCrossRef Mazziotti G, Angeli A, Bilezikian JP, et al. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17:144–9.PubMedCrossRef
73.
Zurück zum Zitat Laan RFJM, Van Riel PLCM, Van de Putte LBA, et al. Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis: a randomized, controlled study. Ann Intern Med. 1993;119:963–8.PubMedCrossRef Laan RFJM, Van Riel PLCM, Van de Putte LBA, et al. Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis: a randomized, controlled study. Ann Intern Med. 1993;119:963–8.PubMedCrossRef
74.
Zurück zum Zitat Devogelaer JP, Adler RA, Recknor C, et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol. 2010;37:141–8.PubMedCrossRef Devogelaer JP, Adler RA, Recknor C, et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol. 2010;37:141–8.PubMedCrossRef
75.
Zurück zum Zitat LoCascio V, Bonucci E, Imbimbo B, et al. Bone loss in response to long-term glucocorticoid therapy. Bone Miner. 1990;8:39–51.PubMedCrossRef LoCascio V, Bonucci E, Imbimbo B, et al. Bone loss in response to long-term glucocorticoid therapy. Bone Miner. 1990;8:39–51.PubMedCrossRef
76.
Zurück zum Zitat Jia D, O'Brien CA, Stewart SA, et al. Glucocorticoids act directly on osteoclasts to increase their lifespan and reduce bone density. Endocrinology. 2006;147:5592–9.PubMedPubMedCentralCrossRef Jia D, O'Brien CA, Stewart SA, et al. Glucocorticoids act directly on osteoclasts to increase their lifespan and reduce bone density. Endocrinology. 2006;147:5592–9.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Hofbauer LC, Zeitz U, Schoppet M, et al. Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum. 2009;60:1427–37.PubMedCrossRef Hofbauer LC, Zeitz U, Schoppet M, et al. Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum. 2009;60:1427–37.PubMedCrossRef
79.
Zurück zum Zitat Sato AY, Richardson D, Cregor M, et al. Glucocorticoids induce bone and muscle atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology. 2017;158:664–77.PubMed Sato AY, Richardson D, Cregor M, et al. Glucocorticoids induce bone and muscle atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology. 2017;158:664–77.PubMed
80.
Zurück zum Zitat Leclerc N, Noh T, Cogan J, et al. Opposing effects of glucocorticoids and Wnt signaling on Krox 20 and mineral deposition in osteoblast cultures. J Cell Biochem. 2008;103:1938–51.PubMedCrossRef Leclerc N, Noh T, Cogan J, et al. Opposing effects of glucocorticoids and Wnt signaling on Krox 20 and mineral deposition in osteoblast cultures. J Cell Biochem. 2008;103:1938–51.PubMedCrossRef
81.
Zurück zum Zitat Mortensen RF, Shapiro J, Lin BF, et al. Interaction of recombinant IL-1 and recombinant tumor necrosis factor in the induction of mouse acute phase proteins. J Immunol. 1988;140:2260–6.PubMed Mortensen RF, Shapiro J, Lin BF, et al. Interaction of recombinant IL-1 and recombinant tumor necrosis factor in the induction of mouse acute phase proteins. J Immunol. 1988;140:2260–6.PubMed
82.
Zurück zum Zitat Advani S, LaFrancis D, Bogdanovic E, et al. Dexamethasone suppresses in vivo levels of bone collagen synthesis in neonatal mice. Bone. 1997;20:41–6.PubMedCrossRef Advani S, LaFrancis D, Bogdanovic E, et al. Dexamethasone suppresses in vivo levels of bone collagen synthesis in neonatal mice. Bone. 1997;20:41–6.PubMedCrossRef
83.
Zurück zum Zitat Rauch A, Seitz S, Baschant U, et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11:517–31.PubMedCrossRef Rauch A, Seitz S, Baschant U, et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11:517–31.PubMedCrossRef
84.
Zurück zum Zitat Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.PubMedPubMedCentralCrossRef Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Fowler TW, Acevedo C, Mazur CM, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7:44618.PubMedPubMedCentralCrossRef Fowler TW, Acevedo C, Mazur CM, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7:44618.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Yang M, Trettel LB, Adams DJ, et al. Col 3.6-HSD2 transgenic mice: a glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone. 2010;47:573–82.PubMedPubMedCentralCrossRef Yang M, Trettel LB, Adams DJ, et al. Col 3.6-HSD2 transgenic mice: a glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone. 2010;47:573–82.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Sher LB, Harrison JR, Adams DJ, et al. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79:118–25.PubMedCrossRef Sher LB, Harrison JR, Adams DJ, et al. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79:118–25.PubMedCrossRef
89.
Zurück zum Zitat Kalak R, Zhou H, Street J, et al. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009;45:61–7.PubMedCrossRef Kalak R, Zhou H, Street J, et al. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009;45:61–7.PubMedCrossRef
90.
Zurück zum Zitat Sher LB, Woitge HW, Adams DJ, et al. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology. 2004;145:922–9.PubMedCrossRef Sher LB, Woitge HW, Adams DJ, et al. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology. 2004;145:922–9.PubMedCrossRef
91.
Zurück zum Zitat Aarden EM, Wassenaar AM, Alblas MJ, et al. Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol. 1996;106:495–501.PubMedCrossRef Aarden EM, Wassenaar AM, Alblas MJ, et al. Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol. 1996;106:495–501.PubMedCrossRef
92.
Zurück zum Zitat Frendo JL, Xiao G, Fuchs S, et al. Functional hierarchy between two OSE2 elements in the control of osteocalcin gene expression in vivo. J Biol Chem. 1998;273:30509–16.PubMedCrossRef Frendo JL, Xiao G, Fuchs S, et al. Functional hierarchy between two OSE2 elements in the control of osteocalcin gene expression in vivo. J Biol Chem. 1998;273:30509–16.PubMedCrossRef
93.
Zurück zum Zitat Cheng SL, Yang JW, Rifas L, et al. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994;134:277–86.PubMedCrossRef Cheng SL, Yang JW, Rifas L, et al. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994;134:277–86.PubMedCrossRef
95.
Zurück zum Zitat Ito S, Suzuki N, Kato S, et al. Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone. 2007;40:84–92.PubMedCrossRef Ito S, Suzuki N, Kato S, et al. Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone. 2007;40:84–92.PubMedCrossRef
97.
Zurück zum Zitat Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival: evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282:24120–30.PubMedCrossRef Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival: evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282:24120–30.PubMedCrossRef
100.
Zurück zum Zitat Druilhe A, Letuve S, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis. 2003;8:481–95.PubMedCrossRef Druilhe A, Letuve S, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis. 2003;8:481–95.PubMedCrossRef
102.
Zurück zum Zitat Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997;15:837–43.PubMedCrossRef Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997;15:837–43.PubMedCrossRef
103.
Zurück zum Zitat Blaukat A, Ivankovic-Dikic I, Gronroos E, et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem. 1999;274:14893–901.PubMedCrossRef Blaukat A, Ivankovic-Dikic I, Gronroos E, et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem. 1999;274:14893–901.PubMedCrossRef
104.
Zurück zum Zitat Tokiwa G, Dikic I, Lev S, et al. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996;273:792–4.PubMedCrossRef Tokiwa G, Dikic I, Lev S, et al. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996;273:792–4.PubMedCrossRef
105.
Zurück zum Zitat Chauhan D, Hideshima T, Pandey P, et al. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene. 1999;18:6733–40.PubMedCrossRef Chauhan D, Hideshima T, Pandey P, et al. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene. 1999;18:6733–40.PubMedCrossRef
107.
Zurück zum Zitat Sasaki H, Nagura K, Ishino M, et al. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995;270:21206–19.PubMedCrossRef Sasaki H, Nagura K, Ishino M, et al. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995;270:21206–19.PubMedCrossRef
108.
Zurück zum Zitat Avraham H, Park S, Schinkmann K, et al. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12:123–33.PubMedCrossRef Avraham H, Park S, Schinkmann K, et al. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12:123–33.PubMedCrossRef
114.
Zurück zum Zitat Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.PubMedCrossRef Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.PubMedCrossRef
115.
Zurück zum Zitat Vanden Berghe W, Francesconi E, De Bosscher K, et al. Dissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-kappaB-dependent mechanism. Mol Pharmacol. 1999;56:797–806. Vanden Berghe W, Francesconi E, De Bosscher K, et al. Dissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-kappaB-dependent mechanism. Mol Pharmacol. 1999;56:797–806.
116.
Zurück zum Zitat Cheng SL, Zhang SF, Mohan S, et al. Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J Cell Biochem. 1998;71:449–58.PubMedCrossRef Cheng SL, Zhang SF, Mohan S, et al. Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J Cell Biochem. 1998;71:449–58.PubMedCrossRef
117.
Zurück zum Zitat Chang DJ, Ji C, Kim KK, et al. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid. J Biol Chem. 1998;273:4892–6.PubMedCrossRef Chang DJ, Ji C, Kim KK, et al. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid. J Biol Chem. 1998;273:4892–6.PubMedCrossRef
118.
Zurück zum Zitat Doherty WJ, Derome ME, McCarthy MB, et al. The effect of glucocorticoids on osteoblast function. The effect of corticosterone on osteoblast expression of beta 1 integrins. J Bone Joint Surg Am. 1995;77:396–404.PubMedCrossRef Doherty WJ, Derome ME, McCarthy MB, et al. The effect of glucocorticoids on osteoblast function. The effect of corticosterone on osteoblast expression of beta 1 integrins. J Bone Joint Surg Am. 1995;77:396–404.PubMedCrossRef
119.
Zurück zum Zitat Almeida M, Han L, Ambrogini E, et al. Glucocorticoids and tumor necrosis factor (TNF) alpha increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem. 2011;286:44326–35.PubMedPubMedCentralCrossRef Almeida M, Han L, Ambrogini E, et al. Glucocorticoids and tumor necrosis factor (TNF) alpha increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem. 2011;286:44326–35.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.PubMedCrossRef Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.PubMedCrossRef
122.
Zurück zum Zitat Sato AY, Tu X, McAndrews KA, et al. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015;73:60–8.PubMedCrossRef Sato AY, Tu X, McAndrews KA, et al. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015;73:60–8.PubMedCrossRef
123.
Zurück zum Zitat Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935–9.PubMedCrossRef Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935–9.PubMedCrossRef
124.
Zurück zum Zitat Tsaytler P, Harding HP, Ron D, et al. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.PubMedCrossRef Tsaytler P, Harding HP, Ron D, et al. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.PubMedCrossRef
128.
Zurück zum Zitat Saito A, Ochiai K, Kondo S, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2 (alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286:4809–18.PubMedCrossRef Saito A, Ochiai K, Kondo S, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2 (alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286:4809–18.PubMedCrossRef
129.
Zurück zum Zitat Sato AY, Cregor M, Delgado-Calle J, et al. Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/sclerostin. J Bone Miner Res. 2016;31:1791–802.PubMedCrossRef Sato AY, Cregor M, Delgado-Calle J, et al. Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/sclerostin. J Bone Miner Res. 2016;31:1791–802.PubMedCrossRef
131.
133.
Zurück zum Zitat Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.PubMedCrossRef Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.PubMedCrossRef
135.
Zurück zum Zitat Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.PubMedPubMedCentralCrossRef Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.PubMedCrossRef Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.PubMedCrossRef
137.
Zurück zum Zitat Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8.PubMedCrossRef Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8.PubMedCrossRef
139.
Zurück zum Zitat Marenzana M, Greenslade K, Eddleston A, et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum. 2011;63:2385–95.PubMedCrossRef Marenzana M, Greenslade K, Eddleston A, et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum. 2011;63:2385–95.PubMedCrossRef
140.
Zurück zum Zitat Yao W, Dai W, Jiang L, et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int. 2016;27:283–94.PubMedCrossRef Yao W, Dai W, Jiang L, et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int. 2016;27:283–94.PubMedCrossRef
142.
Zurück zum Zitat Rizzoli R, Adachi JD, Cooper C, et al. Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2012;91:225–43.PubMedCrossRef Rizzoli R, Adachi JD, Cooper C, et al. Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2012;91:225–43.PubMedCrossRef
143.
Zurück zum Zitat Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-induced osteoporosis intervention study group. N Engl J Med. 1998;339:292–9.PubMedCrossRef Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-induced osteoporosis intervention study group. N Engl J Med. 1998;339:292–9.PubMedCrossRef
144.
Zurück zum Zitat Mok CC, Ho LY, Ma KM. Switching of oral bisphosphonates to denosumab in chronic glucocorticoid users: a 12-month randomized controlled trial. Bone. 2015;75:222–8.PubMedCrossRef Mok CC, Ho LY, Ma KM. Switching of oral bisphosphonates to denosumab in chronic glucocorticoid users: a 12-month randomized controlled trial. Bone. 2015;75:222–8.PubMedCrossRef
145.
Zurück zum Zitat Allen MR, Iwata K, Phipps R, et al. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–9.PubMedCrossRef Allen MR, Iwata K, Phipps R, et al. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–9.PubMedCrossRef
146.
Zurück zum Zitat Mashiba T, Turner CH, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.PubMedCrossRef Mashiba T, Turner CH, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.PubMedCrossRef
147.
Zurück zum Zitat O'Ryan FS, Khoury S, Liao W, et al. Intravenous bisphosphonate-related osteonecrosis of the jaw: bone scintigraphy as an early indicator. J Oral Maxillofac Surg. 2009;67:1363–72.PubMedCrossRef O'Ryan FS, Khoury S, Liao W, et al. Intravenous bisphosphonate-related osteonecrosis of the jaw: bone scintigraphy as an early indicator. J Oral Maxillofac Surg. 2009;67:1363–72.PubMedCrossRef
149.
Zurück zum Zitat Minetto MA, Botter A, Lanfranco F, et al. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab. 2010;95:1663–71.PubMedCrossRef Minetto MA, Botter A, Lanfranco F, et al. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab. 2010;95:1663–71.PubMedCrossRef
150.
Zurück zum Zitat Minetto MA, Qaisar R, Agoni V, et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve. 2015;52:631–9.PubMedCrossRef Minetto MA, Qaisar R, Agoni V, et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve. 2015;52:631–9.PubMedCrossRef
151.
Zurück zum Zitat Schakman O, Kalista S, Barbe C, et al. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45:2163–72.PubMedCrossRef Schakman O, Kalista S, Barbe C, et al. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45:2163–72.PubMedCrossRef
153.
Zurück zum Zitat Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.PubMedCrossRef Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.PubMedCrossRef
163.
Zurück zum Zitat Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985). 1992;73:2538–43.CrossRef Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985). 1992;73:2538–43.CrossRef
170.
Zurück zum Zitat Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994;120(9):2385–96.PubMed Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994;120(9):2385–96.PubMed
Metadaten
Titel
Glucocorticoid Excess in Bone and Muscle
verfasst von
Amy Y. Sato
Munro Peacock
Teresita Bellido
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Clinical & Translational Metabolism / Ausgabe 1/2018
Print ISSN: 1534-8644
Elektronische ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-018-9242-3

Weitere Artikel der Ausgabe 1/2018

Clinical Reviews in Bone and Mineral Metabolism 1/2018 Zur Ausgabe

ACKNOWLEDGEMENT TO REFEREES

Acknowledgement for Reviewers 2017

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.