Skip to main content
main-content
Erschienen in: wissen kompakt 2/2020

02.04.2020 | Guided Tissue Regeneration | CME Zahnärztliche Fortbildung

Gesteuerte Geweberegeneration (GTR) – Alternativen zum autologen Knochen?

verfasst von: Dr. K. Fischer

Erschienen in: wissen kompakt | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Aktuell gibt es 2 unterschiedliche Strömungen im Bereich der Knochenersatzmaterialien (KEM): zum einen nicht bzw. sehr langsam resorbierende KEM mit hoher Volumenstabilität (v. a. hochtemperierte bovine KEM) und zum anderen KEM mit höherer Substitutionsrate und ggf. geringerer Volumenstabilität (v. a. allogene KEM). Wird ein parodontaler Defekt mit einem allogenem KEM sowie z. T. auch mit einem xenogenem KEM aufgefüllt, kann dies zur Regeneration führen. In der Parodontologie darf zusätzlich die Kombination mit entsprechenden Membranen bzw. mit Schmelz-Matrix-Proteinen (SMP) nicht unberücksichtigt bleiben, da hierdurch das Regenerationsergebnis signifikant verbessert wird. Bei der klassischen Technik der gesteuerten Geweberegeneration (GTR) kann ggf. ein KEM mit höherer Substitutionsrate (autologe Späne, Allograft, β‑Tricalciumphosphat) mit einer Membran mit längerer Standzeit (Perikardmembran, kreuzvernetzte Membran) kombiniert werden, um ein stabiles Langzeitergebnis zu erzielen.
Zugang erhalten Sie mit:
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J (1986) New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 13(6):604–616 CrossRef Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J (1986) New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 13(6):604–616 CrossRef
2.
Zurück zum Zitat Carini F, Longoni S, Amosso E, Paleari J, Carini S, Porcaro G (2014) Bone augmentation with TiMesh. autologous bone versus autologous bone and bone substitutes. A systematic review. ADS 5(Suppl 2 to No 2):27–36 Carini F, Longoni S, Amosso E, Paleari J, Carini S, Porcaro G (2014) Bone augmentation with TiMesh. autologous bone versus autologous bone and bone substitutes. A systematic review. ADS 5(Suppl 2 to No 2):27–36
3.
Zurück zum Zitat Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA (2010) A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev 16(5):493–507 CrossRef Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA (2010) A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev 16(5):493–507 CrossRef
4.
Zurück zum Zitat Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A et al (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15(4):481–489 CrossRef Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A et al (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15(4):481–489 CrossRef
5.
Zurück zum Zitat Nkenke E, Neukam FW (2014) Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol 7(Suppl 2):S203–S217 PubMed Nkenke E, Neukam FW (2014) Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol 7(Suppl 2):S203–S217 PubMed
6.
Zurück zum Zitat Cortellini P, Tonetti MS (2007) Minimally invasive surgical technique and enamel matrix derivative in intra-bony defects. I: Clinical outcomes and morbidity. J Clin Periodontol 34(12):1082–1088 CrossRef Cortellini P, Tonetti MS (2007) Minimally invasive surgical technique and enamel matrix derivative in intra-bony defects. I: Clinical outcomes and morbidity. J Clin Periodontol 34(12):1082–1088 CrossRef
7.
Zurück zum Zitat Cortellini P, Prato GP, Tonetti MS (1995) The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol 66(4):261–266 CrossRef Cortellini P, Prato GP, Tonetti MS (1995) The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol 66(4):261–266 CrossRef
8.
Zurück zum Zitat Cortellini P, Prato GP, Tonetti MS (1999) The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent 19(6):589–599 PubMed Cortellini P, Prato GP, Tonetti MS (1999) The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent 19(6):589–599 PubMed
9.
Zurück zum Zitat Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899 CrossRef Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899 CrossRef
10.
Zurück zum Zitat Carmagnola D, Berglundh T, Lindhe J (2002) The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A experimental study in labrador dogs. J Clin Periodontol 29(5):377–383 CrossRef Carmagnola D, Berglundh T, Lindhe J (2002) The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A experimental study in labrador dogs. J Clin Periodontol 29(5):377–383 CrossRef
11.
Zurück zum Zitat Elgali I, Igawa K, Palmquist A, Lenneras M, Xia W, Choi S et al (2014) Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes. Biomaterials 35(10):3229–3242 CrossRef Elgali I, Igawa K, Palmquist A, Lenneras M, Xia W, Choi S et al (2014) Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes. Biomaterials 35(10):3229–3242 CrossRef
12.
Zurück zum Zitat Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17(3):237–243 CrossRef Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17(3):237–243 CrossRef
13.
Zurück zum Zitat Bassil J, Naaman N, Lattouf R, Kassis C, Changotade S, Baroukh B et al (2013) Clinical, histological, and histomorphometrical analysis of maxillary sinus augmentation using inorganic bovine in humans: preliminary results. J Oral Implantol 39(1):73–80 CrossRef Bassil J, Naaman N, Lattouf R, Kassis C, Changotade S, Baroukh B et al (2013) Clinical, histological, and histomorphometrical analysis of maxillary sinus augmentation using inorganic bovine in humans: preliminary results. J Oral Implantol 39(1):73–80 CrossRef
14.
Zurück zum Zitat Martinez A, Balboa O, Gasamans I, Otero-Cepeda XL, Guitian F (2015) Deproteinated bovine bone vs. beta-tricalcium phosphate as bone graft substitutes: histomorphometric longitudinal study in the rabbit cranial vault. Clin Oral Impl Res 26(6):623–632 CrossRef Martinez A, Balboa O, Gasamans I, Otero-Cepeda XL, Guitian F (2015) Deproteinated bovine bone vs. beta-tricalcium phosphate as bone graft substitutes: histomorphometric longitudinal study in the rabbit cranial vault. Clin Oral Impl Res 26(6):623–632 CrossRef
15.
Zurück zum Zitat Sartori M, Giavaresi G, Tschon M, Martini L, Dolcini L, Fiorini M et al (2014) Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes. J Mater Sci Mater Med 25(6):1495–1504 CrossRef Sartori M, Giavaresi G, Tschon M, Martini L, Dolcini L, Fiorini M et al (2014) Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes. J Mater Sci Mater Med 25(6):1495–1504 CrossRef
16.
Zurück zum Zitat Tete S, Zizzari VL, Vinci R, Zara S, Di Tore U, Manica M et al (2014) Equine and porcine bone substitutes in maxillary sinus augmentation: a histological and immunohistochemical analysis of VEGF expression. J Craniofac Surg 25(3):835–839 CrossRef Tete S, Zizzari VL, Vinci R, Zara S, Di Tore U, Manica M et al (2014) Equine and porcine bone substitutes in maxillary sinus augmentation: a histological and immunohistochemical analysis of VEGF expression. J Craniofac Surg 25(3):835–839 CrossRef
17.
Zurück zum Zitat Wang HL, Tsao YP (2008) Histologic evaluation of socket augmentation with mineralized human allograft. Int J Periodontics Restorative Dent 28(3):231–237 PubMed Wang HL, Tsao YP (2008) Histologic evaluation of socket augmentation with mineralized human allograft. Int J Periodontics Restorative Dent 28(3):231–237 PubMed
18.
Zurück zum Zitat Vance GS, Greenwell H, Miller RL, Hill M, Johnston H, Scheetz JP (2004) Comparison of an allograft in an experimental putty carrier and a bovine-derived xenograft used in ridge preservation: a clinical and histologic study in humans. Int J Oral Maxillofac Implants 19(4):491–497 PubMed Vance GS, Greenwell H, Miller RL, Hill M, Johnston H, Scheetz JP (2004) Comparison of an allograft in an experimental putty carrier and a bovine-derived xenograft used in ridge preservation: a clinical and histologic study in humans. Int J Oral Maxillofac Implants 19(4):491–497 PubMed
19.
Zurück zum Zitat Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003) The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8(1):227–265 CrossRef Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003) The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8(1):227–265 CrossRef
20.
Zurück zum Zitat Ogihara S, Tarnow DP (2014) Efficacy of enamel matrix derivative with freeze-dried bone allograft or demineralized freeze-dried bone allograft in intrabony defects: a randomized trial. J Periodontol 85(10):1351–1360 CrossRef Ogihara S, Tarnow DP (2014) Efficacy of enamel matrix derivative with freeze-dried bone allograft or demineralized freeze-dried bone allograft in intrabony defects: a randomized trial. J Periodontol 85(10):1351–1360 CrossRef
21.
Zurück zum Zitat Demetter RS, Calahan BG, Mealey BL (2017) Histologic evaluation of wound healing after ridge preservation with cortical, cancellous, and combined cortico-cancellous freeze-dried bone allograft: a randomized controlled clinical trial. J Periodontol 88(9):860–868 CrossRef Demetter RS, Calahan BG, Mealey BL (2017) Histologic evaluation of wound healing after ridge preservation with cortical, cancellous, and combined cortico-cancellous freeze-dried bone allograft: a randomized controlled clinical trial. J Periodontol 88(9):860–868 CrossRef
22.
Zurück zum Zitat Dori F, Arweiler NB, Szanto E, Agics A, Gera I, Sculean A (2013) Ten-year results following treatment of intrabony defects with an enamel matrix protein derivative combined with either a natural bone mineral or a beta-tricalcium phosphate. J Periodontol 84(6):749–757 CrossRef Dori F, Arweiler NB, Szanto E, Agics A, Gera I, Sculean A (2013) Ten-year results following treatment of intrabony defects with an enamel matrix protein derivative combined with either a natural bone mineral or a beta-tricalcium phosphate. J Periodontol 84(6):749–757 CrossRef
23.
Zurück zum Zitat Stahl SS, Froum SJ (1987) Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. Three to twelve months postimplantation. J Periodontol 58(10):689–695 CrossRef Stahl SS, Froum SJ (1987) Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. Three to twelve months postimplantation. J Periodontol 58(10):689–695 CrossRef
24.
Zurück zum Zitat Niedhart C, Maus U, Redmann E, Siebert CH (2001) In vivo testing of a new in situ setting beta-tricalcium phosphate cement for osseous reconstruction. J Biomed Mater Res 55(4):530–537 CrossRef Niedhart C, Maus U, Redmann E, Siebert CH (2001) In vivo testing of a new in situ setting beta-tricalcium phosphate cement for osseous reconstruction. J Biomed Mater Res 55(4):530–537 CrossRef
25.
Zurück zum Zitat Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M (2008) Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Impl Res 19(8):796–803 CrossRef Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M (2008) Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Impl Res 19(8):796–803 CrossRef
26.
Zurück zum Zitat Zafiropoulos GG, Hoffmann O, Kasaj A, Willershausen B, Weiss O, Van Dyke TE (2007) Treatment of intrabony defects using guided tissue regeneration and autogenous spongiosa alone or combined with hydroxyapatite/beta-tricalcium phosphate bone substitute or bovine-derived xenograft. J Periodontol 78(11):2216–2225 CrossRef Zafiropoulos GG, Hoffmann O, Kasaj A, Willershausen B, Weiss O, Van Dyke TE (2007) Treatment of intrabony defects using guided tissue regeneration and autogenous spongiosa alone or combined with hydroxyapatite/beta-tricalcium phosphate bone substitute or bovine-derived xenograft. J Periodontol 78(11):2216–2225 CrossRef
27.
Zurück zum Zitat Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A (2015) Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000 68(1):182–216 CrossRef Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A (2015) Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000 68(1):182–216 CrossRef
28.
Zurück zum Zitat Pietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB, Sculean A (2012) Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Invest 16(4):1191–1197 CrossRef Pietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB, Sculean A (2012) Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Invest 16(4):1191–1197 CrossRef
29.
Zurück zum Zitat Haugen HJ, Lyngstadaas SP, Rossi F, Perale G (2019) Bone grafts: which is the ideal biomaterial? J Clin Periodontol 46(Suppl 21):92–102 CrossRef Haugen HJ, Lyngstadaas SP, Rossi F, Perale G (2019) Bone grafts: which is the ideal biomaterial? J Clin Periodontol 46(Suppl 21):92–102 CrossRef
Metadaten
Titel
Gesteuerte Geweberegeneration (GTR) – Alternativen zum autologen Knochen?
verfasst von
Dr. K. Fischer
Publikationsdatum
02.04.2020
Verlag
Springer Medizin
Erschienen in
wissen kompakt / Ausgabe 2/2020
Print ISSN: 1863-2637
Elektronische ISSN: 2190-3816
DOI
https://doi.org/10.1007/s11838-020-00107-z