Skip to main content
Erschienen in: Pituitary 6/2023

25.09.2023

Growth hormone insensitivity and adipose tissue: tissue morphology and transcriptome analyses in pigs and humans

verfasst von: Jonathan A. Young, Arne Hinrichs, Stephen Bell, Delaney K. Geitgey, Diana Hume-Rivera, Addison Bounds, Maggie Soneson, Zvi Laron, Danielle Yaron-Shaminsky, Eckhard Wolf, Edward O. List, John J. Kopchick, Darlene E. Berryman

Erschienen in: Pituitary | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS.

Methods

Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS.

Results

GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes.

Conclusion

AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.
Literatur
1.
Zurück zum Zitat Laron Z, Werner H (2021) Laron syndrome - A historical perspective. Rev Endocr Metab Disord 22(1):31–41 PubMedCrossRef Laron Z, Werner H (2021) Laron syndrome - A historical perspective. Rev Endocr Metab Disord 22(1):31–41 PubMedCrossRef
2.
Zurück zum Zitat Zhou Y et al (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94(24):13215–13220 PubMedPubMedCentralCrossRef Zhou Y et al (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94(24):13215–13220 PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Young J et al (2021) Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 22(1):17–29 PubMedCrossRef Young J et al (2021) Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 22(1):17–29 PubMedCrossRef
4.
Zurück zum Zitat Hinrichs A et al (2018) Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab 11:113–128 PubMedPubMedCentralCrossRef Hinrichs A et al (2018) Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab 11:113–128 PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Laron Z et al (1992) Effects of insulin-like growth factor on linear growth, head circumference, and body fat in patients with Laron-type dwarfism. Lancet 339(8804):1258–1261 PubMedCrossRef Laron Z et al (1992) Effects of insulin-like growth factor on linear growth, head circumference, and body fat in patients with Laron-type dwarfism. Lancet 339(8804):1258–1261 PubMedCrossRef
6.
Zurück zum Zitat Laron Z, Klinger B (1993) Body fat in Laron syndrome patients: effect of insulin-like growth factor I treatment. Horm Res 40(1–3):16–22 PubMedCrossRef Laron Z, Klinger B (1993) Body fat in Laron syndrome patients: effect of insulin-like growth factor I treatment. Horm Res 40(1–3):16–22 PubMedCrossRef
7.
Zurück zum Zitat Laron Z et al (2006) Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity). Clin Endocrinol (Oxf) 65(1):114–117 PubMedCrossRef Laron Z et al (2006) Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity). Clin Endocrinol (Oxf) 65(1):114–117 PubMedCrossRef
8.
Zurück zum Zitat Laron Z (2011) In: Kopchick JJ (ed) Laron Syndrome - from man to mouse: Lessons from clinical and experimental experience, 531xiv, p. edn. Springer, Berlin; London CrossRef Laron Z (2011) In: Kopchick JJ (ed) Laron Syndrome - from man to mouse: Lessons from clinical and experimental experience, 531xiv, p. edn. Springer, Berlin; London CrossRef
9.
Zurück zum Zitat Shevah O, Laron Z (2007) Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res 17(1):54–57 PubMedCrossRef Shevah O, Laron Z (2007) Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res 17(1):54–57 PubMedCrossRef
10.
Zurück zum Zitat Steuerman R, Shevah O, Laron Z (2011) Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 164(4):485–489 PubMedCrossRef Steuerman R, Shevah O, Laron Z (2011) Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 164(4):485–489 PubMedCrossRef
11.
Zurück zum Zitat Guevara-Aguirre J et al (2021) Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord 22(1):59–70 PubMedCrossRef Guevara-Aguirre J et al (2021) Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord 22(1):59–70 PubMedCrossRef
12.
Zurück zum Zitat Guevara-Aguirre J et al (2023) Cancer in growth hormone excess and growth hormone deficit. Endocr Relat Cancer, 30(10) Guevara-Aguirre J et al (2023) Cancer in growth hormone excess and growth hormone deficit. Endocr Relat Cancer, 30(10)
13.
Zurück zum Zitat Ikeno Y et al (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64(5):522–529 PubMedCrossRef Ikeno Y et al (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64(5):522–529 PubMedCrossRef
14.
Zurück zum Zitat Coschigano KT et al (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141(7):2608–2613 PubMedCrossRef Coschigano KT et al (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141(7):2608–2613 PubMedCrossRef
16.
Zurück zum Zitat Kanety H et al (2009) Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. Eur J Endocrinol 161(6):837–844 PubMedCrossRef Kanety H et al (2009) Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. Eur J Endocrinol 161(6):837–844 PubMedCrossRef
17.
Zurück zum Zitat Berryman DE, List EO (2017) Growth hormone’s effect on adipose tissue: Quality versus Quantity. Int J Mol Sci, 18(8) Berryman DE, List EO (2017) Growth hormone’s effect on adipose tissue: Quality versus Quantity. Int J Mol Sci, 18(8)
18.
Zurück zum Zitat Stout MB et al (2014) Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging 6(7):575–586 PubMedPubMedCentralCrossRef Stout MB et al (2014) Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging 6(7):575–586 PubMedPubMedCentralCrossRef
19.
20.
Zurück zum Zitat Bennis MT et al (2017) The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience 39(1):51–59 PubMedPubMedCentralCrossRef Bennis MT et al (2017) The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience 39(1):51–59 PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Albl B et al (2016) Tissue Sampling Guides for Porcine Biomedical Models. Toxicol Pathol 44(3):414–420 PubMedCrossRef Albl B et al (2016) Tissue Sampling Guides for Porcine Biomedical Models. Toxicol Pathol 44(3):414–420 PubMedCrossRef
22.
Zurück zum Zitat List EO et al (2019) Adipocyte-specific GH receptor-null (AdGHRKO) mice have enhanced insulin sensitivity with reduced liver triglycerides. Endocrinology 160(1):68–80 PubMedCrossRef List EO et al (2019) Adipocyte-specific GH receptor-null (AdGHRKO) mice have enhanced insulin sensitivity with reduced liver triglycerides. Endocrinology 160(1):68–80 PubMedCrossRef
23.
Zurück zum Zitat Tchoukalova YD et al (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obes (Silver Spring) 18(10):1875–1880 CrossRef Tchoukalova YD et al (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obes (Silver Spring) 18(10):1875–1880 CrossRef
25.
Zurück zum Zitat Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21 PubMedCrossRef Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21 PubMedCrossRef
26.
Zurück zum Zitat Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930 PubMedCrossRef Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930 PubMedCrossRef
27.
Zurück zum Zitat Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185 PubMedCrossRef Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185 PubMedCrossRef
28.
Zurück zum Zitat Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140 PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140 PubMedCrossRef
29.
30.
Zurück zum Zitat Wickham H (2016) ggplot2: elegant graphics for data analysis, in Use R! Springer International Publishing, Cham. Imprint: Springer,: p. 1 online resource (XVI, 260 pages 232 illustrations, 140 illustrations in color CrossRef Wickham H (2016) ggplot2: elegant graphics for data analysis, in Use R! Springer International Publishing, Cham. Imprint: Springer,: p. 1 online resource (XVI, 260 pages 232 illustrations, 140 illustrations in color CrossRef
31.
Zurück zum Zitat Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35 PubMedPubMedCentralCrossRef Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35 PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849 PubMedCrossRef Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849 PubMedCrossRef
33.
Zurück zum Zitat Wu T et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb) 2(3):100141 Wu T et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb) 2(3):100141
34.
Zurück zum Zitat Berryman DE et al (2004) Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 14(4):309–318 PubMedCrossRef Berryman DE et al (2004) Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 14(4):309–318 PubMedCrossRef
35.
Zurück zum Zitat Householder LA et al (2018) Increased fibrosis: a novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 39:45–53 PubMedCrossRef Householder LA et al (2018) Increased fibrosis: a novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 39:45–53 PubMedCrossRef
36.
Zurück zum Zitat List EO et al (2013) The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol 27(3):524–535 PubMedPubMedCentralCrossRef List EO et al (2013) The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol 27(3):524–535 PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Chaves VE, Junior FM, Bertolini GL (2013) The metabolic effects of growth hormone in adipose tissue. Endocrine 44(2):293–302 PubMedCrossRef Chaves VE, Junior FM, Bertolini GL (2013) The metabolic effects of growth hormone in adipose tissue. Endocrine 44(2):293–302 PubMedCrossRef
39.
Zurück zum Zitat Troike KM et al (2017) Impact of growth hormone on regulation of adipose tissue. Compr Physiol 7(3):819–840 PubMedCrossRef Troike KM et al (2017) Impact of growth hormone on regulation of adipose tissue. Compr Physiol 7(3):819–840 PubMedCrossRef
40.
Zurück zum Zitat Hinrichs A et al (2021) MECHANISMS IN ENDOCRINOLOGY: transient juvenile hypoglycemia in growth hormone receptor deficiency - mechanistic insights from Laron syndrome and tailored animal models. Eur J Endocrinol 185(2):R35–R47 PubMedCrossRef Hinrichs A et al (2021) MECHANISMS IN ENDOCRINOLOGY: transient juvenile hypoglycemia in growth hormone receptor deficiency - mechanistic insights from Laron syndrome and tailored animal models. Eur J Endocrinol 185(2):R35–R47 PubMedCrossRef
41.
Zurück zum Zitat Qian Y et al (2022) Mice with gene alterations in the GH and IGF family. Pituitary 25(1):1–51 PubMedCrossRef Qian Y et al (2022) Mice with gene alterations in the GH and IGF family. Pituitary 25(1):1–51 PubMedCrossRef
42.
Zurück zum Zitat Ceddia RP et al (2016) The PGE2 EP3 receptor regulates Diet-Induced Adiposity in male mice. Endocrinology 157(1):220–232 PubMedCrossRef Ceddia RP et al (2016) The PGE2 EP3 receptor regulates Diet-Induced Adiposity in male mice. Endocrinology 157(1):220–232 PubMedCrossRef
43.
Zurück zum Zitat Stout MB et al (2015) Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget 6(29):26702–26715 PubMedPubMedCentralCrossRef Stout MB et al (2015) Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget 6(29):26702–26715 PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Duran-Ortiz S et al (2020) Differential gene signature in adipose tissue depots of growth hormone transgenic mice. J Neuroendocrinol 32(11):e12893 PubMedPubMedCentralCrossRef Duran-Ortiz S et al (2020) Differential gene signature in adipose tissue depots of growth hormone transgenic mice. J Neuroendocrinol 32(11):e12893 PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Young JA et al (2021) Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary 24(3):384–399 PubMedPubMedCentralCrossRef Young JA et al (2021) Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary 24(3):384–399 PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Marmol-Sanchez E et al (2022) Modeling microRNA-driven post-transcriptional regulation using exon-intron split analysis in pigs. Anim Genet 53(5):613–626 PubMedCrossRef Marmol-Sanchez E et al (2022) Modeling microRNA-driven post-transcriptional regulation using exon-intron split analysis in pigs. Anim Genet 53(5):613–626 PubMedCrossRef
47.
Zurück zum Zitat Valdes-Hernandez J et al (2023) Global analysis of the association between pig muscle fatty acid composition and gene expression using. RNA-Seq Sci Rep 13(1):535 PubMedCrossRef Valdes-Hernandez J et al (2023) Global analysis of the association between pig muscle fatty acid composition and gene expression using. RNA-Seq Sci Rep 13(1):535 PubMedCrossRef
48.
Zurück zum Zitat Riedel EO et al (2020) Functional changes of the liver in the absence of growth hormone (GH) action - proteomic and metabolomic insights from a GH receptor deficient pig model. Mol Metab 36:100978 PubMedPubMedCentralCrossRef Riedel EO et al (2020) Functional changes of the liver in the absence of growth hormone (GH) action - proteomic and metabolomic insights from a GH receptor deficient pig model. Mol Metab 36:100978 PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Schilloks MC et al (2023) Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune cells of a Porcine Model for Laron Syndrome. Biomolecules, 13(4) Schilloks MC et al (2023) Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune cells of a Porcine Model for Laron Syndrome. Biomolecules, 13(4)
50.
Zurück zum Zitat Aguiar-Oliveira MH, Bartke A (2019) Growth Hormone Deficiency: Health and Longevity Endocr Rev 40(2):575–601 PubMed Aguiar-Oliveira MH, Bartke A (2019) Growth Hormone Deficiency: Health and Longevity Endocr Rev 40(2):575–601 PubMed
51.
Zurück zum Zitat Nelson CN et al (2018) Growth hormone activated STAT5 is required for induction of beige fat in vivo. Growth Horm IGF Res, 42–43: p. 40–51 Nelson CN et al (2018) Growth hormone activated STAT5 is required for induction of beige fat in vivo. Growth Horm IGF Res, 42–43: p. 40–51
52.
Zurück zum Zitat Gesing A et al (2011) Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions. J Gerontol A Biol Sci Med Sci 66(10):1062–1076 PubMedCrossRef Gesing A et al (2011) Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions. J Gerontol A Biol Sci Med Sci 66(10):1062–1076 PubMedCrossRef
53.
Zurück zum Zitat Hoffman JM et al (2020) Transcriptomic and metabolomic profiling of long-lived growth hormone releasing hormone knock-out mice: evidence for altered mitochondrial function and amino acid metabolism. Aging 12(4):3473–3485 PubMedPubMedCentralCrossRef Hoffman JM et al (2020) Transcriptomic and metabolomic profiling of long-lived growth hormone releasing hormone knock-out mice: evidence for altered mitochondrial function and amino acid metabolism. Aging 12(4):3473–3485 PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ropka-Molik K et al (2014) Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. Anim Genet 45(5):674–684 PubMedCrossRef Ropka-Molik K et al (2014) Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. Anim Genet 45(5):674–684 PubMedCrossRef
55.
Zurück zum Zitat Hinrichs A et al (2021) Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28(2):e12664 PubMedCrossRef Hinrichs A et al (2021) Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28(2):e12664 PubMedCrossRef
Metadaten
Titel
Growth hormone insensitivity and adipose tissue: tissue morphology and transcriptome analyses in pigs and humans
verfasst von
Jonathan A. Young
Arne Hinrichs
Stephen Bell
Delaney K. Geitgey
Diana Hume-Rivera
Addison Bounds
Maggie Soneson
Zvi Laron
Danielle Yaron-Shaminsky
Eckhard Wolf
Edward O. List
John J. Kopchick
Darlene E. Berryman
Publikationsdatum
25.09.2023
Verlag
Springer US
Erschienen in
Pituitary / Ausgabe 6/2023
Print ISSN: 1386-341X
Elektronische ISSN: 1573-7403
DOI
https://doi.org/10.1007/s11102-023-01355-y

Weitere Artikel der Ausgabe 6/2023

Pituitary 6/2023 Zur Ausgabe

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.