Skip to main content
Erschienen in: Digestive Diseases and Sciences 9/2019

13.03.2019 | Review

Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis

verfasst von: Panomwat Amornphimoltham, Peter S. T. Yuen, Robert A. Star, Asada Leelahavanichkul

Erschienen in: Digestive Diseases and Sciences | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a life-threatening response to systemic infection. In addition to frank gastrointestinal (GI) rupture/puncture, sepsis can also be exacerbated by translocation of pathogen-associated molecular patterns (PAMPs) from the GI tract to the systemic circulation (gut origin of sepsis). In the human gut, Gram-negative bacteria and Candida albicans are abundant, along with their major PAMP components, endotoxin (LPS) and (1 → 3)-β-d-glucan (BG). Whereas the influence of LPS in bacterial sepsis has been studied extensively, exploration of the role of BG in bacterial sepsis is limited. Post-translocation, PAMPs enter the circulation through lymphatics and the portal vein, and are detoxified and then excreted via the liver and the kidney. Sepsis-induced liver and kidney injury might therefore affect the kinetics and increase circulating PAMPs. In this article, we discuss the current knowledge of the impact of PAMPs from both gut mycobiota and microbiota, including epithelial barrier function and the “gut-liver-kidney axis,” on bacterial sepsis severity.
Literatur
1.
Zurück zum Zitat Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–810.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–810.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.CrossRefPubMed Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.CrossRefPubMed
3.
Zurück zum Zitat Bates JM, Akerlund J, Mittge E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2:371–382.CrossRefPubMedPubMedCentral Bates JM, Akerlund J, Mittge E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2:371–382.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818.CrossRefPubMed Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818.CrossRefPubMed
5.
Zurück zum Zitat Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–268.CrossRefPubMedPubMedCentral Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–268.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Baranova IN, Vishnyakova TG, Bocharov AV, et al. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. J Immunol. 2012;188:1371–1380.CrossRefPubMed Baranova IN, Vishnyakova TG, Bocharov AV, et al. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. J Immunol. 2012;188:1371–1380.CrossRefPubMed
7.
Zurück zum Zitat Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–1274.CrossRefPubMedPubMedCentral Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–1274.CrossRefPubMedPubMedCentral
8.
9.
Zurück zum Zitat Leelahavanichkul A, Bocharov AV, Kurlander R, et al. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. J Immunol. 2012;188:2749–2758.CrossRefPubMed Leelahavanichkul A, Bocharov AV, Kurlander R, et al. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. J Immunol. 2012;188:2749–2758.CrossRefPubMed
10.
Zurück zum Zitat Leelahavanichkul A, Huang Y, Hu X, et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 2011;80:1198–1211.CrossRefPubMedPubMedCentral Leelahavanichkul A, Huang Y, Hu X, et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 2011;80:1198–1211.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Leelahavanichkul A, Worasilchai N, Wannalerdsakun S, et al. Gastrointestinal leakage detected by serum (1 ⟶ 3)-beta-d-glucan in mouse models and a pilot study in patients with sepsis. Shock. 2016;46:506–518.CrossRefPubMed Leelahavanichkul A, Worasilchai N, Wannalerdsakun S, et al. Gastrointestinal leakage detected by serum (1 ⟶ 3)-beta-d-glucan in mouse models and a pilot study in patients with sepsis. Shock. 2016;46:506–518.CrossRefPubMed
12.
Zurück zum Zitat Leelahavanichkul A, Yasuda H, Doi K, et al. Methyl-2-acetamidoacrylate, an ethyl pyruvate analog, decreases sepsis-induced acute kidney injury in mice. Am J Physiol Renal Physiol. 2008;295:F1825–F1835.CrossRefPubMedPubMedCentral Leelahavanichkul A, Yasuda H, Doi K, et al. Methyl-2-acetamidoacrylate, an ethyl pyruvate analog, decreases sepsis-induced acute kidney injury in mice. Am J Physiol Renal Physiol. 2008;295:F1825–F1835.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Panpetch W, Somboonna N, Bulan DE, et al. Gastrointestinal colonization of Candida albicans increases serum (1 ⟶ 3)-beta-d-glucan, without candidemia, and worsens cecal ligation and puncture sepsis in murine model. Shock. 2018;49:62–70.CrossRefPubMed Panpetch W, Somboonna N, Bulan DE, et al. Gastrointestinal colonization of Candida albicans increases serum (1 ⟶ 3)-beta-d-glucan, without candidemia, and worsens cecal ligation and puncture sepsis in murine model. Shock. 2018;49:62–70.CrossRefPubMed
14.
Zurück zum Zitat Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–273 (table of contents).CrossRefPubMedPubMedCentral Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–273 (table of contents).CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Helander HF, Fandriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49:681–689.CrossRefPubMed Helander HF, Fandriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49:681–689.CrossRefPubMed
16.
Zurück zum Zitat Sertaridou E, Papaioannou V, Kolios G, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28:309–322.PubMedPubMedCentral Sertaridou E, Papaioannou V, Kolios G, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28:309–322.PubMedPubMedCentral
17.
Zurück zum Zitat Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome. Arch Surg. 1986;121:196–208.CrossRefPubMed Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome. Arch Surg. 1986;121:196–208.CrossRefPubMed
18.
Zurück zum Zitat MacFie J, O’Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–228.CrossRefPubMedPubMedCentral MacFie J, O’Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–228.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Schmid-Schonbein GW, Chang M. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng. 2014;42:405–414.CrossRefPubMed Schmid-Schonbein GW, Chang M. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng. 2014;42:405–414.CrossRefPubMed
22.
Zurück zum Zitat Reintam A, Parm P, Kitus R, et al. Gastrointestinal symptoms in intensive care patients. Acta Anaesthesiol Scand. 2009;53:318–324.CrossRefPubMed Reintam A, Parm P, Kitus R, et al. Gastrointestinal symptoms in intensive care patients. Acta Anaesthesiol Scand. 2009;53:318–324.CrossRefPubMed
23.
Zurück zum Zitat Fink MP. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med. 1991;19:627–641.CrossRefPubMed Fink MP. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med. 1991;19:627–641.CrossRefPubMed
24.
Zurück zum Zitat Sauerwein H, van Schijndel RS. Perspective: how to evaluate studies on peri-operative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007;26:154–158.CrossRefPubMed Sauerwein H, van Schijndel RS. Perspective: how to evaluate studies on peri-operative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007;26:154–158.CrossRefPubMed
25.
Zurück zum Zitat Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med. 1998;158:444–451.CrossRefPubMed Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med. 1998;158:444–451.CrossRefPubMed
26.
Zurück zum Zitat Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584.CrossRefPubMed Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584.CrossRefPubMed
28.
Zurück zum Zitat Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: rethinking the germ theory of disease. Exp Biol Med (Maywood). 2017;242:127–139.CrossRef Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: rethinking the germ theory of disease. Exp Biol Med (Maywood). 2017;242:127–139.CrossRef
29.
Zurück zum Zitat Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223.CrossRefPubMedPubMedCentral Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45:475–482.CrossRefPubMedPubMedCentral Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45:475–482.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE. 2013;8:e71806.CrossRefPubMedPubMedCentral Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE. 2013;8:e71806.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.CrossRefPubMedPubMedCentral Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–358.CrossRefPubMed Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–358.CrossRefPubMed
34.
Zurück zum Zitat Gouba N, Drancourt M. Digestive tract mycobiota: a source of infection. Med Mal Infect. 2015;45:9–16.CrossRefPubMed Gouba N, Drancourt M. Digestive tract mycobiota: a source of infection. Med Mal Infect. 2015;45:9–16.CrossRefPubMed
35.
Zurück zum Zitat Lutzoni F, Kauff F, Cox CJ, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004;91:1446–1480.CrossRefPubMed Lutzoni F, Kauff F, Cox CJ, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004;91:1446–1480.CrossRefPubMed
36.
Zurück zum Zitat Samonis G, Kofteridis DP, Maraki S, et al. Levofloxacin and moxifloxacin increase human gut colonization by Candida species. Antimicrob Agents Chemother. 2005;49:5189.CrossRefPubMedPubMedCentral Samonis G, Kofteridis DP, Maraki S, et al. Levofloxacin and moxifloxacin increase human gut colonization by Candida species. Antimicrob Agents Chemother. 2005;49:5189.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Vardakas KZ, Michalopoulos A, Kiriakidou KG, et al. Candidaemia: incidence, risk factors, characteristics and outcomes in immunocompetent critically ill patients. Clin Microbiol Infect. 2009;15:289–292.CrossRefPubMed Vardakas KZ, Michalopoulos A, Kiriakidou KG, et al. Candidaemia: incidence, risk factors, characteristics and outcomes in immunocompetent critically ill patients. Clin Microbiol Infect. 2009;15:289–292.CrossRefPubMed
38.
Zurück zum Zitat Qiu X, Zhang F, Yang X, et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep. 2015;5:10416.CrossRefPubMedPubMedCentral Qiu X, Zhang F, Yang X, et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep. 2015;5:10416.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–1317.CrossRefPubMedPubMedCentral Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–1317.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Yamaguchi N, Sonoyama K, Kikuchi H, et al. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 2005;135:109–115.CrossRefPubMed Yamaguchi N, Sonoyama K, Kikuchi H, et al. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 2005;135:109–115.CrossRefPubMed
41.
Zurück zum Zitat Samonis G, Maraki S, Barbounakis E, et al. Effects of vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, and telithromycin on murine gut colonization by Candida albicans. Med Mycol. 2006;44:193–196.CrossRefPubMed Samonis G, Maraki S, Barbounakis E, et al. Effects of vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, and telithromycin on murine gut colonization by Candida albicans. Med Mycol. 2006;44:193–196.CrossRefPubMed
42.
Zurück zum Zitat Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–1208.CrossRefPubMedPubMedCentral Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–1208.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Kett DH, Azoulay E, Echeverria PM, et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39:665–670.CrossRefPubMed Kett DH, Azoulay E, Echeverria PM, et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39:665–670.CrossRefPubMed
44.
Zurück zum Zitat Hedderwick SA, Lyons MJ, Liu M, et al. Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2000;19:663–670.CrossRefPubMed Hedderwick SA, Lyons MJ, Liu M, et al. Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2000;19:663–670.CrossRefPubMed
46.
Zurück zum Zitat Miranda L, Van Der Heijden I, Costa S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.CrossRefPubMed Miranda L, Van Der Heijden I, Costa S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.CrossRefPubMed
47.
Zurück zum Zitat Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–1746.CrossRefPubMed Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–1746.CrossRefPubMed
48.
Zurück zum Zitat Lau AF, Kabir M, Chen SC, et al. Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical ICUs: development and evaluation of a simple, standard protocol. J Clin Microbiol. 2015;53:1324–1330.CrossRefPubMedPubMedCentral Lau AF, Kabir M, Chen SC, et al. Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical ICUs: development and evaluation of a simple, standard protocol. J Clin Microbiol. 2015;53:1324–1330.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-beta-D-glucan. PLoS ONE. 2017;12:1439.CrossRef Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-beta-D-glucan. PLoS ONE. 2017;12:1439.CrossRef
51.
52.
Zurück zum Zitat Juvonen PO, Alhava EM, Takala JA. Gut permeability in patients with acute pancreatitis. Scand J Gastroenterol. 2000;35:1314–1318.CrossRefPubMed Juvonen PO, Alhava EM, Takala JA. Gut permeability in patients with acute pancreatitis. Scand J Gastroenterol. 2000;35:1314–1318.CrossRefPubMed
53.
Zurück zum Zitat Chen K, Wang Q, Pleasants RA, et al. Empiric treatment against invasive fungal diseases in febrile neutropenic patients: a systematic review and network meta-analysis. BMC Infect Dis. 2017;17:159.CrossRefPubMedPubMedCentral Chen K, Wang Q, Pleasants RA, et al. Empiric treatment against invasive fungal diseases in febrile neutropenic patients: a systematic review and network meta-analysis. BMC Infect Dis. 2017;17:159.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Plantinga NL, de Smet A, Oostdijk EAN, et al. Selective digestive and oropharyngeal decontamination in medical and surgical ICU patients: individual patient data meta-analysis. Clin Microbiol Infect. 2018;24:505–513.CrossRefPubMed Plantinga NL, de Smet A, Oostdijk EAN, et al. Selective digestive and oropharyngeal decontamination in medical and surgical ICU patients: individual patient data meta-analysis. Clin Microbiol Infect. 2018;24:505–513.CrossRefPubMed
55.
Zurück zum Zitat Sánchez-Ramírez C, Hípola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit Care. 2018;22:141.CrossRefPubMedPubMedCentral Sánchez-Ramírez C, Hípola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit Care. 2018;22:141.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Oostdijk EA, Smits L, de Smet AMG, et al. Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med. 2013;39:653–660.CrossRefPubMed Oostdijk EA, Smits L, de Smet AMG, et al. Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med. 2013;39:653–660.CrossRefPubMed
58.
Zurück zum Zitat Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-β-D-glucan. PLoS ONE. 2017;12:e0181439.CrossRefPubMedPubMedCentral Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-β-D-glucan. PLoS ONE. 2017;12:e0181439.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Worasilchai N, Leelahavanichkul A, Kanjanabuch T, et al. (1 → 3)-beta-d-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study. Med Mycol. 2015;53:338–346.CrossRefPubMed Worasilchai N, Leelahavanichkul A, Kanjanabuch T, et al. (1 → 3)-beta-d-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study. Med Mycol. 2015;53:338–346.CrossRefPubMed
60.
Zurück zum Zitat Leelahavanichkul A, Pongpirul K, Thongbor N, et al. (1 → 3)-beta-d-glucan and galactomannan for differentiating chemical “black particles” and fungal particles inside peritoneal dialysis tubing. Perit Dial Int. 2016;36:402–409.CrossRefPubMedPubMedCentral Leelahavanichkul A, Pongpirul K, Thongbor N, et al. (1 → 3)-beta-d-glucan and galactomannan for differentiating chemical “black particles” and fungal particles inside peritoneal dialysis tubing. Perit Dial Int. 2016;36:402–409.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1–G15.CrossRefPubMed Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1–G15.CrossRefPubMed
64.
Zurück zum Zitat Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788:832–841.CrossRefPubMed Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788:832–841.CrossRefPubMed
65.
Zurück zum Zitat Vojdani A. For the assessment of intestinal permeability, size matters. Altern Ther Health Med. 2013;19:12–24.PubMed Vojdani A. For the assessment of intestinal permeability, size matters. Altern Ther Health Med. 2013;19:12–24.PubMed
66.
Zurück zum Zitat Dlugosz A, Winckler B, Lundin E, et al. No difference in small bowel microbiota between patients with irritable bowel syndrome and healthy controls. Sci Rep. 2015;5:8508.CrossRefPubMedPubMedCentral Dlugosz A, Winckler B, Lundin E, et al. No difference in small bowel microbiota between patients with irritable bowel syndrome and healthy controls. Sci Rep. 2015;5:8508.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Hofer U, Schlaepfer E, Baenziger S, et al. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog.. 2010;6:e1000867.CrossRefPubMedPubMedCentral Hofer U, Schlaepfer E, Baenziger S, et al. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog.. 2010;6:e1000867.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–97.CrossRefPubMed Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–97.CrossRefPubMed
69.
Zurück zum Zitat Erridge C, Attina T, Spickett CM, et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–1292.CrossRefPubMed Erridge C, Attina T, Spickett CM, et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–1292.CrossRefPubMed
70.
Zurück zum Zitat Guler O, Ugras S, Aydin M, et al. The effect of lymphatic blockage on the amount of endotoxin in portal circulation, nitric oxide synthesis, and the liver in dogs with peritonitis. Surg Today. 1999;29:735–740.CrossRefPubMed Guler O, Ugras S, Aydin M, et al. The effect of lymphatic blockage on the amount of endotoxin in portal circulation, nitric oxide synthesis, and the liver in dogs with peritonitis. Surg Today. 1999;29:735–740.CrossRefPubMed
71.
Zurück zum Zitat van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. Gastroenterology. 1988;94:825–831.CrossRefPubMed van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. Gastroenterology. 1988;94:825–831.CrossRefPubMed
72.
Zurück zum Zitat Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:16113.CrossRefPubMedPubMedCentral Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:16113.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31:629–636 (discussion 36-8).CrossRefPubMed Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31:629–636 (discussion 36-8).CrossRefPubMed
74.
Zurück zum Zitat Yoshida M, Roth RI, Grunfeld C, et al. Soluble (1 → 3)-beta-d-glucan purified from Candida albicans: biologic effects and distribution in blood and organs in rabbits. J Lab Clin Med. 1996;128:103–114.CrossRefPubMed Yoshida M, Roth RI, Grunfeld C, et al. Soluble (1 → 3)-beta-d-glucan purified from Candida albicans: biologic effects and distribution in blood and organs in rabbits. J Lab Clin Med. 1996;128:103–114.CrossRefPubMed
75.
Zurück zum Zitat Rice PJ, Lockhart BE, Barker LA, et al. Pharmacokinetics of fungal (1-3)-beta-D-glucans following intravenous administration in rats. Int Immunopharmacol. 2004;4:1209–1215.CrossRefPubMed Rice PJ, Lockhart BE, Barker LA, et al. Pharmacokinetics of fungal (1-3)-beta-D-glucans following intravenous administration in rats. Int Immunopharmacol. 2004;4:1209–1215.CrossRefPubMed
76.
Zurück zum Zitat Hutter JC, Kim CS. Physiological-based pharmacokinetic modeling of endotoxin in the rat. Toxicol Ind Health. 2014;30:442–453.CrossRefPubMed Hutter JC, Kim CS. Physiological-based pharmacokinetic modeling of endotoxin in the rat. Toxicol Ind Health. 2014;30:442–453.CrossRefPubMed
77.
Zurück zum Zitat Raggam RB, Fischbach LM, Prattes J, et al. Detection of (1 → 3)-beta-d-glucan in same-day urine and serum samples obtained from patients with haematological malignancies. Mycoses. 2015;58:394–398.CrossRefPubMed Raggam RB, Fischbach LM, Prattes J, et al. Detection of (1 → 3)-beta-d-glucan in same-day urine and serum samples obtained from patients with haematological malignancies. Mycoses. 2015;58:394–398.CrossRefPubMed
78.
Zurück zum Zitat Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113:1390–1397.CrossRefPubMedPubMedCentral Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113:1390–1397.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Comper WD. Is the LPS-mediated proteinuria mouse model relevant to human kidney disease? Nat Med. 2009;15:133 (author reply-4).CrossRefPubMed Comper WD. Is the LPS-mediated proteinuria mouse model relevant to human kidney disease? Nat Med. 2009;15:133 (author reply-4).CrossRefPubMed
80.
Zurück zum Zitat Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14:55–63.CrossRefPubMed Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14:55–63.CrossRefPubMed
81.
Zurück zum Zitat Matsumoto T, Tanaka M, Ogata N, et al. Significance of urinary endotoxin concentration in patients with urinary tract infection. Urol Res. 1991;19:293–295.CrossRefPubMed Matsumoto T, Tanaka M, Ogata N, et al. Significance of urinary endotoxin concentration in patients with urinary tract infection. Urol Res. 1991;19:293–295.CrossRefPubMed
82.
Zurück zum Zitat Boelke E, Jehle PM, Storck M, et al. Urinary endotoxin excretion and urinary tract infection following kidney transplantation. Transpl Int. 2001;14:307–310.CrossRefPubMed Boelke E, Jehle PM, Storck M, et al. Urinary endotoxin excretion and urinary tract infection following kidney transplantation. Transpl Int. 2001;14:307–310.CrossRefPubMed
83.
84.
Zurück zum Zitat Sprinz H, Kundel DW, Dammin GJ, et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol. 1961;39:681–695.PubMedPubMedCentral Sprinz H, Kundel DW, Dammin GJ, et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol. 1961;39:681–695.PubMedPubMedCentral
85.
Zurück zum Zitat Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterology. 1994;107:643–649.CrossRefPubMed Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterology. 1994;107:643–649.CrossRefPubMed
86.
Zurück zum Zitat Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta Int J Clin Chem. 2002;323:59–72.CrossRef Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta Int J Clin Chem. 2002;323:59–72.CrossRef
87.
88.
Zurück zum Zitat Feulner JA, Lu M, Shelton JM, et al. Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract. Infect Immun. 2004;72:3171–3178.CrossRefPubMedPubMedCentral Feulner JA, Lu M, Shelton JM, et al. Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract. Infect Immun. 2004;72:3171–3178.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Lei W, Ni H, Herington J, et al. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice. PLoS One. 2015;10:e0123243.CrossRefPubMedPubMedCentral Lei W, Ni H, Herington J, et al. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice. PLoS One. 2015;10:e0123243.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med. 2014;40:1429–1448.CrossRefPubMedPubMedCentral Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med. 2014;40:1429–1448.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Noss I, Doekes G, Thorne PS, et al. Comparison of the potency of a variety of beta-glucans to induce cytokine production in human whole blood. Innate Immun. 2013;19:10–19.CrossRefPubMed Noss I, Doekes G, Thorne PS, et al. Comparison of the potency of a variety of beta-glucans to induce cytokine production in human whole blood. Innate Immun. 2013;19:10–19.CrossRefPubMed
93.
Zurück zum Zitat Ferwerda G, Meyer-Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10:2058–2066.CrossRefPubMed Ferwerda G, Meyer-Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10:2058–2066.CrossRefPubMed
94.
Zurück zum Zitat Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–506.CrossRefPubMedPubMedCentral Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–506.CrossRefPubMedPubMedCentral
95.
96.
Zurück zum Zitat Ondee T, Surawut S, Taratummarat S, et al. Fc gamma receptor IIB deficient mice: a lupus model with increased endotoxin tolerance-related sepsis susceptibility. Shock. 2017;47:743–752.CrossRefPubMed Ondee T, Surawut S, Taratummarat S, et al. Fc gamma receptor IIB deficient mice: a lupus model with increased endotoxin tolerance-related sepsis susceptibility. Shock. 2017;47:743–752.CrossRefPubMed
97.
Zurück zum Zitat Vogelpoel LT, Hansen IS, Rispens T, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444.CrossRefPubMed Vogelpoel LT, Hansen IS, Rispens T, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444.CrossRefPubMed
98.
Zurück zum Zitat Kingeter LM, Lin X. C-type lectin receptor-induced NF-kappaB activation in innate immune and inflammatory responses. Cell Mol Immunol. 2012;9:105–112.CrossRefPubMedPubMedCentral Kingeter LM, Lin X. C-type lectin receptor-induced NF-kappaB activation in innate immune and inflammatory responses. Cell Mol Immunol. 2012;9:105–112.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18:1401–1406.CrossRefPubMedPubMedCentral Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18:1401–1406.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Issara-Amphorn J, Surawut S, Worasilchai N, et al. The synergy of endotoxin and (1 → 3)-beta-D-glucan, from gut translocation, worsens sepsis severity in a lupus model of fc gamma receptor IIb-deficient mice. J Innate Immun. 2018;10:189–201.CrossRefPubMedPubMedCentral Issara-Amphorn J, Surawut S, Worasilchai N, et al. The synergy of endotoxin and (1 → 3)-beta-D-glucan, from gut translocation, worsens sepsis severity in a lupus model of fc gamma receptor IIb-deficient mice. J Innate Immun. 2018;10:189–201.CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352:aaf1098.CrossRef Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352:aaf1098.CrossRef
102.
Zurück zum Zitat Bashir KM, Choi J-S. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18:1906.CrossRefPubMedCentral Bashir KM, Choi J-S. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18:1906.CrossRefPubMedCentral
103.
Zurück zum Zitat Strnad P, Tacke F, Koch A, et al. Liver—guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14:55–66.CrossRefPubMed Strnad P, Tacke F, Koch A, et al. Liver—guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14:55–66.CrossRefPubMed
104.
Zurück zum Zitat Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.CrossRefPubMed Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.CrossRefPubMed
105.
Zurück zum Zitat Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.CrossRefPubMedPubMedCentral Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.CrossRefPubMedPubMedCentral
106.
107.
Zurück zum Zitat Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Investig. 2017;127:2829–2841.CrossRefPubMedPubMedCentral Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Investig. 2017;127:2829–2841.CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat White LE, Hassoun HT, Bihorac A, et al. Acute kidney injury is surprisingly common and a powerful predictor of mortality in surgical sepsis. J Trauma Acute Care Surg. 2013;75:432–438.CrossRefPubMed White LE, Hassoun HT, Bihorac A, et al. Acute kidney injury is surprisingly common and a powerful predictor of mortality in surgical sepsis. J Trauma Acute Care Surg. 2013;75:432–438.CrossRefPubMed
112.
Zurück zum Zitat Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14:1022–1030.CrossRefPubMed Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14:1022–1030.CrossRefPubMed
115.
Zurück zum Zitat Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.CrossRefPubMed Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.CrossRefPubMed
116.
Zurück zum Zitat Cohen G, Horl WH. Immune dysfunction in uremia—an update. Toxins (Basel). 2012;4:962–990.CrossRef Cohen G, Horl WH. Immune dysfunction in uremia—an update. Toxins (Basel). 2012;4:962–990.CrossRef
117.
Zurück zum Zitat Le Bastard Q, Al-Ghalith GA, Gregoire M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther. 2018;47:332–345.CrossRefPubMed Le Bastard Q, Al-Ghalith GA, Gregoire M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther. 2018;47:332–345.CrossRefPubMed
118.
Zurück zum Zitat Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–670.CrossRefPubMed Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–670.CrossRefPubMed
119.
Zurück zum Zitat Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–498.CrossRefPubMed Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–498.CrossRefPubMed
120.
Zurück zum Zitat Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315.CrossRefPubMed Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315.CrossRefPubMed
121.
Zurück zum Zitat Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet (London, England). 1983;1:1206–1209.CrossRef Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet (London, England). 1983;1:1206–1209.CrossRef
122.
Zurück zum Zitat de Loor H, Meijers BK, Meyer TW, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216:4684–4688.CrossRefPubMed de Loor H, Meijers BK, Meyer TW, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216:4684–4688.CrossRefPubMed
123.
124.
Zurück zum Zitat Wong J, Vilar E, Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial. 2015;28:59–67.CrossRefPubMed Wong J, Vilar E, Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial. 2015;28:59–67.CrossRefPubMed
125.
Zurück zum Zitat Grant CJ, Harrison LE, Hoad CL, et al. Patients with chronic kidney disease have abnormal upper gastro-intestinal tract digestive function: a study of uremic enteropathy. J Gastroenterol Hepatol. 2017;32:372–377.CrossRefPubMed Grant CJ, Harrison LE, Hoad CL, et al. Patients with chronic kidney disease have abnormal upper gastro-intestinal tract digestive function: a study of uremic enteropathy. J Gastroenterol Hepatol. 2017;32:372–377.CrossRefPubMed
126.
Zurück zum Zitat Noel S, Martina-Lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139–143.CrossRefPubMed Noel S, Martina-Lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139–143.CrossRefPubMed
128.
Zurück zum Zitat Lobo LA, Benjamim CF, Oliveira AC. The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunol. 2016;5:e90.CrossRef Lobo LA, Benjamim CF, Oliveira AC. The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunol. 2016;5:e90.CrossRef
129.
Zurück zum Zitat Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care (London, England). 2010;14:207.CrossRef Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care (London, England). 2010;14:207.CrossRef
131.
Zurück zum Zitat Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–243.CrossRefPubMed Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–243.CrossRefPubMed
132.
Zurück zum Zitat León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–737.CrossRefPubMed León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–737.CrossRefPubMed
133.
Zurück zum Zitat Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–276.CrossRefPubMed Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–276.CrossRefPubMed
134.
Zurück zum Zitat Xie G-H, Fang X-M, Fang Q, et al. Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. Crit Care. 2008;12:R5.CrossRefPubMedPubMedCentral Xie G-H, Fang X-M, Fang Q, et al. Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. Crit Care. 2008;12:R5.CrossRefPubMedPubMedCentral
135.
Zurück zum Zitat Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38:65–69.CrossRefPubMed Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38:65–69.CrossRefPubMed
136.
Zurück zum Zitat Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–2029.CrossRefPubMed Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–2029.CrossRefPubMed
137.
Zurück zum Zitat Kuse E-R, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–1527.CrossRefPubMed Kuse E-R, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–1527.CrossRefPubMed
138.
Zurück zum Zitat Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–2482.CrossRefPubMed Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–2482.CrossRefPubMed
139.
Zurück zum Zitat Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–893.CrossRefPubMed Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–893.CrossRefPubMed
140.
Zurück zum Zitat Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–1684.CrossRefPubMed Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–1684.CrossRefPubMed
141.
Zurück zum Zitat Neofytos D, Lu K, Hatfield-Seung A, et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis. 2013;75:144–149.CrossRefPubMed Neofytos D, Lu K, Hatfield-Seung A, et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis. 2013;75:144–149.CrossRefPubMed
142.
Zurück zum Zitat Marotta F, Barreto R, Kawakita S, et al. Preventive strategy for Candida gut translocation during ischemia–reperfusion injury supervening on protein–calorie malnutrition. Chin J Dig Dis. 2006;7:33–38.CrossRefPubMed Marotta F, Barreto R, Kawakita S, et al. Preventive strategy for Candida gut translocation during ischemia–reperfusion injury supervening on protein–calorie malnutrition. Chin J Dig Dis. 2006;7:33–38.CrossRefPubMed
143.
Zurück zum Zitat Allert S, Förster TM, Svensson C-M, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio. 2018;9:e00915–e00918.CrossRefPubMedPubMedCentral Allert S, Förster TM, Svensson C-M, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio. 2018;9:e00915–e00918.CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Eggimann P, Francioli P, Bille J, et al. Fluconazole prophylaxis prevents intra-abdominal candidiasis in high-risk surgical patients. Crit Care Med. 1999;27:1066–1072.CrossRefPubMed Eggimann P, Francioli P, Bille J, et al. Fluconazole prophylaxis prevents intra-abdominal candidiasis in high-risk surgical patients. Crit Care Med. 1999;27:1066–1072.CrossRefPubMed
145.
Zurück zum Zitat Pelz RK, Hendrix CW, Swoboda SM, et al. Double-blind placebo-controlled trial of fluconazole to prevent candidal infections in critically ill surgical patients. Ann Surg. 2001;233:542.CrossRefPubMedPubMedCentral Pelz RK, Hendrix CW, Swoboda SM, et al. Double-blind placebo-controlled trial of fluconazole to prevent candidal infections in critically ill surgical patients. Ann Surg. 2001;233:542.CrossRefPubMedPubMedCentral
146.
Zurück zum Zitat Sandven P, Qvist H, Skovlund E, et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002;30:541–547.CrossRefPubMed Sandven P, Qvist H, Skovlund E, et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002;30:541–547.CrossRefPubMed
147.
Zurück zum Zitat Garbino J, Lew DP, Romand J-A, et al. Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: a randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med. 2002;28:1708–1717.CrossRefPubMed Garbino J, Lew DP, Romand J-A, et al. Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: a randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med. 2002;28:1708–1717.CrossRefPubMed
148.
Zurück zum Zitat Jacobs S, Evans DAP, Tariq M, et al. Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med. 2003;31:1938–1946.CrossRefPubMed Jacobs S, Evans DAP, Tariq M, et al. Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med. 2003;31:1938–1946.CrossRefPubMed
149.
Zurück zum Zitat Normand S, François B, Dardé M-L, et al. Oral nystatin prophylaxis of Candida spp. colonization in ventilated critically ill patients. Intensive Care Med. 2005;31:1508–1513.CrossRefPubMed Normand S, François B, Dardé M-L, et al. Oral nystatin prophylaxis of Candida spp. colonization in ventilated critically ill patients. Intensive Care Med. 2005;31:1508–1513.CrossRefPubMed
150.
Zurück zum Zitat Schuster MG, Edwards JE, Sobel JD, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008;149:83–90.CrossRefPubMed Schuster MG, Edwards JE, Sobel JD, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008;149:83–90.CrossRefPubMed
151.
Zurück zum Zitat Giglio M, Caggiano G, Dalfino L, et al. Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012;16:R57.CrossRefPubMedPubMedCentral Giglio M, Caggiano G, Dalfino L, et al. Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012;16:R57.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Ostrosky-Zeichner L, Shoham S, Vazquez J, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–1226.CrossRefPubMed Ostrosky-Zeichner L, Shoham S, Vazquez J, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–1226.CrossRefPubMed
153.
Zurück zum Zitat Knitsch W, Vincent J-L, Utzolino S, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61:1671–1678.PubMedPubMedCentral Knitsch W, Vincent J-L, Utzolino S, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61:1671–1678.PubMedPubMedCentral
154.
Zurück zum Zitat Timsit J-F, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA. 2016;316:1555–1564.CrossRefPubMed Timsit J-F, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA. 2016;316:1555–1564.CrossRefPubMed
Metadaten
Titel
Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis
verfasst von
Panomwat Amornphimoltham
Peter S. T. Yuen
Robert A. Star
Asada Leelahavanichkul
Publikationsdatum
13.03.2019
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 9/2019
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-019-05581-y

Weitere Artikel der Ausgabe 9/2019

Digestive Diseases and Sciences 9/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.