Skip to main content
Erschienen in: Anatomical Science International 4/2016

07.12.2015 | Original Article

Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study

verfasst von: Ural Verimli, Umit S. Sehirli

Erschienen in: Anatomical Science International | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase–green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase–green fluorescent protein transgenic mice.
Literatur
Zurück zum Zitat Alreja M, Shanabrough M, Liu W, Leranth C (2000a) Opioids suppress IPSCs in neurons of the rat medial septum/diagonal band of Broca: involvement of mu-opioid receptors and septohippocampal GABAergic neurons. J Neurosci 20:1179–1189PubMed Alreja M, Shanabrough M, Liu W, Leranth C (2000a) Opioids suppress IPSCs in neurons of the rat medial septum/diagonal band of Broca: involvement of mu-opioid receptors and septohippocampal GABAergic neurons. J Neurosci 20:1179–1189PubMed
Zurück zum Zitat Alreja M, Wu M, Liu W, Atkins JB, Leranth C, Shanabrough M (2000b) Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J Neurosci 20:8103–8110PubMed Alreja M, Wu M, Liu W, Atkins JB, Leranth C, Shanabrough M (2000b) Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J Neurosci 20:8103–8110PubMed
Zurück zum Zitat Asada H (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229:891–895CrossRefPubMed Asada H (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229:891–895CrossRefPubMed
Zurück zum Zitat Castaneda MT, Garrido-Sanabria ER, Hernandez S et al (2005) Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 52:107–119CrossRefPubMed Castaneda MT, Garrido-Sanabria ER, Hernandez S et al (2005) Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 52:107–119CrossRefPubMed
Zurück zum Zitat Colom LV (2006) Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem 96:609–623CrossRefPubMed Colom LV (2006) Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem 96:609–623CrossRefPubMed
Zurück zum Zitat Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164CrossRefPubMed Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164CrossRefPubMed
Zurück zum Zitat Deller T, Leranth C, Frotscher M (1994) Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus in the rat: a combined phaseolus vulgaris-leucoagglutinin and fluoro-gold immunocytochemical study. Neurosci Lett 168:119–122CrossRefPubMed Deller T, Leranth C, Frotscher M (1994) Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus in the rat: a combined phaseolus vulgaris-leucoagglutinin and fluoro-gold immunocytochemical study. Neurosci Lett 168:119–122CrossRefPubMed
Zurück zum Zitat Drugan RC, Morrow AL, Weizman R et al (1988) Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res 487:45–51CrossRef Drugan RC, Morrow AL, Weizman R et al (1988) Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res 487:45–51CrossRef
Zurück zum Zitat Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100CrossRefPubMed Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100CrossRefPubMed
Zurück zum Zitat Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331:339–362CrossRefPubMed Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331:339–362CrossRefPubMed
Zurück zum Zitat Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855PubMed Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855PubMed
Zurück zum Zitat Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34:689–706CrossRefPubMed Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34:689–706CrossRefPubMed
Zurück zum Zitat Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, London Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, London
Zurück zum Zitat Garrido-Sanabria ER, Castaneda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV (2006) Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 142:871–883CrossRefPubMed Garrido-Sanabria ER, Castaneda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV (2006) Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 142:871–883CrossRefPubMed
Zurück zum Zitat Huang H, Michetti C, Busnelli M et al (2013) Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39:1102–1114CrossRefPubMedPubMedCentral Huang H, Michetti C, Busnelli M et al (2013) Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39:1102–1114CrossRefPubMedPubMedCentral
Zurück zum Zitat Kash SF, Johnson RS, Tecott LH et al (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:14060–14065 Kash SF, Johnson RS, Tecott LH et al (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:14060–14065
Zurück zum Zitat Kaufman DL, McGinnis JF, Krieger NR, Tobin AJ (1986) Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid. Science 232:1138–1140CrossRefPubMed Kaufman DL, McGinnis JF, Krieger NR, Tobin AJ (1986) Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid. Science 232:1138–1140CrossRefPubMed
Zurück zum Zitat Köhler C, Chan-Palay V (1983) Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area: an immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain. Anat Embryol 167:53–65 Köhler C, Chan-Palay V (1983) Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area: an immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain. Anat Embryol 167:53–65
Zurück zum Zitat Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berlin) 169:41–44CrossRef Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berlin) 169:41–44CrossRef
Zurück zum Zitat Leranth C, Frotscher M (1989) Organization of the septal region in the rat brain: cholinergic–GABAergic interconnections and the termination of hippocampus–septal fibers. J Comp Neurol 289:304–314 Leranth C, Frotscher M (1989) Organization of the septal region in the rat brain: cholinergic–GABAergic interconnections and the termination of hippocampus–septal fibers. J Comp Neurol 289:304–314
Zurück zum Zitat Lopez-Bendito G (2004) Preferential origin and layer destination of GAD65–GFP cortical interneurons. Cereb Cortex 14:1122–1133CrossRefPubMed Lopez-Bendito G (2004) Preferential origin and layer destination of GAD65–GFP cortical interneurons. Cereb Cortex 14:1122–1133CrossRefPubMed
Zurück zum Zitat Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45:341–379CrossRefPubMed Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45:341–379CrossRefPubMed
Zurück zum Zitat McLaughlin BJ, Barber R, Saito K, Roberts E, Wu JY (1975a) Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol 164:305–321CrossRefPubMed McLaughlin BJ, Barber R, Saito K, Roberts E, Wu JY (1975a) Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol 164:305–321CrossRefPubMed
Zurück zum Zitat McLaughlin BJ, Wood JG, Saito K, Roberts E, Wu JY (1975b) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371CrossRefPubMed McLaughlin BJ, Wood JG, Saito K, Roberts E, Wu JY (1975b) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371CrossRefPubMed
Zurück zum Zitat Numan R (2000) The behavioral neuroscience of the septal region. Springer, New YorkCrossRef Numan R (2000) The behavioral neuroscience of the septal region. Springer, New YorkCrossRef
Zurück zum Zitat Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368PubMed Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368PubMed
Zurück zum Zitat Panula P, Revuelta AV, Cheney DL, Wu JY, Costa E (1984) An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 222:69–80CrossRefPubMed Panula P, Revuelta AV, Cheney DL, Wu JY, Costa E (1984) An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 222:69–80CrossRefPubMed
Zurück zum Zitat Paxinos G, Franklin KB (2013) The mouse brain in stereotaxic coordinates. Elsevier, San Diego Paxinos G, Franklin KB (2013) The mouse brain in stereotaxic coordinates. Elsevier, San Diego
Zurück zum Zitat Rimvall K, Sheikh SN, Martin DL (1993) Effects of increased gamma-aminobutyric acid levels on GAD, protein and mRNA levels in rat cerebral cortex. J Neurochem 60:714–720CrossRefPubMed Rimvall K, Sheikh SN, Martin DL (1993) Effects of increased gamma-aminobutyric acid levels on GAD, protein and mRNA levels in rat cerebral cortex. J Neurochem 60:714–720CrossRefPubMed
Zurück zum Zitat Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486CrossRefPubMed Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486CrossRefPubMed
Zurück zum Zitat Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195CrossRefPubMed Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195CrossRefPubMed
Zurück zum Zitat Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Rev 46:71–117CrossRefPubMed Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Rev 46:71–117CrossRefPubMed
Zurück zum Zitat Soghomonian JJ, Laprade N (1997) Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of parkinsonian monkeys. Synapse 27:122–132CrossRefPubMed Soghomonian JJ, Laprade N (1997) Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of parkinsonian monkeys. Synapse 27:122–132CrossRefPubMed
Zurück zum Zitat Storm-Mathisen J, Leknes AK, Bore AT et al (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMed Storm-Mathisen J, Leknes AK, Bore AT et al (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMed
Zurück zum Zitat Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655CrossRefPubMed Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655CrossRefPubMed
Zurück zum Zitat Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67–GFP knock-in mouse. J Comp Neurol 467:60–79CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67–GFP knock-in mouse. J Comp Neurol 467:60–79CrossRefPubMed
Zurück zum Zitat Wang X (2014) Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus: a comparison with labeling glutamic acid decarboxylase 67. J Chem Neuroanat 61–62:51–63 Wang X (2014) Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus: a comparison with labeling glutamic acid decarboxylase 67. J Chem Neuroanat 61–62:51–63
Zurück zum Zitat Yuan PQ, Granas C, Kallstrom L et al (1997) Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat. Neuroscience 78:87–97CrossRefPubMed Yuan PQ, Granas C, Kallstrom L et al (1997) Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat. Neuroscience 78:87–97CrossRefPubMed
Zurück zum Zitat Zhao C, Driessen T, Gammie SC (2012) Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 1470:35–44CrossRefPubMedPubMedCentral Zhao C, Driessen T, Gammie SC (2012) Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 1470:35–44CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhao C, Eisinger B, Gammie SC (2013) Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 8:e73750. http://www.plosone.org. Accessed 30 Jan 2014 Zhao C, Eisinger B, Gammie SC (2013) Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 8:e73750. http://​www.​plosone.​org. Accessed 30 Jan 2014
Metadaten
Titel
Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study
verfasst von
Ural Verimli
Umit S. Sehirli
Publikationsdatum
07.12.2015
Verlag
Springer Japan
Erschienen in
Anatomical Science International / Ausgabe 4/2016
Print ISSN: 1447-6959
Elektronische ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-015-0316-8

Weitere Artikel der Ausgabe 4/2016

Anatomical Science International 4/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.