Skip to main content
Erschienen in: Archives of Virology 7/2016

11.04.2016 | Review

Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy

verfasst von: Fakhriedzwan Idris, Siti Hanna Muharram, Suwarni Diah

Erschienen in: Archives of Virology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000–1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host’s cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1–5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host’s carbohydrate receptors through the viral proteins’ N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus’ exploitation of the host’s glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.
Literatur
1.
Zurück zum Zitat Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103PubMedCrossRef Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103PubMedCrossRef
2.
Zurück zum Zitat Oishi K, Saito M, Mapua CA, Natividad FF (2007) Dengue illness: clinical features and pathogenesis. J Infect Chemother 13:125–133PubMedCrossRef Oishi K, Saito M, Mapua CA, Natividad FF (2007) Dengue illness: clinical features and pathogenesis. J Infect Chemother 13:125–133PubMedCrossRef
3.
Zurück zum Zitat Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467PubMedCrossRef Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467PubMedCrossRef
4.
Zurück zum Zitat Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328:745–748PubMedCrossRef Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328:745–748PubMedCrossRef
5.
Zurück zum Zitat OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborio S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E (2011) Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3:114ra128PubMedPubMedCentralCrossRef OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborio S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E (2011) Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3:114ra128PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Noisakran S, Dechtawewat T, Rinkaewkan P, Puttikhunt C, Kanjanahaluethai A, Kasinrerk W, Sittisombut N, Malasit P (2007) Characterization of dengue virus NS1 stably expressed in 293T cell lines. J Virol Methods 142:67–80PubMedCrossRef Noisakran S, Dechtawewat T, Rinkaewkan P, Puttikhunt C, Kanjanahaluethai A, Kasinrerk W, Sittisombut N, Malasit P (2007) Characterization of dengue virus NS1 stably expressed in 293T cell lines. J Virol Methods 142:67–80PubMedCrossRef
7.
Zurück zum Zitat Stevens AJ, Gahan ME, Mahalingam S, Keller PA (2009) The medicinal chemistry of dengue fever. J Med Chem 52:7911–7926PubMedCrossRef Stevens AJ, Gahan ME, Mahalingam S, Keller PA (2009) The medicinal chemistry of dengue fever. J Med Chem 52:7911–7926PubMedCrossRef
8.
Zurück zum Zitat Lindenbach BD, Rich CM (2001) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 991–1041 Lindenbach BD, Rich CM (2001) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 991–1041
9.
Zurück zum Zitat Holden KL, Harris E (2004) Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329:119–133PubMedCrossRef Holden KL, Harris E (2004) Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329:119–133PubMedCrossRef
10.
Zurück zum Zitat Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315PubMedPubMedCentralCrossRef Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419PubMedPubMedCentralCrossRef Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912PubMedPubMedCentralCrossRef Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus. Implications for flavivirus organization, maturation and fusion. Cell 108:717–725PubMedPubMedCentralCrossRef Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus. Implications for flavivirus organization, maturation and fusion. Cell 108:717–725PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Falgout B, Markoff L (1995) Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69:7232–7243PubMedPubMedCentral Falgout B, Markoff L (1995) Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69:7232–7243PubMedPubMedCentral
15.
Zurück zum Zitat Muylaert IR, Chambers TJ, Galler R, Rice CM (1996) Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168PubMedCrossRef Muylaert IR, Chambers TJ, Galler R, Rice CM (1996) Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168PubMedCrossRef
16.
Zurück zum Zitat Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:e183PubMedPubMedCentralCrossRef Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:e183PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Bazan JF, Fletterick RJ (1989) Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639PubMedCrossRef Bazan JF, Fletterick RJ (1989) Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639PubMedCrossRef
19.
Zurück zum Zitat Gorbolenya AE, Donchenko AP, Koonin EV, Blinov VM (1989) N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897CrossRef Gorbolenya AE, Donchenko AP, Koonin EV, Blinov VM (1989) N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897CrossRef
20.
Zurück zum Zitat Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus non-structural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621PubMedPubMedCentral Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus non-structural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621PubMedPubMedCentral
21.
Zurück zum Zitat McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596PubMedCrossRef McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596PubMedCrossRef
22.
Zurück zum Zitat Jao CC, Hedge BG, Gallop JL, Hegde PB, McMahon HT, Haworth IS, Langen R (2010) Roles of amphipathic helices and the bin/amphiphysin/rvs (BAR) domain of endophilin in membrane curvature generation. J Biol Chem 285:20164–20170PubMedPubMedCentralCrossRef Jao CC, Hedge BG, Gallop JL, Hegde PB, McMahon HT, Haworth IS, Langen R (2010) Roles of amphipathic helices and the bin/amphiphysin/rvs (BAR) domain of endophilin in membrane curvature generation. J Biol Chem 285:20164–20170PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768PubMedPubMedCentralCrossRef Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Desprès P, Eglof MP, Canard B (2006) Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 351:145–158PubMedCrossRef Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Desprès P, Eglof MP, Canard B (2006) Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 351:145–158PubMedCrossRef
25.
Zurück zum Zitat Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380PubMedCrossRef Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380PubMedCrossRef
26.
Zurück zum Zitat Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433PubMedCrossRef Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433PubMedCrossRef
27.
Zurück zum Zitat Hammond C, Braakman I, Helenius A (1994) Role of N-linked, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91:913–917PubMedPubMedCentralCrossRef Hammond C, Braakman I, Helenius A (1994) Role of N-linked, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91:913–917PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991PubMedPubMedCentralCrossRef Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231PubMedPubMedCentralCrossRef Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442PubMedCrossRef Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442PubMedCrossRef
31.
Zurück zum Zitat Johnson AJ, Guirakhoo F, Roehrig JT (1994) The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249PubMedCrossRef Johnson AJ, Guirakhoo F, Roehrig JT (1994) The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249PubMedCrossRef
32.
Zurück zum Zitat Ishak H, Takegami T, Kamimura K, Funada H (2001) Comparative sequences of two type 1 dengue virus strains possessing different growth characteristics in vitro. Microbiol Immunol 45:327–331PubMedCrossRef Ishak H, Takegami T, Kamimura K, Funada H (2001) Comparative sequences of two type 1 dengue virus strains possessing different growth characteristics in vitro. Microbiol Immunol 45:327–331PubMedCrossRef
33.
Zurück zum Zitat Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT (1993) Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194:219–223PubMedCrossRef Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT (1993) Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194:219–223PubMedCrossRef
34.
Zurück zum Zitat Kawano H, Rostapshov V, Rosen L, Lai CJ (1993) Genetic determinants of dengue type 4 virus neurovirulence for mice. J Virol 67:6567–6575PubMedPubMedCentral Kawano H, Rostapshov V, Rosen L, Lai CJ (1993) Genetic determinants of dengue type 4 virus neurovirulence for mice. J Virol 67:6567–6575PubMedPubMedCentral
35.
Zurück zum Zitat Sanchez IJ, Ruiz BH (1996) A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77:2541–2545PubMedCrossRef Sanchez IJ, Ruiz BH (1996) A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77:2541–2545PubMedCrossRef
36.
Zurück zum Zitat Chu MC, O’Rourke EJ, Trent DW (1989) Genetic relatedness among structural protein genes of dengue 1 virus strains. J Gen Virol 70:1701–1712PubMedCrossRef Chu MC, O’Rourke EJ, Trent DW (1989) Genetic relatedness among structural protein genes of dengue 1 virus strains. J Gen Virol 70:1701–1712PubMedCrossRef
37.
Zurück zum Zitat Osatomi K, Sumiyoshi H (1990) Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176:643–647PubMedCrossRef Osatomi K, Sumiyoshi H (1990) Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176:643–647PubMedCrossRef
38.
Zurück zum Zitat Deubel V, Kinney RM, Trent DW (1988) Nucleotide sequence and deduced amino-acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology 165:234–244PubMedCrossRef Deubel V, Kinney RM, Trent DW (1988) Nucleotide sequence and deduced amino-acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology 165:234–244PubMedCrossRef
39.
Zurück zum Zitat Zhao B, Mackow E, Buckler-White A, Markoff L, Chanock RM, Lai CJ, Makino Y (1986) Cloning full length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 156:77–88CrossRef Zhao B, Mackow E, Buckler-White A, Markoff L, Chanock RM, Lai CJ, Makino Y (1986) Cloning full length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 156:77–88CrossRef
40.
Zurück zum Zitat Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493PubMedCrossRef Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493PubMedCrossRef
41.
Zurück zum Zitat Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148PubMedPubMedCentralCrossRef Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bryant JE, Calvert AE, Mesesan K, Crabtree MB, Volpe KE, Silengo S, Kinney RM, Huang CYH, Miller BR, Roehrig JT (2007) Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366:415–423PubMedCrossRef Bryant JE, Calvert AE, Mesesan K, Crabtree MB, Volpe KE, Silengo S, Kinney RM, Huang CYH, Miller BR, Roehrig JT (2007) Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366:415–423PubMedCrossRef
43.
Zurück zum Zitat Li L, Lok SM, Yu IM, Zhang Y, Kuhn R, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834PubMedCrossRef Li L, Lok SM, Yu IM, Zhang Y, Kuhn R, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834PubMedCrossRef
44.
Zurück zum Zitat Courageot MP, Frenkiel MP, Dos Santos CD, Deubel V, Després P (2000) α-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572PubMedPubMedCentralCrossRef Courageot MP, Frenkiel MP, Dos Santos CD, Deubel V, Després P (2000) α-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V (1988) Evidence that the mature form of the flavivirus non-structural protein NS1 is a dimer. Virology 162:187–196PubMedCrossRef Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V (1988) Evidence that the mature form of the flavivirus non-structural protein NS1 is a dimer. Virology 162:187–196PubMedCrossRef
46.
Zurück zum Zitat Pryor MJ, Wright PJ (1993) The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus. Virology 194:769–780PubMedCrossRef Pryor MJ, Wright PJ (1993) The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus. Virology 194:769–780PubMedCrossRef
47.
Zurück zum Zitat Pryor MJ, Wright PJ (1994) Glycosylation mutants of dengue virus NS1 protein. J Gen Virol 75:1183–1187PubMedCrossRef Pryor MJ, Wright PJ (1994) Glycosylation mutants of dengue virus NS1 protein. J Gen Virol 75:1183–1187PubMedCrossRef
48.
Zurück zum Zitat Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110PubMedPubMedCentral Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110PubMedPubMedCentral
49.
Zurück zum Zitat Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnam P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253–264PubMedPubMedCentralCrossRef Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnam P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253–264PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867PubMedCrossRef Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867PubMedCrossRef
51.
Zurück zum Zitat Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755PubMedCrossRef Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755PubMedCrossRef
52.
Zurück zum Zitat Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17:465–483PubMedCrossRef Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17:465–483PubMedCrossRef
53.
Zurück zum Zitat Yan A, Lennarz WJ (2005) Unravelling the mechanism of protein N-glycosylation. J Biol Chem 280:3121–3124PubMedCrossRef Yan A, Lennarz WJ (2005) Unravelling the mechanism of protein N-glycosylation. J Biol Chem 280:3121–3124PubMedCrossRef
54.
Zurück zum Zitat Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRef Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRef
55.
Zurück zum Zitat Maccioni HJ, Giraudo CG, Danniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27:629–636PubMedCrossRef Maccioni HJ, Giraudo CG, Danniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27:629–636PubMedCrossRef
56.
Zurück zum Zitat Reiter DM, Frierson JM, Halvorson EE, Kobayashi T, Dermody TS, Stehle T (2011) Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides. PLoS Pathog 7:e1002166PubMedPubMedCentralCrossRef Reiter DM, Frierson JM, Halvorson EE, Kobayashi T, Dermody TS, Stehle T (2011) Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides. PLoS Pathog 7:e1002166PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897PubMedPubMedCentralCrossRef Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23PubMedCrossRef Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23PubMedCrossRef
59.
Zurück zum Zitat Shieh MT, WuDunn D, Montgomery RI, Esko JD, Spearm PG (1992) Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116:1273–1281PubMedCrossRef Shieh MT, WuDunn D, Montgomery RI, Esko JD, Spearm PG (1992) Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116:1273–1281PubMedCrossRef
60.
Zurück zum Zitat Hueffer K, Parrishm CR (2003) Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol 6:392–398PubMedCrossRef Hueffer K, Parrishm CR (2003) Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol 6:392–398PubMedCrossRef
61.
Zurück zum Zitat Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86:4833–4843PubMedPubMedCentralCrossRef Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86:4833–4843PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485:256–259PubMedPubMedCentralCrossRef Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485:256–259PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977PubMedCrossRef Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977PubMedCrossRef
64.
Zurück zum Zitat Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, Altaye M, Pickering LK, Newburg DS, Le Pendu J, Jiang X (2003) Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188:19–31PubMedCrossRef Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, Altaye M, Pickering LK, Newburg DS, Le Pendu J, Jiang X (2003) Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188:19–31PubMedCrossRef
65.
Zurück zum Zitat Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392PubMedCrossRef Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392PubMedCrossRef
66.
Zurück zum Zitat Upanan S, Kuadkitkan A, Smith DR (2008) Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 151:325–328PubMedCrossRef Upanan S, Kuadkitkan A, Smith DR (2008) Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 151:325–328PubMedCrossRef
67.
Zurück zum Zitat Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567PubMedPubMedCentralCrossRef Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25PubMedPubMedCentralCrossRef Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Chen YC, Wang SY, King CC (1999) Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657PubMedPubMedCentral Chen YC, Wang SY, King CC (1999) Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657PubMedPubMedCentral
70.
Zurück zum Zitat Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Desprès P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728PubMedPubMedCentralCrossRef Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Desprès P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedPubMedCentralCrossRef Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871PubMedCrossRef Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871PubMedCrossRef
73.
Zurück zum Zitat Aoki C, Hidari KIPJ, Itonari S, Yamada A, Takahashi N, Kasama T, Hasebe F, Islam MA, Hatano K, Matsuoka K, Taki T, Guo CT, Takahashi T, Sakano Y, Suzuki T, Miyamoto D, Sugita M, Terunuma D, Morita K, Suzuki Y (2006) Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J Biochem 139:607–614PubMedCrossRef Aoki C, Hidari KIPJ, Itonari S, Yamada A, Takahashi N, Kasama T, Hasebe F, Islam MA, Hatano K, Matsuoka K, Taki T, Guo CT, Takahashi T, Sakano Y, Suzuki T, Miyamoto D, Sugita M, Terunuma D, Morita K, Suzuki Y (2006) Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J Biochem 139:607–614PubMedCrossRef
74.
Zurück zum Zitat Wichit S, Jittmittraphap A, Hidari KI, Thaisomboonsuk B, Petmitr S, Aoki C, Itonori S, Morita K, Suzuki T, Suzuki Y, Jampangern W (2011) Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells. Microbiol Immunol 55:135–140PubMedCrossRef Wichit S, Jittmittraphap A, Hidari KI, Thaisomboonsuk B, Petmitr S, Aoki C, Itonori S, Morita K, Suzuki T, Suzuki Y, Jampangern W (2011) Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells. Microbiol Immunol 55:135–140PubMedCrossRef
75.
Zurück zum Zitat Miller JL, Dewet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17PubMedPubMedCentralCrossRef Miller JL, Dewet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656PubMedPubMedCentralCrossRef Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676PubMedCrossRef Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676PubMedCrossRef
78.
Zurück zum Zitat Salas-Benito JS, del Angel RM (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71:7746–7752 Salas-Benito JS, del Angel RM (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71:7746–7752
79.
Zurück zum Zitat Yazi Mendoza M, Salas-Benito JS, Lanz-Mendoza H, Hernández-Martínez S, del Angel RM (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67:76–84PubMed Yazi Mendoza M, Salas-Benito JS, Lanz-Mendoza H, Hernández-Martínez S, del Angel RM (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67:76–84PubMed
80.
Zurück zum Zitat Reyes-del Valle J, del Angel RM (2004) Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116:95–102PubMedCrossRef Reyes-del Valle J, del Angel RM (2004) Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116:95–102PubMedCrossRef
81.
Zurück zum Zitat Okamoto K, Kinoshita H, Parquet Mdel C, Raekiansyah M, Kimura D, Yui K, Islam MA, Hasebe F, Morita K (2012) Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan receptor. J Gen Virol 93:761–770PubMedCrossRef Okamoto K, Kinoshita H, Parquet Mdel C, Raekiansyah M, Kimura D, Yui K, Islam MA, Hasebe F, Morita K (2012) Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan receptor. J Gen Virol 93:761–770PubMedCrossRef
82.
Zurück zum Zitat Griffin CC, Linhardt RJ, Van Gorp CL, Toida T, Hileman RE, Schubert RL, Brown SE (1995) Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res 276:183–197PubMedCrossRef Griffin CC, Linhardt RJ, Van Gorp CL, Toida T, Hileman RE, Schubert RL, Brown SE (1995) Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res 276:183–197PubMedCrossRef
83.
Zurück zum Zitat Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S (2007) Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 196:S237–S246PubMedCrossRef Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S (2007) Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 196:S237–S246PubMedCrossRef
84.
Zurück zum Zitat Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77:4070–4080PubMedPubMedCentralCrossRef Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77:4070–4080PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhiven GC, Middel J, Cornelissen IL, Mottet HS, KewaRahmani VN, Littman DR, Fiqdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1 binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRef Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhiven GC, Middel J, Cornelissen IL, Mottet HS, KewaRahmani VN, Littman DR, Fiqdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1 binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRef
86.
Zurück zum Zitat van Kooyk Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709PubMedCrossRef van Kooyk Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709PubMedCrossRef
87.
88.
Zurück zum Zitat Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, Rey FA, Després P, Arenzana-Seisdedos F, Amara A (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280:23698–23708PubMedCrossRef Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, Rey FA, Després P, Arenzana-Seisdedos F, Amara A (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280:23698–23708PubMedCrossRef
89.
Zurück zum Zitat Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL (1999) Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci USA 96:9792–9796PubMedPubMedCentralCrossRef Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL (1999) Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci USA 96:9792–9796PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Elbein AD (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063PubMed Elbein AD (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063PubMed
91.
Zurück zum Zitat Cenci di Bello I, Fleet G, Namgoong SK, Tadano K, Winchester B (1989) Structure–activity relationship of swainsonine. Inhibition of human α-mannosidases by swainsonine analogues. Biochem J 259:855–861PubMedPubMedCentralCrossRef Cenci di Bello I, Fleet G, Namgoong SK, Tadano K, Winchester B (1989) Structure–activity relationship of swainsonine. Inhibition of human α-mannosidases by swainsonine analogues. Biochem J 259:855–861PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Winchester B, Barker C, Baines S, Jacob GS, Namgoong SK, Fleet G (1990) Inhibition of α-l-fucosidase by derivatives of deoxyfuconojirimycin and deoxymannojirimycin. Biochem J 265:277–282PubMedPubMedCentralCrossRef Winchester B, Barker C, Baines S, Jacob GS, Namgoong SK, Fleet G (1990) Inhibition of α-l-fucosidase by derivatives of deoxyfuconojirimycin and deoxymannojirimycin. Biochem J 265:277–282PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Wu SF, Lee CJ, Liao CL, Dwek RA, Zitzmann N, Lin YL (2002) Antiviral effects of an iminosugar derivative on flavivirus infections. J Virol 76:3596–3604PubMedPubMedCentralCrossRef Wu SF, Lee CJ, Liao CL, Dwek RA, Zitzmann N, Lin YL (2002) Antiviral effects of an iminosugar derivative on flavivirus infections. J Virol 76:3596–3604PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Bertaux C, Daelemans D, Meertens L, Cormier EG, Reinus JF, Peumans WJ, Van Damme EJM, Igarashi Y, Oki T, Schols D, Dragic T, Balzarini J (2007) Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 366:40–50PubMedCrossRef Bertaux C, Daelemans D, Meertens L, Cormier EG, Reinus JF, Peumans WJ, Van Damme EJM, Igarashi Y, Oki T, Schols D, Dragic T, Balzarini J (2007) Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 366:40–50PubMedCrossRef
95.
Zurück zum Zitat François KO, Auwerx J, Schols D, Balzarini J (2008) Simian immunodeficiency virus is susceptible to inhibition by carbohydrate-binding agents in a manner similar to that of HIV: implications for further preclinical drug development. Mol Pharmacol 74:330–337PubMedCrossRef François KO, Auwerx J, Schols D, Balzarini J (2008) Simian immunodeficiency virus is susceptible to inhibition by carbohydrate-binding agents in a manner similar to that of HIV: implications for further preclinical drug development. Mol Pharmacol 74:330–337PubMedCrossRef
96.
Zurück zum Zitat Alen MMF, Kaptein SJF, De Burghgraeve T, Balzarini J, Neyts J, Schols D (2009) Antiviral activity of carbohydrates-binding agents and the role of DC-SIGN in dengue virus infection. Virology 387:67–75PubMedCrossRef Alen MMF, Kaptein SJF, De Burghgraeve T, Balzarini J, Neyts J, Schols D (2009) Antiviral activity of carbohydrates-binding agents and the role of DC-SIGN in dengue virus infection. Virology 387:67–75PubMedCrossRef
97.
Zurück zum Zitat Hung SL, Lee PL, Chen LK, Kao CL, King CC (1999) Analysis of the steps involved in Dengue virus entry into host cells. Virology 257:156–167PubMedCrossRef Hung SL, Lee PL, Chen LK, Kao CL, King CC (1999) Analysis of the steps involved in Dengue virus entry into host cells. Virology 257:156–167PubMedCrossRef
98.
Zurück zum Zitat Ooi LSM, Ho WS, Ngai KLK, Tian L, Chan PKS, Sun SSM, Ooi VEC (2010) Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J Biosci 35:95–103PubMedCrossRef Ooi LSM, Ho WS, Ngai KLK, Tian L, Chan PKS, Sun SSM, Ooi VEC (2010) Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J Biosci 35:95–103PubMedCrossRef
99.
Zurück zum Zitat Gao ZM, Zheng B, Wang WY, Li Q, Yuan QP (2011) Cloning and functional characterization of a GNA-like lectin from Chinese narcissus (Narcissus tazetta var. Chinensis Roem). Physiol Plant 142:193–204PubMedCrossRef Gao ZM, Zheng B, Wang WY, Li Q, Yuan QP (2011) Cloning and functional characterization of a GNA-like lectin from Chinese narcissus (Narcissus tazetta var. Chinensis Roem). Physiol Plant 142:193–204PubMedCrossRef
100.
Zurück zum Zitat Balzarini J, Van Herrewege Y, Vermeire K, Vanham G, Schols D (2007) Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes. Mol Pharmacol 71:3–11PubMedCrossRef Balzarini J, Van Herrewege Y, Vermeire K, Vanham G, Schols D (2007) Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes. Mol Pharmacol 71:3–11PubMedCrossRef
101.
Zurück zum Zitat Balzarini J, Neyts J, Schols D, Hosoya M, van Damme E, Peumans W, de Clercq E (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n -specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antivir Res 18:191–207PubMedCrossRef Balzarini J, Neyts J, Schols D, Hosoya M, van Damme E, Peumans W, de Clercq E (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n -specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antivir Res 18:191–207PubMedCrossRef
102.
Zurück zum Zitat Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, Liu J, van Damme E, Balzarini J, Bao J (2007) A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J Biochem Mol Biol 40:358–367PubMedCrossRef Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, Liu J, van Damme E, Balzarini J, Bao J (2007) A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J Biochem Mol Biol 40:358–367PubMedCrossRef
103.
Zurück zum Zitat Ooi LSM, Sun SSM, Wang H, Ooi VEC (2004) New mannose-binding lectin isolated from the rhizome of sarsaparilla Smilax glabra Roxb. (Liliaceae). J Agric Food Chem 52:6091–6095PubMedCrossRef Ooi LSM, Sun SSM, Wang H, Ooi VEC (2004) New mannose-binding lectin isolated from the rhizome of sarsaparilla Smilax glabra Roxb. (Liliaceae). J Agric Food Chem 52:6091–6095PubMedCrossRef
104.
Zurück zum Zitat Favacho ARM, Cintra EA, Coelho LCBB, Linhares MIS (2007) In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals 35:189–194PubMedCrossRef Favacho ARM, Cintra EA, Coelho LCBB, Linhares MIS (2007) In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals 35:189–194PubMedCrossRef
105.
Zurück zum Zitat An J, Liu J, Wu C, Li J, Dai L, van Damme E, Balzarini J, de Clercq E, Chen F, Bao J (2006) Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cystonema Hua. Acta Biochim Biophys Sin 38:70–78PubMedCrossRef An J, Liu J, Wu C, Li J, Dai L, van Damme E, Balzarini J, de Clercq E, Chen F, Bao J (2006) Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cystonema Hua. Acta Biochim Biophys Sin 38:70–78PubMedCrossRef
106.
Zurück zum Zitat Swanson MD, Winter HC, Goldstein IJ, Markovitz DM (2010) A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 285:8646–8655PubMedPubMedCentralCrossRef Swanson MD, Winter HC, Goldstein IJ, Markovitz DM (2010) A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 285:8646–8655PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Van der Meer FJUM, de Haan CAM, Schuurman NMP, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J, Egberink HF (2007) The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 60:741–749PubMedCrossRef Van der Meer FJUM, de Haan CAM, Schuurman NMP, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J, Egberink HF (2007) The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 60:741–749PubMedCrossRef
108.
Zurück zum Zitat Wetprasit N, Threesangsri W, Klamklai N, Chulavatnatol M (2000) Jackfruit lectin: properties of mitogenicity and the inhibition of herpesvirus infection. Jpn J Infect Dis 53:156–161PubMed Wetprasit N, Threesangsri W, Klamklai N, Chulavatnatol M (2000) Jackfruit lectin: properties of mitogenicity and the inhibition of herpesvirus infection. Jpn J Infect Dis 53:156–161PubMed
109.
Zurück zum Zitat Alen MMF, De Burghgraeve T, Kaptein SJF, Balzarini J, Neyts J, Schols D (2011) Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PLoS One 6:e21658PubMedPubMedCentralCrossRef Alen MMF, De Burghgraeve T, Kaptein SJF, Balzarini J, Neyts J, Schols D (2011) Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PLoS One 6:e21658PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158:1445–1459PubMedCrossRef Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158:1445–1459PubMedCrossRef
111.
Zurück zum Zitat Mason P (1989) Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–364PubMedCrossRef Mason P (1989) Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–364PubMedCrossRef
112.
Zurück zum Zitat Striegler S, Dittel M (2003) A sugar discriminating binuclear copper (II) complex. J Am Chem Soc 125:11518–11524PubMedCrossRef Striegler S, Dittel M (2003) A sugar discriminating binuclear copper (II) complex. J Am Chem Soc 125:11518–11524PubMedCrossRef
113.
Zurück zum Zitat Mazik M, Cavqa H, Jones PG (2005) Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein–carbohydrate complexes. J Am Chem Soc 127:9045–9052PubMedCrossRef Mazik M, Cavqa H, Jones PG (2005) Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein–carbohydrate complexes. J Am Chem Soc 127:9045–9052PubMedCrossRef
Metadaten
Titel
Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy
verfasst von
Fakhriedzwan Idris
Siti Hanna Muharram
Suwarni Diah
Publikationsdatum
11.04.2016
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 7/2016
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-016-2855-2

Weitere Artikel der Ausgabe 7/2016

Archives of Virology 7/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.