Skip to main content
Erschienen in: Medical Oncology 1/2014

01.01.2014 | Review Article

Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor

verfasst von: Alejandro Francisco-Cruz, Miguel Aguilar-Santelises, Octavio Ramos-Espinosa, Dulce Mata-Espinosa, Brenda Marquina-Castillo, Jorge Barrios-Payan, Rogelio Hernandez-Pando

Erschienen in: Medical Oncology | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Granulocyte–macrophage colony-stimulating factor (GM-CSF) is often used to treat leucopenia. Other haematopoietins may increase the number of circulating leucocytes with higher efficiency, but GM-CSF has additional effects that may be far more relevant than its haematopoietic activity. GM-CSF induces differentiation, proliferation and activation of macrophages and dendritic cells which are necessary for the subsequent T helper cell type 1 and cytotoxic T lymphocyte activation. GM-CSF haematopoietic and non-haematopoietic functions have pro-inflammatory and immune regulatory potential to treat a variety of autoimmune diseases and tumours. On the other hand, GM-CSF deficiency leads to various immune dysfunctions and the current utilization of GM-CSF as haematopoietic factor might be an accurate but very incomplete indication for a cytokine with vast clinical potential.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Metcalf D. Hematopoietic cytokines. Blood. 2008;111:485–91.PubMed Metcalf D. Hematopoietic cytokines. Blood. 2008;111:485–91.PubMed
2.
Zurück zum Zitat Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.PubMed Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.PubMed
3.
Zurück zum Zitat Sheridan JW, Metcalf D. A low molecular weight factor in lung-conditioned medium stimulating granulocyte and monocyte colony formation in vitro. J Cell Physiol. 1973;81:11–23.PubMed Sheridan JW, Metcalf D. A low molecular weight factor in lung-conditioned medium stimulating granulocyte and monocyte colony formation in vitro. J Cell Physiol. 1973;81:11–23.PubMed
4.
Zurück zum Zitat Burgess AW, Camakaris J, Metcalf D. Purification and properties of colony-stimulating factor from mouse lung–conditioned medium. J Biol Chem. 1977;252:1998–2003.PubMed Burgess AW, Camakaris J, Metcalf D. Purification and properties of colony-stimulating factor from mouse lung–conditioned medium. J Biol Chem. 1977;252:1998–2003.PubMed
5.
Zurück zum Zitat Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44.PubMed Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44.PubMed
6.
Zurück zum Zitat Lane TA, Law P, Maruyama M, et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood. 1995;85:275–82.PubMed Lane TA, Law P, Maruyama M, et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood. 1995;85:275–82.PubMed
7.
Zurück zum Zitat Armitage JO. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1998;92:4491–508.PubMed Armitage JO. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1998;92:4491–508.PubMed
8.
Zurück zum Zitat Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 2008;213:859–70.PubMed Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 2008;213:859–70.PubMed
9.
Zurück zum Zitat Fukuzawa H, Sawada M, Kayahara T, et al. Identification of GM-CSF in Paneth cells using single-cell RT-PCR. Biochem Biophys Res Commun. 2003;312:897–902.PubMed Fukuzawa H, Sawada M, Kayahara T, et al. Identification of GM-CSF in Paneth cells using single-cell RT-PCR. Biochem Biophys Res Commun. 2003;312:897–902.PubMed
10.
Zurück zum Zitat Hamilton JA, Anderson GP. GM-CSF biology. Growth Factors. 2004;22:225–31.PubMed Hamilton JA, Anderson GP. GM-CSF biology. Growth Factors. 2004;22:225–31.PubMed
11.
Zurück zum Zitat Xing Z, Braciak T, Ohkawara Y, et al. Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation. J Leukoc Biol. 1996;59:481–8.PubMed Xing Z, Braciak T, Ohkawara Y, et al. Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation. J Leukoc Biol. 1996;59:481–8.PubMed
12.
Zurück zum Zitat de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal. 1998;10:619–28.PubMed de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal. 1998;10:619–28.PubMed
13.
Zurück zum Zitat Hansen G, Hercus TR, McClure BJ, et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell. 2008;134:496–507.PubMed Hansen G, Hercus TR, McClure BJ, et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell. 2008;134:496–507.PubMed
14.
Zurück zum Zitat Matsuguchi T, Zhao Y, Lilly M, et al. The cytoplasmic domain of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem. 1997;272:17450–9.PubMed Matsuguchi T, Zhao Y, Lilly M, et al. The cytoplasmic domain of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem. 1997;272:17450–9.PubMed
15.
Zurück zum Zitat McClure BJ, Hercus TR, Cambareri BA, et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood. 2003;101:1308–15.PubMed McClure BJ, Hercus TR, Cambareri BA, et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood. 2003;101:1308–15.PubMed
16.
Zurück zum Zitat Sawada M, Itoh Y, Suzumura A, et al. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett. 1993;160:131–4.PubMed Sawada M, Itoh Y, Suzumura A, et al. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett. 1993;160:131–4.PubMed
17.
Zurück zum Zitat Carr PD, Gustin SE, Church AP, et al. Structure of the complete extracellular domain of the common subunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell. 2001;104:291–300.PubMed Carr PD, Gustin SE, Church AP, et al. Structure of the complete extracellular domain of the common subunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell. 2001;104:291–300.PubMed
18.
Zurück zum Zitat McClure BJ, Hercus TR, Cambareri BA, et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood. 2003;101:1308–15.PubMed McClure BJ, Hercus TR, Cambareri BA, et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood. 2003;101:1308–15.PubMed
19.
Zurück zum Zitat Hansen G, Hercus TR, Xu Y, et al. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:711–4.PubMedCentralPubMed Hansen G, Hercus TR, Xu Y, et al. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:711–4.PubMedCentralPubMed
20.
Zurück zum Zitat Choi JK, Kim KH, Park H, et al. Granulocyte macrophage-colony stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis. 2011;16:127–34.PubMed Choi JK, Kim KH, Park H, et al. Granulocyte macrophage-colony stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis. 2011;16:127–34.PubMed
21.
Zurück zum Zitat O’Mahony DS, Pham U, Iyer R, et al. Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages. Int J Med Sci. 2008;5:1–8.PubMedCentralPubMed O’Mahony DS, Pham U, Iyer R, et al. Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages. Int J Med Sci. 2008;5:1–8.PubMedCentralPubMed
22.
Zurück zum Zitat Tanimoto A, Murata Y, Wang KY, et al. Monocyte chemoattractant protein-1 expression is enhanced by granulocyte-macrophage colony-stimulating factor via Jak2-Stat5 signalling and inhibited by atorvastatin in human monocytic U937 cells. J Biol Chem. 2008;283:4643–51.PubMed Tanimoto A, Murata Y, Wang KY, et al. Monocyte chemoattractant protein-1 expression is enhanced by granulocyte-macrophage colony-stimulating factor via Jak2-Stat5 signalling and inhibited by atorvastatin in human monocytic U937 cells. J Biol Chem. 2008;283:4643–51.PubMed
23.
Zurück zum Zitat Liontos LM, Dissanayake D, Ohashi PS, et al. The Src-like adaptor protein regulates GM-CSFR signalling and monocytic dendritic cell maturation. J Immunol. 2011;186:1923–33.PubMed Liontos LM, Dissanayake D, Ohashi PS, et al. The Src-like adaptor protein regulates GM-CSFR signalling and monocytic dendritic cell maturation. J Immunol. 2011;186:1923–33.PubMed
24.
Zurück zum Zitat Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signalling the other. J Exp Med. 2000;192:1707–18.PubMedCentralPubMed Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signalling the other. J Exp Med. 2000;192:1707–18.PubMedCentralPubMed
25.
Zurück zum Zitat Chen J, Cárcamo JM, Golde DW. The alpha subunit of the granulocyte-macrophage colony-stimulating factor receptor interacts with c-Kit and inhibits c-Kit signalling. J Biol Chem. 2006;281:22421–6.PubMed Chen J, Cárcamo JM, Golde DW. The alpha subunit of the granulocyte-macrophage colony-stimulating factor receptor interacts with c-Kit and inhibits c-Kit signalling. J Biol Chem. 2006;281:22421–6.PubMed
26.
Zurück zum Zitat Lilly MB, Zemskova M, Frankel AE, et al. Distinct domains of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit mediate activation of Jak/Stat signalling and differentiation. Blood. 2001;97:1662–70.PubMed Lilly MB, Zemskova M, Frankel AE, et al. Distinct domains of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit mediate activation of Jak/Stat signalling and differentiation. Blood. 2001;97:1662–70.PubMed
27.
Zurück zum Zitat Crosier KE, Wong GG, Mathey-Prevot B, et al. A functional isoform of the human granulocyte/macrophage colony-stimulating factor receptor has an unusual cytoplasmic domain. Proc Natl Acad Sci USA. 1991;88:7744–8.PubMed Crosier KE, Wong GG, Mathey-Prevot B, et al. A functional isoform of the human granulocyte/macrophage colony-stimulating factor receptor has an unusual cytoplasmic domain. Proc Natl Acad Sci USA. 1991;88:7744–8.PubMed
28.
Zurück zum Zitat Raines MA, Liu L, Quan SG, et al. Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor. Proc Natl Acad Sci USA. 1991;88:8203–7.PubMed Raines MA, Liu L, Quan SG, et al. Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor. Proc Natl Acad Sci USA. 1991;88:8203–7.PubMed
30.
Zurück zum Zitat Jiang D, Schwarz H. Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One. 2010;5:e15565.PubMedCentralPubMed Jiang D, Schwarz H. Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One. 2010;5:e15565.PubMedCentralPubMed
31.
Zurück zum Zitat Crawford J, Armitage J, Balducci L, et al. Myeloid growth factors. J Natl Compr Canc Netw. 2009;7:64–83.PubMed Crawford J, Armitage J, Balducci L, et al. Myeloid growth factors. J Natl Compr Canc Netw. 2009;7:64–83.PubMed
32.
Zurück zum Zitat Kelsen JR, Rosh J, Heyman M, et al. Phase I trial of sargramostim in pediatric Crohn’s disease. Inflamm Bowel Dis. 2010;16:1203–8.PubMed Kelsen JR, Rosh J, Heyman M, et al. Phase I trial of sargramostim in pediatric Crohn’s disease. Inflamm Bowel Dis. 2010;16:1203–8.PubMed
34.
Zurück zum Zitat Martinez-Moczygemba M, Doan ML, Elidemir O, et al. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFR{alpha} gene in the X chromosome pseudoautosomal region 1. J Exp Med. 2008;205:2711–6.PubMedCentralPubMed Martinez-Moczygemba M, Doan ML, Elidemir O, et al. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFR{alpha} gene in the X chromosome pseudoautosomal region 1. J Exp Med. 2008;205:2711–6.PubMedCentralPubMed
35.
Zurück zum Zitat Hamilton JA, Whitty GA, Stanton H, et al. Effects of macrophage-colony stimulating factor on human monocytes: induction of expression of urokinase-type plasminogen activator, but not of secreted prostaglandin E2, interleukin-6, interleukin-1, or tumour necrosis factor-alpha. J Leukoc Biol. 1993;53:707–14.PubMed Hamilton JA, Whitty GA, Stanton H, et al. Effects of macrophage-colony stimulating factor on human monocytes: induction of expression of urokinase-type plasminogen activator, but not of secreted prostaglandin E2, interleukin-6, interleukin-1, or tumour necrosis factor-alpha. J Leukoc Biol. 1993;53:707–14.PubMed
36.
Zurück zum Zitat Takahashi GW, Andrews DF 3rd, Lilly MB, et al. Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 on interleukin-8 production by human neutrophils and monocytes. Blood. 1993;81:357–64.PubMed Takahashi GW, Andrews DF 3rd, Lilly MB, et al. Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 on interleukin-8 production by human neutrophils and monocytes. Blood. 1993;81:357–64.PubMed
37.
Zurück zum Zitat Selgas R, Fernández de Castro M, Jiménez C, Selgas R, et al. Immunomodulation of peritoneal macrophages by granulocyte-macrophage colony-stimulating factor in humans. Kidney Int. 1996;50:2070–8.PubMed Selgas R, Fernández de Castro M, Jiménez C, Selgas R, et al. Immunomodulation of peritoneal macrophages by granulocyte-macrophage colony-stimulating factor in humans. Kidney Int. 1996;50:2070–8.PubMed
38.
Zurück zum Zitat Hart PH, Whitty GA, Piccoli DS, et al. Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity. J Immunol. 1988;141:1516–21.PubMed Hart PH, Whitty GA, Piccoli DS, et al. Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity. J Immunol. 1988;141:1516–21.PubMed
39.
Zurück zum Zitat Hazenberg BP, Van Leeuwen MA, Van Rijswijk MH, et al. Correction of granulocytopenia in Felty’s syndrome by granulocyte-macrophage colony-stimulating factor. Simultaneous induction of interleukin-6 release and flare-up of the arthritis. Blood. 1989;74:2769–70.PubMed Hazenberg BP, Van Leeuwen MA, Van Rijswijk MH, et al. Correction of granulocytopenia in Felty’s syndrome by granulocyte-macrophage colony-stimulating factor. Simultaneous induction of interleukin-6 release and flare-up of the arthritis. Blood. 1989;74:2769–70.PubMed
40.
Zurück zum Zitat de Vries EG, Willemse PH, Biesma B, et al. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991;338:517–8.PubMed de Vries EG, Willemse PH, Biesma B, et al. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991;338:517–8.PubMed
41.
Zurück zum Zitat Bischof RJ, Zafiropoulos D, Hamilton JA, et al. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin Exp Immunol. 2000;119:361–7.PubMedCentralPubMed Bischof RJ, Zafiropoulos D, Hamilton JA, et al. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin Exp Immunol. 2000;119:361–7.PubMedCentralPubMed
42.
Zurück zum Zitat Campbell IK, Bendele A, Smith DA, et al. Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice. Ann Rheum Dis. 1997;56:364–8.PubMed Campbell IK, Bendele A, Smith DA, et al. Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice. Ann Rheum Dis. 1997;56:364–8.PubMed
43.
Zurück zum Zitat Burmester GR, Weinblatt ME, McInnes IB, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis. 2013;72:1445–52.PubMedCentralPubMed Burmester GR, Weinblatt ME, McInnes IB, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis. 2013;72:1445–52.PubMedCentralPubMed
44.
Zurück zum Zitat Mudzinski SP, Christian TP, Guo TL, et al. Expression of HLA-DR (major histocompatibility complex class II) on neutrophils from patients treated with granulocyte-macrophage colony-stimulating factor for mobilization of stem cells. Blood. 1995;86:2452–3.PubMed Mudzinski SP, Christian TP, Guo TL, et al. Expression of HLA-DR (major histocompatibility complex class II) on neutrophils from patients treated with granulocyte-macrophage colony-stimulating factor for mobilization of stem cells. Blood. 1995;86:2452–3.PubMed
45.
Zurück zum Zitat Fanger NA, Liu C, Guyre PM, et al. Activation of human T cells by major histocompatibility complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid. Blood. 1997;89:4128–35.PubMed Fanger NA, Liu C, Guyre PM, et al. Activation of human T cells by major histocompatibility complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid. Blood. 1997;89:4128–35.PubMed
46.
Zurück zum Zitat Herold S, Mayer K, Lohmeyer J. Acute lung injury. How macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol. 2001;2:6. Herold S, Mayer K, Lohmeyer J. Acute lung injury. How macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol. 2001;2:6.
47.
Zurück zum Zitat Cakarova L, Marsh LM, Wilhelm J, et al. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med. 2009;180:521–32.PubMed Cakarova L, Marsh LM, Wilhelm J, et al. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med. 2009;180:521–32.PubMed
48.
Zurück zum Zitat Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.PubMed Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.PubMed
49.
Zurück zum Zitat Miah MA, Yoon CH, Kim J, et al. CISH is induced during DC development and regulates DC-mediated CTL activation. Eur J Immunol. 2012;42:58–68.PubMed Miah MA, Yoon CH, Kim J, et al. CISH is induced during DC development and regulates DC-mediated CTL activation. Eur J Immunol. 2012;42:58–68.PubMed
50.
Zurück zum Zitat Hornell TM, Beresford GW, Bushey A, et al. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol. 2003;171:2374–83.PubMed Hornell TM, Beresford GW, Bushey A, et al. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol. 2003;171:2374–83.PubMed
51.
Zurück zum Zitat McCormick S, Santosuosso M, Zhang XZ, et al. Manipulation of dendritic cells for host defence against intracellular infections. Biochem Soc Trans. 2006;34:283–6.PubMed McCormick S, Santosuosso M, Zhang XZ, et al. Manipulation of dendritic cells for host defence against intracellular infections. Biochem Soc Trans. 2006;34:283–6.PubMed
52.
Zurück zum Zitat Moldenhauer LM, Keenihan SN, Hayball JD, et al. GM-CSF is an essential regulator of T cell activation competence in uterine dendritic cells during early pregnancy in mice. J Immunol. 2010;185:7085–96.PubMed Moldenhauer LM, Keenihan SN, Hayball JD, et al. GM-CSF is an essential regulator of T cell activation competence in uterine dendritic cells during early pregnancy in mice. J Immunol. 2010;185:7085–96.PubMed
53.
Zurück zum Zitat Hesske L, Vincenzetti C, Heikenwalder M, et al. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain. 2010;133(Pt 6):1637–54.PubMed Hesske L, Vincenzetti C, Heikenwalder M, et al. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain. 2010;133(Pt 6):1637–54.PubMed
54.
Zurück zum Zitat Sonderegger I, Iezzi G, Maier R, et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med. 2008;205:2281–94.PubMedCentralPubMed Sonderegger I, Iezzi G, Maier R, et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med. 2008;205:2281–94.PubMedCentralPubMed
55.
Zurück zum Zitat Biondo M, Nasa Z, Marshall A, Toh BH, Alderuccio F. Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates autoimmunity. J Immunol. 2001;166(3):2090–9.PubMed Biondo M, Nasa Z, Marshall A, Toh BH, Alderuccio F. Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates autoimmunity. J Immunol. 2001;166(3):2090–9.PubMed
56.
Zurück zum Zitat Kim DH, Sandoval D, Reed J, et al. The role of GM-CSF in adipose tissue inflammation. Am J Physiol Endocrinol Metab. 2008;295:E1038–46.PubMed Kim DH, Sandoval D, Reed J, et al. The role of GM-CSF in adipose tissue inflammation. Am J Physiol Endocrinol Metab. 2008;295:E1038–46.PubMed
57.
Zurück zum Zitat Exley MA, Koziel MJ. To be or not to be NKT: natural killer T cells in the liver. Hepatology. 2004;40:1033–40.PubMed Exley MA, Koziel MJ. To be or not to be NKT: natural killer T cells in the liver. Hepatology. 2004;40:1033–40.PubMed
58.
Zurück zum Zitat Brochériou I, Maouche S, Durand H, et al. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis. 2011;214:316–24.PubMed Brochériou I, Maouche S, Durand H, et al. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis. 2011;214:316–24.PubMed
59.
Zurück zum Zitat Saitoh T, Kishida H, Tsukada Y, et al. Clinical significance of increased plasma concentration of macrophage colony-stimulating factor in patients with angina pectoris. J Am Coll Cardiol. 2000;35:655–65.PubMed Saitoh T, Kishida H, Tsukada Y, et al. Clinical significance of increased plasma concentration of macrophage colony-stimulating factor in patients with angina pectoris. J Am Coll Cardiol. 2000;35:655–65.PubMed
60.
Zurück zum Zitat Oren H, Erbay AR, Balci M, et al. Role of novel biomarkers of inflammation in patients with stable coronary heart disease. Angiology. 2007;58:148–55.PubMed Oren H, Erbay AR, Balci M, et al. Role of novel biomarkers of inflammation in patients with stable coronary heart disease. Angiology. 2007;58:148–55.PubMed
61.
Zurück zum Zitat Kellar RS, Lancaster JJ, Thai HM, et al. Antibody to granulocyte-macrophage colony-stimulating factor reduces the number of activated tissue macrophages and improves left ventricular function following myocardial infarction in a rat coronary-artery ligation model. J Cardiovasc Pharmacol. 2011;57:568–74.PubMed Kellar RS, Lancaster JJ, Thai HM, et al. Antibody to granulocyte-macrophage colony-stimulating factor reduces the number of activated tissue macrophages and improves left ventricular function following myocardial infarction in a rat coronary-artery ligation model. J Cardiovasc Pharmacol. 2011;57:568–74.PubMed
62.
Zurück zum Zitat Sugiyama Y, Yagita Y, Oyama N, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke. 2011;42:770–5.PubMed Sugiyama Y, Yagita Y, Oyama N, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke. 2011;42:770–5.PubMed
63.
Zurück zum Zitat Tu J, Karasavvas N, Heaney ML, et al. Molecular characterization of a granulocyte macrophage-colony-stimulating factor receptor alpha subunit-associated protein. GRAP Blood. 2000;96:794–9. Tu J, Karasavvas N, Heaney ML, et al. Molecular characterization of a granulocyte macrophage-colony-stimulating factor receptor alpha subunit-associated protein. GRAP Blood. 2000;96:794–9.
64.
Zurück zum Zitat Stösser S, Schweizerhof M, Kuner R. Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J Mol Med. 2011;89:321–9.PubMedCentralPubMed Stösser S, Schweizerhof M, Kuner R. Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J Mol Med. 2011;89:321–9.PubMedCentralPubMed
65.
Zurück zum Zitat Ding DX, Rivas CI, Heaney ML, et al. The alpha subunit of the human granulocyte-macrophage colony-stimulating factor receptor signals for glucose transport via a phosphorylation-independent pathway. Proc Natl Acad Sci USA. 1994;91:2537–41.PubMed Ding DX, Rivas CI, Heaney ML, et al. The alpha subunit of the human granulocyte-macrophage colony-stimulating factor receptor signals for glucose transport via a phosphorylation-independent pathway. Proc Natl Acad Sci USA. 1994;91:2537–41.PubMed
66.
Zurück zum Zitat Vadhan-Raj S, Keating M, LeMaistre A, et al. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med. 1987;317:1545–52.PubMed Vadhan-Raj S, Keating M, LeMaistre A, et al. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med. 1987;317:1545–52.PubMed
67.
Zurück zum Zitat Schweizerhof M, Stösser S, Kurejova M, et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat Med. 2009;15:802–7.PubMed Schweizerhof M, Stösser S, Kurejova M, et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat Med. 2009;15:802–7.PubMed
68.
Zurück zum Zitat Khaled YS, Ammori BJ, Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol. 2013;91:493–502.PubMed Khaled YS, Ammori BJ, Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol. 2013;91:493–502.PubMed
69.
Zurück zum Zitat Zhang Y, Cheng S, Zhang M, et al. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One. 2013;8:e76147.PubMedCentralPubMed Zhang Y, Cheng S, Zhang M, et al. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One. 2013;8:e76147.PubMedCentralPubMed
70.
71.
Zurück zum Zitat Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:948098.PubMedCentralPubMed Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:948098.PubMedCentralPubMed
72.
Zurück zum Zitat Egea L, Hirata Y, Kagnoff MF. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev Gastroenterol Hepatol. 2010;4:723–31.PubMedCentralPubMed Egea L, Hirata Y, Kagnoff MF. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev Gastroenterol Hepatol. 2010;4:723–31.PubMedCentralPubMed
73.
Zurück zum Zitat Hirata Y, Egea L, Dann SM, et al. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe. 2010;7:151–63.PubMedCentralPubMed Hirata Y, Egea L, Dann SM, et al. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe. 2010;7:151–63.PubMedCentralPubMed
74.
Zurück zum Zitat Brosbøl-Ravnborg A, Hvas CL, Agnholt J, et al. Toll-like receptor-induced granulocyte-macrophage colony-stimulating factor secretion is impaired in Crohn’s disease by nucleotide oligomerization domain 2-dependent and -independent pathways. Clin Exp Immunol. 2009;155:487–95.PubMedCentralPubMed Brosbøl-Ravnborg A, Hvas CL, Agnholt J, et al. Toll-like receptor-induced granulocyte-macrophage colony-stimulating factor secretion is impaired in Crohn’s disease by nucleotide oligomerization domain 2-dependent and -independent pathways. Clin Exp Immunol. 2009;155:487–95.PubMedCentralPubMed
75.
Zurück zum Zitat Korzenik JR, Dieckgraefe BK, Valentine JF, et al. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352:2193–201.PubMed Korzenik JR, Dieckgraefe BK, Valentine JF, et al. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352:2193–201.PubMed
76.
Zurück zum Zitat Valentine JF, Fedorak RN, Feagan B, et al. Steroid-sparing properties of sargramostim in patients with corticosteroid-dependent Crohn’s disease: a randomised, double-blind, placebo-controlled, phase 2 study. Gut. 2009;58:1354–62.PubMed Valentine JF, Fedorak RN, Feagan B, et al. Steroid-sparing properties of sargramostim in patients with corticosteroid-dependent Crohn’s disease: a randomised, double-blind, placebo-controlled, phase 2 study. Gut. 2009;58:1354–62.PubMed
77.
Zurück zum Zitat Tazawa R, Trapnell BC, Inoue Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181:1345–54.PubMed Tazawa R, Trapnell BC, Inoue Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181:1345–54.PubMed
78.
Zurück zum Zitat Kleff V, Sorg UR, Bury C, et al. Gene therapy of beta(c)-deficient pulmonary alveolar proteinosis (beta(c)-PAP): studies in a murine in vivo model. Mol Ther. 2008;16:757–64.PubMed Kleff V, Sorg UR, Bury C, et al. Gene therapy of beta(c)-deficient pulmonary alveolar proteinosis (beta(c)-PAP): studies in a murine in vivo model. Mol Ther. 2008;16:757–64.PubMed
79.
Zurück zum Zitat Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670–9.PubMed Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670–9.PubMed
80.
Zurück zum Zitat Olivares J, Kumar P, Yu Y, et al. Phase I trial of TGF-{beta}2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clin Cancer Res. 2011;17:183–92.PubMed Olivares J, Kumar P, Yu Y, et al. Phase I trial of TGF-{beta}2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clin Cancer Res. 2011;17:183–92.PubMed
81.
Zurück zum Zitat Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol. 2008;3:S164–70.PubMed Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol. 2008;3:S164–70.PubMed
82.
Zurück zum Zitat Holt GE, Disis ML. Immune modulation as a therapeutic strategy for non-small-cell lung cancer. Clin Lung Cancer. 2009;9:S13–9. Holt GE, Disis ML. Immune modulation as a therapeutic strategy for non-small-cell lung cancer. Clin Lung Cancer. 2009;9:S13–9.
83.
Zurück zum Zitat Staff C, Mozaffari F, Haller BK, et al. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine. 2011;29:6817–22.PubMed Staff C, Mozaffari F, Haller BK, et al. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine. 2011;29:6817–22.PubMed
84.
Zurück zum Zitat Garcia JA, Mekhail T, Elson P, et al. Phase I/II trial of subcutaneous interleukin-2, granulocyte-macrophage colony-stimulating factor and interferon-α in patients with metastatic renal cell carcinoma. BJU Int. 2012;109:63–9.PubMed Garcia JA, Mekhail T, Elson P, et al. Phase I/II trial of subcutaneous interleukin-2, granulocyte-macrophage colony-stimulating factor and interferon-α in patients with metastatic renal cell carcinoma. BJU Int. 2012;109:63–9.PubMed
85.
Zurück zum Zitat Lutz E, Yeo CJ, Lillemoe KD, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253:328–35.PubMedCentralPubMed Lutz E, Yeo CJ, Lillemoe KD, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253:328–35.PubMedCentralPubMed
86.
Zurück zum Zitat Wang L, Qi X, Sun Y, et al. Adenovirus-mediated combined P16 gene and GM-CSF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther. 2002;9:819–24.PubMed Wang L, Qi X, Sun Y, et al. Adenovirus-mediated combined P16 gene and GM-CSF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther. 2002;9:819–24.PubMed
87.
Zurück zum Zitat Dranoff G, Crawford AD, Sadelain M, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science. 1994;264:713–6.PubMed Dranoff G, Crawford AD, Sadelain M, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science. 1994;264:713–6.PubMed
88.
Zurück zum Zitat Sun X, Hodge LM, Jones HP, et al. Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine. 2002;20:1466–74.PubMed Sun X, Hodge LM, Jones HP, et al. Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine. 2002;20:1466–74.PubMed
89.
Zurück zum Zitat Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res. 2011;52:646–54.PubMed Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res. 2011;52:646–54.PubMed
90.
Zurück zum Zitat Roilides E, Blake C, Holmes A, et al. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol. 1996;34:63–9.PubMed Roilides E, Blake C, Holmes A, et al. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol. 1996;34:63–9.PubMed
91.
Zurück zum Zitat Kowanko IC, Ferrante A, Harvey DP, et al. Granulocyte-macrophage colony-stimulating factor augments neutrophil killing of Torulopsis glabrata and stimulates neutrophil respiratory burst and degranulation. Clin Exp Immunol. 1991;83:225–30.PubMedCentralPubMed Kowanko IC, Ferrante A, Harvey DP, et al. Granulocyte-macrophage colony-stimulating factor augments neutrophil killing of Torulopsis glabrata and stimulates neutrophil respiratory burst and degranulation. Clin Exp Immunol. 1991;83:225–30.PubMedCentralPubMed
92.
Zurück zum Zitat Newman SL, Gootee L. Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histoplasma capsulatum yeasts. Infect Immun. 1992;60:4593–7.PubMedCentralPubMed Newman SL, Gootee L. Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histoplasma capsulatum yeasts. Infect Immun. 1992;60:4593–7.PubMedCentralPubMed
93.
Zurück zum Zitat Roilides E, Mertins S, Eddy J, et al. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990;117:531–40.PubMed Roilides E, Mertins S, Eddy J, et al. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990;117:531–40.PubMed
94.
Zurück zum Zitat Page AV, Liles WC. Colony-stimulating factors in the prevention and management of infectious diseases. Infect Dis Clin North Am. 2011;25:803–17.PubMed Page AV, Liles WC. Colony-stimulating factors in the prevention and management of infectious diseases. Infect Dis Clin North Am. 2011;25:803–17.PubMed
95.
Zurück zum Zitat Steinwede K, Tempelhof O, Bolte K, et al. Local delivery of GM-CSF protects mice from lethal pneumococcal pneumonia. J Immunol. 2011;187:5346–56.PubMedCentralPubMed Steinwede K, Tempelhof O, Bolte K, et al. Local delivery of GM-CSF protects mice from lethal pneumococcal pneumonia. J Immunol. 2011;187:5346–56.PubMedCentralPubMed
96.
Zurück zum Zitat Lu H, Xing Z, Brunham RC. GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. J Immunol. 2002;169:6324–31.PubMed Lu H, Xing Z, Brunham RC. GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. J Immunol. 2002;169:6324–31.PubMed
97.
Zurück zum Zitat Bo L, Wang F, Zhu J, et al. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit Care. 2011;15:R58.PubMed Bo L, Wang F, Zhu J, et al. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit Care. 2011;15:R58.PubMed
98.
Zurück zum Zitat Denis M, Ghadirian E. Granulocyte-macrophage colony-stimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol Lett. 1990;24:203–6.PubMed Denis M, Ghadirian E. Granulocyte-macrophage colony-stimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol Lett. 1990;24:203–6.PubMed
99.
Zurück zum Zitat Chroneos ZC, Midde K, Sever-Chroneos Z, et al. Pulmonary surfactant and tuberculosis. Tuberculosis. 2009;89:S10–4.PubMed Chroneos ZC, Midde K, Sever-Chroneos Z, et al. Pulmonary surfactant and tuberculosis. Tuberculosis. 2009;89:S10–4.PubMed
100.
Zurück zum Zitat Szeliga J, Daniel DS, Yang CH, et al. Granulocyte-macrophage colony stimulating factor-mediated innate responses in tuberculosis. Tuberculosis. 2008;88:7–20.PubMedCentralPubMed Szeliga J, Daniel DS, Yang CH, et al. Granulocyte-macrophage colony stimulating factor-mediated innate responses in tuberculosis. Tuberculosis. 2008;88:7–20.PubMedCentralPubMed
101.
Zurück zum Zitat Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, Xing Z, Hernández-Pando R. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol. 2013;171:283–97.PubMed Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, Xing Z, Hernández-Pando R. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol. 2013;171:283–97.PubMed
102.
Zurück zum Zitat Marlow N, Morris T, Brocklehurst P, et al. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F46–53.PubMedCentralPubMed Marlow N, Morris T, Brocklehurst P, et al. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F46–53.PubMedCentralPubMed
103.
Zurück zum Zitat Mera S, Tatulescu D, Cismaru C, et al. Multiplex cytokine profiling in patients with sepsis. APMIS. 2011;119:155–63.PubMed Mera S, Tatulescu D, Cismaru C, et al. Multiplex cytokine profiling in patients with sepsis. APMIS. 2011;119:155–63.PubMed
104.
Zurück zum Zitat Gonzalez-Juarrero M, Hattle JM, Izzo A, et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control mycobacterium tuberculosis infection. J Leukoc Biol. 2005;77:914–22.PubMed Gonzalez-Juarrero M, Hattle JM, Izzo A, et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control mycobacterium tuberculosis infection. J Leukoc Biol. 2005;77:914–22.PubMed
105.
Zurück zum Zitat Lang RA, Metcalf D, Cuthbertson RA, et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell. 1987;51:675–86.PubMed Lang RA, Metcalf D, Cuthbertson RA, et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell. 1987;51:675–86.PubMed
106.
Zurück zum Zitat Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine. 2007;25:1342–52.PubMed Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine. 2007;25:1342–52.PubMed
107.
Zurück zum Zitat Ryan AA, Wozniak TM, Shklovskaya E, et al. Improved protection against disseminated tuberculosis by Mycobacterium bovis bacillus Calmette-Guerin secreting murine GM-CSF is associated with expansion and activation of APCs. J Immunol. 2007;179:18–24. Ryan AA, Wozniak TM, Shklovskaya E, et al. Improved protection against disseminated tuberculosis by Mycobacterium bovis bacillus Calmette-Guerin secreting murine GM-CSF is associated with expansion and activation of APCs. J Immunol. 2007;179:18–24.
108.
Zurück zum Zitat Nambiar JK, Ryan AA, Kong CU, et al. Modulation of pulmonary DC function by vaccine-encoded GM-CSF enhances protective immunity against Mycobacterium tuberculosis infection. Eur J Immunol. 2010;40:153–61.PubMed Nambiar JK, Ryan AA, Kong CU, et al. Modulation of pulmonary DC function by vaccine-encoded GM-CSF enhances protective immunity against Mycobacterium tuberculosis infection. Eur J Immunol. 2010;40:153–61.PubMed
109.
Zurück zum Zitat Dou J, Tang Q, Yu F, et al. Investigation of immunogenic effect of the BCG priming and Ag85A- GM-CSF boosting in Balb/c mice model. Immunobiology. 2010;215:133–42.PubMed Dou J, Tang Q, Yu F, et al. Investigation of immunogenic effect of the BCG priming and Ag85A- GM-CSF boosting in Balb/c mice model. Immunobiology. 2010;215:133–42.PubMed
110.
Zurück zum Zitat Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine. 2007;25:1342–52.PubMed Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine. 2007;25:1342–52.PubMed
111.
Zurück zum Zitat Wang J, Zganiacz A, Xing Z. Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine. 2002;20:2887–98.PubMed Wang J, Zganiacz A, Xing Z. Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine. 2002;20:2887–98.PubMed
112.
Zurück zum Zitat Wang H, Zhang G, Wen Y, et al. Intracerebral administration of recombinant rabies virus expressing GM-CSF prevents the development of rabies after infection with street virus. PLoS One. 2011;6:e25414.PubMedCentralPubMed Wang H, Zhang G, Wen Y, et al. Intracerebral administration of recombinant rabies virus expressing GM-CSF prevents the development of rabies after infection with street virus. PLoS One. 2011;6:e25414.PubMedCentralPubMed
113.
Zurück zum Zitat Li N, Yu YZ, Yu WY, et al. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol. 2011;33:211–9.PubMed Li N, Yu YZ, Yu WY, et al. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol. 2011;33:211–9.PubMed
114.
Zurück zum Zitat Grabstein KH, Urdal DL, Tushinski RJ, et al. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986;232:506–8.PubMed Grabstein KH, Urdal DL, Tushinski RJ, et al. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986;232:506–8.PubMed
115.
Zurück zum Zitat Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354:2034–45.PubMed Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354:2034–45.PubMed
Metadaten
Titel
Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor
verfasst von
Alejandro Francisco-Cruz
Miguel Aguilar-Santelises
Octavio Ramos-Espinosa
Dulce Mata-Espinosa
Brenda Marquina-Castillo
Jorge Barrios-Payan
Rogelio Hernandez-Pando
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 1/2014
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-013-0774-6

Weitere Artikel der Ausgabe 1/2014

Medical Oncology 1/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.