Skip to main content
Erschienen in: Digestive Diseases and Sciences 7/2019

17.12.2018 | Original Article

Gut Microbiome, Short-Chain Fatty Acids, and Mucosa Injury in Young Adults with Human Immunodeficiency Virus Infection

verfasst von: Yong Qing, Hangyu Xie, Chen Su, Youwei Wang, Qiuyue Yu, Qiuyu Pang, Fan Cui

Erschienen in: Digestive Diseases and Sciences | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

HIV progression is characterized by immune activation and microbial translocation from the gut. Short-chain fatty acids (SCFAs) are essential for gut homeostasis. Decreased intestinal SCFAs play a role in rapid HIV progression.

Aims

To compare the SCFA profile, intestinal microbiome, and intestinal mucosal injury between patients with HIV (but not AIDS) and healthy controls.

Methods

This was a prospective study of 15 patients without AIDS and 10 controls conducted between July 2016 and January 2017 at the Institute of Dermatology and Venereology (Sichuan Academy of Medical Sciences). Stool specimens were collected to analyze the microbiome and SCFAs. Blood I-FABP and d-lactate (gut injury markers) were measured as well as T cells in HIV-positive patients. Intestinal mucosa was observed by colonoscopy.

Results

Rikenellaceae, Microbacteriaceae, Roseburia, Lachnospiraceae, Alistipes, and Ruminococcaceae were decreased, while Moraxellaceae and Psychrobacter were increased in HIV-positive patients. Butyric acid (p = 0.04) and valeric acid (p = 0.03) were reduced in HIV-positive patients. Colonoscopy revealed no visible damage in all subjects. There were no differences in I-FABP and d-lactate between groups. Butyric and valeric acids mainly positively correlated with Rikenellaceae, Ruminococcaceae, Alistipes, Roseburia, and Lachnospiraceae. CD8+ cells were positively correlated with Proteobacteria. CD4+ cells, and CD4/CD8 were negatively correlated with acetic acid. CD8+ cells were positively correlated with valeric acid.

Conclusion

The differences in the distribution of intestinal flora between HIV-infected and healthy individuals, especially some SCFAs, suggest that there is already a predisposition to intestinal mucosa damage in HIV-infected individuals.
Literatur
1.
Zurück zum Zitat Feinberg J. In the clinic. Management of newly diagnosed HIV infection. Ann Intern Med. 2011;155:ITC41.CrossRefPubMed Feinberg J. In the clinic. Management of newly diagnosed HIV infection. Ann Intern Med. 2011;155:ITC41.CrossRefPubMed
3.
Zurück zum Zitat Wilcox CM, Saag MS. Gastrointestinal complications of HIV infection: changing priorities in the HAART era. Gut. 2008;57:861–870.CrossRefPubMed Wilcox CM, Saag MS. Gastrointestinal complications of HIV infection: changing priorities in the HAART era. Gut. 2008;57:861–870.CrossRefPubMed
4.
Zurück zum Zitat Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of gut microbiome dysbiosis in the context of HIV infection and antiretroviral therapy. Clin Pharmacol Ther. 2016;99:600–611.CrossRefPubMed Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of gut microbiome dysbiosis in the context of HIV infection and antiretroviral therapy. Clin Pharmacol Ther. 2016;99:600–611.CrossRefPubMed
5.
Zurück zum Zitat Chevalier MF, Petitjean G, Dunyach-Remy C, et al. The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathog. 2013;9:e1003453.CrossRefPubMedPubMedCentral Chevalier MF, Petitjean G, Dunyach-Remy C, et al. The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathog. 2013;9:e1003453.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Gori A, Tincati C, Rizzardini G, et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol. 2008;46:757–758.CrossRefPubMed Gori A, Tincati C, Rizzardini G, et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol. 2008;46:757–758.CrossRefPubMed
7.
Zurück zum Zitat Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther. 2016;13:19.CrossRefPubMedPubMedCentral Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther. 2016;13:19.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol. 2015;36:22–30.CrossRefPubMed Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol. 2015;36:22–30.CrossRefPubMed
9.
10.
Zurück zum Zitat Dillon SM, Kibbie J, Lee EJ, et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS. 2017;31:511–521.CrossRefPubMed Dillon SM, Kibbie J, Lee EJ, et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS. 2017;31:511–521.CrossRefPubMed
11.
Zurück zum Zitat Nowak P, Troseid M, Avershina E, et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS. 2015;29:2409–2418.CrossRefPubMed Nowak P, Troseid M, Avershina E, et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS. 2015;29:2409–2418.CrossRefPubMed
12.
Zurück zum Zitat Vujkovic-Cvijin I, Dunham RM, Iwai S, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5:193ra191.CrossRef Vujkovic-Cvijin I, Dunham RM, Iwai S, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5:193ra191.CrossRef
13.
Zurück zum Zitat Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med. 2016;14:83.CrossRefPubMedPubMedCentral Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med. 2016;14:83.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Mutlu EA, Keshavarzian A, Losurdo J, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:e1003829.CrossRefPubMedPubMedCentral Mutlu EA, Keshavarzian A, Losurdo J, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:e1003829.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Saxena D, Li Y, Devota A, et al. Modulation of the orodigestive tract microbiome in HIV-infected patients. Oral Dis. 2016;22 Suppl 1:73–78.CrossRefPubMed Saxena D, Li Y, Devota A, et al. Modulation of the orodigestive tract microbiome in HIV-infected patients. Oral Dis. 2016;22 Suppl 1:73–78.CrossRefPubMed
16.
Zurück zum Zitat Serrano-Villar S, Rojo D, Martinez-Martinez M, et al. Gut bacteria metabolism impacts immune recovery in HIV-infected individuals. EBioMedicine. 2016;8:203–216.CrossRefPubMedPubMedCentral Serrano-Villar S, Rojo D, Martinez-Martinez M, et al. Gut bacteria metabolism impacts immune recovery in HIV-infected individuals. EBioMedicine. 2016;8:203–216.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Tao JH, Duan JA, Jiang S, Guo JM, Qian YY, Qian DW. Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat by gas chromatography with flame ionization detector. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1029–1030:88–94.CrossRefPubMed Tao JH, Duan JA, Jiang S, Guo JM, Qian YY, Qian DW. Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat by gas chromatography with flame ionization detector. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1029–1030:88–94.CrossRefPubMed
18.
Zurück zum Zitat Das B, Dobrowolski C, Shahir AM, et al. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology. 2015;474:65–81.CrossRefPubMed Das B, Dobrowolski C, Shahir AM, et al. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology. 2015;474:65–81.CrossRefPubMed
19.
Zurück zum Zitat Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–671.CrossRefPubMedPubMedCentral Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–671.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE. 2018;13:e0201073.CrossRefPubMedPubMedCentral Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE. 2018;13:e0201073.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5:e73.CrossRef Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5:e73.CrossRef
23.
Zurück zum Zitat Luhrs H, Gerke T, Muller JG, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–466.CrossRefPubMed Luhrs H, Gerke T, Muller JG, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–466.CrossRefPubMed
24.
Zurück zum Zitat Vazquez-Castellanos JF, Serrano-Villar S, Latorre A, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015;8:760–772.CrossRefPubMed Vazquez-Castellanos JF, Serrano-Villar S, Latorre A, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015;8:760–772.CrossRefPubMed
25.
Zurück zum Zitat Villar-Garcia J, Guerri-Fernandez R, Moya A, et al. Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: a double-blind, randomised, placebo-controlled trial. PLoS ONE. 2017;12:e0173802.CrossRefPubMedPubMedCentral Villar-Garcia J, Guerri-Fernandez R, Moya A, et al. Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: a double-blind, randomised, placebo-controlled trial. PLoS ONE. 2017;12:e0173802.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ellis CL, Ma ZM, Mann SK, et al. Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J Acquir Immune Defic Syndr. 2011;57:363–370.CrossRefPubMedPubMedCentral Ellis CL, Ma ZM, Mann SK, et al. Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J Acquir Immune Defic Syndr. 2011;57:363–370.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Ji Y, Zhang F, Zhang R, et al. Changes in intestinal microbiota in HIV-1-infected subjects following cART initiation: influence of CD4+ T cell count. Emerg Microbes Infect. 2018;7:113.CrossRefPubMedPubMedCentral Ji Y, Zhang F, Zhang R, et al. Changes in intestinal microbiota in HIV-1-infected subjects following cART initiation: influence of CD4+ T cell count. Emerg Microbes Infect. 2018;7:113.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–2854.CrossRefPubMedPubMedCentral Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–2854.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Zhou Y, Ou Z, Tang X, et al. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med. 2018;22:2263–2271.CrossRefPubMedPubMedCentral Zhou Y, Ou Z, Tang X, et al. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med. 2018;22:2263–2271.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Travis AJ, Kelly D, Flint HJ, Aminov RI. Complete genome sequence of the human gut symbiont Roseburia hominis. Genome Announc. 2015;3:e01286–15.CrossRefPubMedPubMedCentral Travis AJ, Kelly D, Flint HJ, Aminov RI. Complete genome sequence of the human gut symbiont Roseburia hominis. Genome Announc. 2015;3:e01286–15.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. 2013;110:1253–1262.CrossRefPubMed Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. 2013;110:1253–1262.CrossRefPubMed
32.
Zurück zum Zitat Tamanai-Shacoori Z, Smida I, Bousarghin L, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157–170.CrossRefPubMed Tamanai-Shacoori Z, Smida I, Bousarghin L, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157–170.CrossRefPubMed
33.
Zurück zum Zitat Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–1283.CrossRefPubMed Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–1283.CrossRefPubMed
34.
Zurück zum Zitat Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–1360.CrossRefPubMed Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–1360.CrossRefPubMed
35.
Zurück zum Zitat Hatziioanou D, Mayer MJ, Duncan SH, Flint HJ, Narbad A. A representative of the dominant human colonic Firmicutes, Roseburia faecis M72/1, forms a novel bacteriocin-like substance. Anaerobe. 2013;23:5–8.CrossRefPubMed Hatziioanou D, Mayer MJ, Duncan SH, Flint HJ, Narbad A. A representative of the dominant human colonic Firmicutes, Roseburia faecis M72/1, forms a novel bacteriocin-like substance. Anaerobe. 2013;23:5–8.CrossRefPubMed
36.
Zurück zum Zitat Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.CrossRefPubMedPubMedCentral Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.CrossRefPubMed Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.CrossRefPubMed
38.
Zurück zum Zitat Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6:703–713.CrossRefPubMedPubMedCentral Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6:703–713.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun. 2012;80:3786–3794.CrossRefPubMedPubMedCentral Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun. 2012;80:3786–3794.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by lachnospiraceae: high frequency of Ruminococcus gnavus. Front Pediatr. 2016;4:57.CrossRefPubMedPubMedCentral Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by lachnospiraceae: high frequency of Ruminococcus gnavus. Front Pediatr. 2016;4:57.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Graf J. The Family Rikenellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, eds. The Prokaryotes. Berlin: Springer; 2014. Graf J. The Family Rikenellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, eds. The Prokaryotes. Berlin: Springer; 2014.
42.
Zurück zum Zitat Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS ONE. 2016;11:e0146162.CrossRefPubMedPubMedCentral Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS ONE. 2016;11:e0146162.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Zevin AS, McKinnon L, Burgener A, Klatt NR. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation. Curr Opin HIV AIDS. 2016;11:182–190.CrossRefPubMedPubMedCentral Zevin AS, McKinnon L, Burgener A, Klatt NR. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation. Curr Opin HIV AIDS. 2016;11:182–190.CrossRefPubMedPubMedCentral
44.
45.
Zurück zum Zitat Teixeira LM, Merquior VLC. The Family Moraxellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, eds. The Prokaryotes. Berlin: Springer; 2014. Teixeira LM, Merquior VLC. The Family Moraxellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, eds. The Prokaryotes. Berlin: Springer; 2014.
46.
Zurück zum Zitat Saito R, Nonaka S, Nishiyama H, Okamura N. Molecular mechanism of macrolide-lincosamide resistance in Moraxella catarrhalis. J Med Microbiol. 2012;61:1435–1438.CrossRefPubMed Saito R, Nonaka S, Nishiyama H, Okamura N. Molecular mechanism of macrolide-lincosamide resistance in Moraxella catarrhalis. J Med Microbiol. 2012;61:1435–1438.CrossRefPubMed
47.
Zurück zum Zitat Alcala L, Ruiz-Serrano MJ, Cosin J, Garcia-Garrote F, Ortega A, Bouza E. Disseminated infection due to Mycobacterium simiae in an AIDS patient: case report and review. Clin Microbiol Infect. 1999;5:294–296.CrossRefPubMed Alcala L, Ruiz-Serrano MJ, Cosin J, Garcia-Garrote F, Ortega A, Bouza E. Disseminated infection due to Mycobacterium simiae in an AIDS patient: case report and review. Clin Microbiol Infect. 1999;5:294–296.CrossRefPubMed
48.
Zurück zum Zitat Michelini Z, Baroncelli S, Fantauzzi A, et al. Reduced plasma levels of sCD14 and I-FABP in HIV-infected patients with mesalazine-treated ulcerative colitis. HIV Clin Trials. 2016;17:49–54.CrossRefPubMed Michelini Z, Baroncelli S, Fantauzzi A, et al. Reduced plasma levels of sCD14 and I-FABP in HIV-infected patients with mesalazine-treated ulcerative colitis. HIV Clin Trials. 2016;17:49–54.CrossRefPubMed
49.
Zurück zum Zitat Smith SM, Eng RH, Campos JM, Chmel H. d-lactic acid measurements in the diagnosis of bacterial infections. J Clin Microbiol. 1989;27:385–388.PubMedPubMedCentral Smith SM, Eng RH, Campos JM, Chmel H. d-lactic acid measurements in the diagnosis of bacterial infections. J Clin Microbiol. 1989;27:385–388.PubMedPubMedCentral
50.
51.
Zurück zum Zitat Monaco CL, Gootenberg DB, Zhao G, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe. 2016;19:311–322.CrossRefPubMedPubMedCentral Monaco CL, Gootenberg DB, Zhao G, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe. 2016;19:311–322.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Farhour Z, Mehraj V, Chen J, Ramendra R, Lu H, Routy JP. Use of (1– > 3)-beta-d-glucan for diagnosis and management of invasive mycoses in HIV-infected patients. Mycoses. 2018;61:718–722.CrossRefPubMedPubMedCentral Farhour Z, Mehraj V, Chen J, Ramendra R, Lu H, Routy JP. Use of (1– > 3)-beta-d-glucan for diagnosis and management of invasive mycoses in HIV-infected patients. Mycoses. 2018;61:718–722.CrossRefPubMedPubMedCentral
Metadaten
Titel
Gut Microbiome, Short-Chain Fatty Acids, and Mucosa Injury in Young Adults with Human Immunodeficiency Virus Infection
verfasst von
Yong Qing
Hangyu Xie
Chen Su
Youwei Wang
Qiuyue Yu
Qiuyu Pang
Fan Cui
Publikationsdatum
17.12.2018
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 7/2019
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-018-5428-2

Weitere Artikel der Ausgabe 7/2019

Digestive Diseases and Sciences 7/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.