Skip to main content

Open Access 02.08.2024 | REVIEW

Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis?

verfasst von: Fatemeh Zarimeidani, Rahem Rahmati, Mehrnaz Mostafavi, Mohammad Darvishi, Sanaz Khodadadi, Mahya Mohammadi, Farid Shamlou, Salar Bakhtiyari, Iraj Alipourfard

Erschienen in: Inflammation

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.

Graphical Abstract

Hinweise
Fatemeh Zarimeidani and Rahem Rahmati contributed equally.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The human gut microbiota is a complex biome and variable collection of microorganisms interacting with one another and the human host, including bacteria, fungi, archaea, and viruses. The gut microbiome influences many aspects of host health, including immune system control, gut hormone regulation, and neuronal transmission. It modifies the ingested medications and their metabolism, toxin clearance, and the generation of numerous host-affecting agents [1]. The gut microbial load can directly or indirectly influence the brain via a mutual relationship known as the "gut-brain axis." The gut microbiota can directly influence the brain by producing neuroactive substances such as neurotransmitters, amino acids, and microbial metabolites. These substances can potentially interfere with the host immune system and metabolism, affecting the gastrointestinal (GI), nervous system and vagus nerve. The gut microbiota can also influence the integrity of the gut barrier, which limits the passage of luminal substances into the bloodstream. Accessibility of such bacterial structural components like lipopolysaccharides or by-products of metabolic activities like short-chain fatty acids (SCFAs) may result in an inflammatory cascade that affects the CNS [2].
Autism spectrum disorder (ASD) is a persistent psychological abnormality characterized by impaired social communication and limiting and repetitive behavior patterns, hobbies, or activities [3]. Both genetic and environmental variables have been involved in ASD. Recent studies have shown that inflammation and inflammatory mediators have a role in disease genesis. Inflammatory elements that contribute to ASD include unusual microglia activation and polarization phenotypes, higher systemic levels of pro-inflammatory mediators, and altered patterns of immune cell responsiveness to activation triggers [4].
Numerous types of research in recent years have implicated gut bacteria in the etiology of ASD. However, studies have found that the structure of the gut microbiota is meaningfully changed in ASD; the significance of the gut microbiota as an etiology of ASD is yet unclear. It has been accepted that the microbiome of autistic children differs from healthy individuals [4]. Inflammatory deviations are potential etiology candidates in how gut microbiota can influence the gut-brain axis of ASD patients. Neuroinflammatory factors in ASD result from changes in the regulation of intestinal barriers, activation and function of microglia, and levels of neurotransmitters [5, 6].
ASD is currently diagnosed based on clinical symptoms, which can lead to delays and misinterpretation. Biomarkers based on neuroinflammatory processes associated with gut microbiota may provide a more objective and precise way of detecting ASD. Several examples of these markers include microRNAs that modulate immune signaling; brain-derived neurotrophic factor (BDNF), which promotes brain growth; S100B, which reflects neural immunity; and chemokines that facilitate immunological activation, such as RANTES and eotaxin [7]. This review aims to evaluate and discuss neuroinflammatory biomarkers in the pathogenesis and potential diagnostic trials of ASD in more detail.

Gut Microbiota, Inflammation, and ASD

Nearly two decades earlier, a potential association between gut microbiota and ASD was proposed [8]. While the exact cause of ASD is still unknown, existing literature has shown that gut dysbiosis, along with a neuroinflammatory condition, is found in individuals with ASD [9]. Studies found inconsistent differences in the gut microbiota composition of ASD cases. Overall, the ASD population shows signs of dysbiosis, with a different abundance of Bacteroidetes/Firmicutes, Prevotella, Clostridium, Lactobacillus, Bifidobacterium, Faecalibacterium, Streptococcus, Enterobacteriaceae, Verrucomicrobia, Fusobacteria, Escherichia coli, Enterococcus, Akkermansia, Phascolarctobacterium, and lots of other microbes compared to healthy controls [1012]. Nonetheless, specific microbial patterns associated with ASD remain unidentified.
Moreover, Cuomo et al. [9] recently indicated that gut dysbiosis and inflammation were identified by host fecal DNA-specific methylation in autistic children. They revealed that autistic patients with dysbiosis significantly enriched inflammatory and immune pathways, including the production of interleukin (IL)-2, 6, and 12 and the activation of the toll-like receptor (TLR) 3 signaling pathway. Consistently, several studies corroborated earlier findings of the neuroinflammation caused by dysbiosis in various neurodegenerative and neuropsychiatric conditions [12, 13]. Disruptions in immune signaling pathways like the NLRP3 inflammasome, type 1 interferon, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are among the possible dysbiotic consequences. Alterations to the T-helper 17 cell/T-reg proportion and imbalances in macrophage polarization, tumor necrosis factor (TNF)-α, IL-1β, 18, and 6 are also possible [14, 15].
On the other hand, the involvement of inflammation and immunological dysregulation has been indicated in the development and/or severity of ASD [16, 17]. Prior investigations on autistic cases have shown elevated levels of inflammatory markers such as TNF-α, interferon-γ, IL-2,4,5,6,8,17, and 10 [12, 18, 19]. A study also reported that autistic children with an innate proinflammatory response or impaired T cell activation indicate more severe behavioral issues compared to those with noninflamed or non-T cell-activated immunological profiles [20]. Given the lack of research on gut microbial composition and metabolites in autistic patients concerning inflammatory conditions (Table 1), the precise relationship between these three factors remains unclear and requires further investigation. Overall, gut microbiota seems to play a crucial role in ASD through inflammation.
Table 1
Studies on the association of neuroinflammatory biomarkers with microbial alternation and autistic behaviors
Author (year)
Population
Biomarker
Method
Microbial alteration
Association with behavioral symptoms
Abuaish (2021)
[21]
28 Sprague Dawley male rats
BDNF
qRT-PCR
Fecal transmission of Bifidobacterium balanced the fecal Clostridium spp. and normalized the level of BDNF expression.
Association between the impairment in social behavior and augmented BDNF transcript levels in the hippocampus
Chen (2020)
[22]
C57BL/6N mice
RANTES and Eotaxin
Th1/Th2 and Chemokine 20- Plex Mouse Procarta Plex™ Panel 1 and the Bioplex200 system
Negative correlation between Clostridiaceae, Erysipelotrichaceae, Prevotella_other,
Candidatus Arthromitus and Proteus with serum levels of RANTES and Eotaxin.
Improved anxiety-like and repetitive behaviors in mice with gut microbiota transplantation
Carissimi [2019]
[23]
30 ASD children and 14 controls
HMGB-1
Western blot stool
• ↓ Gut microbiota biodiversity
• Under-representation in the gut microbiota of ASD subjects of several functions, such as catabolism of 3,3 phenylpropionate
• Loss of E. coli strains known to regulate the propionate catabolism
Relationship between fecal HMGB1 levels and severity of GI symptoms
Iovene (2017)
[24]
47 ASD and 33 healthy children
Calprotectin
ELISA
↑ Candida spp. and ↓ Lactobacillus spp.in ASD patients
• Correlation between disease severity (CARS score) and calprotectin and Clostridium spp. presence
• Correlation of GI symptoms, such as constipation and alternating bowel with the increased permeability to lactulose
Tomova (2020
[25]
63 children with ASD and 27 control non-autistic children,
Calprotectin
ELISA
• ↑ Alpha diversity in autistic children at the phylum level
• Significantly more present in samples of children with ASD: Lactobacillus, Aerococcus, Burkholderia, Desulfohalobium, Desulfovibrio, Oxalobacter, Pseudocitrobacter, and Youngiibacter
• Positive correlation of Clostridium strains with GI score and fecal calprotectin
• Positive correlation of Youngiibacter and social interaction and repetitive score of ADI-R and GI manifestations
• Correlation of Nitriliruptor with behavioral scores in ADOS-2 social affect domain, reciprocal social interaction domain, and total score
• Correlation of Methanomicrobiales with social interaction, reciprocal and social interaction, and total raw score of ADOS-2
• Correlation of GI score with Oxalobacter and Desulfohalobium
• Negative correlation of Desulfohalobium, with BMI
Laghi (2021)
[26]
80 ASD preschoolers
Calprotectin
ELISA
• Negative correlation of Akkermansia muciniphila with intermediate fecal calprotectin levels
• Positive correlation of Prevotella levels of calprotectin higher than 200 μg/g
• No differences between the median concentration of fecal calprotectin in patients with and without GI symptoms, even with consideration of age-based stratification of children
• No association between ADOS and any bacterial groups
• ↑ Sutterella and Bifidobacteria and ↓ Prevotella in patients with GI symptoms
Chamtouri (2023)
[27]
28 ASD, 18 age-matched siblings, and 28 age- and sex-matched unrelated children
SCFA
(↑Propionic and valeric acids in autistic patients at lower ages)
Gas chromatography
Bifidobacterium and Collinsella occurring in younger autistic children which tend to be attenuated at older ages
• Positive correlation of ↑ Coriobacteriaceae in autistic patients with SCFA
• Negative correlation of acetate and Veillonellaceae, Oscillospiraceae, Christensenellaceae, Eubacterium coprostanoligenes_group, Candidatus Gastranaerophilales, and Oscillospirales_UCG-010
• Negative correlation of butyric acid with Eubacterium coprostanoligenes_group
• Positive correlation of isobutyric and isovaleric with Peptostreptococaceae, Eggerthellaceae, Oscillospiraceae, Methanobacteriaceae, Christensenellaceae, Akkermansiaceae, Clostridia_UCG-014, Rikenellaceae, Anaerovoracaceae, Oscillospirales_UCG-010, and Actinomycetaceae and negative correlation with Bifidobacteriaceae, Lactobacillaceae, Pasteurellaceae, and Butyricocaceae
• Positive correlation of valeric acid with Atopobiaceae, Peptostreptococaceae, Eggerthellaceae, Methanobacteriaceae, Erysipelotrichaceae, Akkermansiaceae, and Actinomycetaceae and negative correlation with Butyricicocaceae
• Caproic acid correlated positively with Peptostreptococcaceae and Bacilli_RF39 and negatively with Butyricicocaceae
• Association of ↓ Bifidobacterium and ↑ Thermodesulfobacteriota with severe autism
• No significant differences between disease severity (CARS) and absolute levels of SCFA, except for the molar proportions of isobutyric and isovaleric
Liu (2019)
[28]
30 autistic subjects and 20 controls
SCFA
(↓ Acetate and butyrate and ↑ fecal valeric acid in ASD subjects)
Liquid chromatography
• ↓ Butyrate-producing taxa (Ruminococcaceae, Eubacterium, Lachnospiraceae, and Erysipelotrichaceae) and ↑ valeric acid-associated bacteria (Acidobacteria) in autistic patients
Enriched Fusobacterium, Barnesiella, Coprobacter, and valeric acid-associated bacteria (Actinomycetaceae) and reduced butyrate-producing taxa in constipated autistic subjects
Kang (2018)
[29]
23 autistic children and 21 controls
SCFA
(No differences between propionate and butyrate between control and ASD patients)
NMR spectroscopy
Prevotella, Coprococcus Faecalibacterium (F. prausnitzii,a butyrate producer) and Haemophilus (H. parainfluenzae) in ASD patients
Positive relation between GI symptoms and ATEC
De Angelis (2013)
[30]
10 autistic children, 10 PDD-NOS, and 10 healthy controls
SCFA
Gas chromatography
• Positive correlation between the level of Clostridium species and the amount of methyl esters (butanoic acid methyl ester, acetic acid methyl ester, and pentanoic acid methyl ester) and indoles
• Positive correlation of Faecalibacterium and Ruminococcus and Bifidobacterium genera with total SCFA and Bacteroides genus with propionic acid
N/A
Deng (2022)
[31]
45 autistic children and 45 typically developing ones
SCFA (↑ propionic acid, butyric acid, and valeric acid in the ASD group)
Gas chromatography/mass spectrometry
• Association between SCFAs and Hydrogenedentes, Elusimicrobia, Methylomirabilota, Crenarchaeota, MBNT15, Halobacteria, Chloroflexi, Actinobacteria, and Campylobacter
• Positive correlation of alpha diversity with eating behaviors in contrast to Bacteridota
• Higher diversity in the ASD patients with GI symptoms group
• Enrichedd Clostridiales, Clostridiaceae, Roseburia intestinalis, Megamonas, Selenomonadaceae, and Eubacterium eligens groups in the ASD with GI symptoms group along with Oxalobacteraceae, Gamaproteobacteria, Burkholderiates, Agathobacter, and Proteobacteria at phylum levels

S100B

Protein and peptide-based biomarkers have been the subject of some research for early diagnosis of ASD [7]. The S100 calcium-binding protein beta subunit (S100B) is expressed in astrocytes and other extra-neural cells, including enteric glial cells (EGCs). It affects neurons depending on the concentration, which can be trophic up to a few nanomolar doses and toxic at micromolar levels. Extracellular protein S100B contributes considerably to neuroinflammation by acting synergistically with pro-inflammatory cytokines and, at higher concentrations, acting as a cytokine [32]. Despite the existing conflict [3335], multiple studies have found a significant elevation of S100B in autistic individuals compared to healthy cases, supporting the possible role of this factor in the etiology and development of ASD [3640]. The source of this elevated S100B concentration in the periphery can be injured neurons or EGCs. In a recent study, the correlation between plasma S100B levels and fecal concentrations of calprotectin (an objective marker of GI inflammation status) revealed that not only brain astrocytes but also EGCs might be involved in the pathophysiology of autism [41]. One hypothesis says that the alternation of enteric glial-derived S100B expression in autistic patients can result from changed microbiota, disruption of the intestinal barrier, and even pathogenic bacteria, altogether inducing intestinal inflammation and converting EGCs to reactive EGCs [38]. Another in vivo study in mice showed that gut microbiota biodiversity increases with S100B levels or oral administration. Firmicutes phylum, including Lactobacillus and Bacteroidetes, including Barnesiella and Butyricimonas spp, are affected by S100B levels [42]. However, higher levels of Bacteroidetes and lower levels of Firmicutes were observed in a group of children with autism [43]. No study clarified the correlation between gut microbial alternation and the effect of probiotic use and S100B levels in autistic patients. Studies can be directed to know the effects of probiotic administration as a manipulative factor of gut microbiota on the levels of S100B in ASD patients. Furthermore, it is suggested that S100B can be investigated as a potential biomarker both in the diagnosis and treatment of autism.

Brain-derived Neurotrophic Factor

BDNF is a protein member of the nerve growth factor family (neurotrophins). BDNF has a key role in both the pre-synaptic site (modulates neurotransmitter release) and post-synaptic site (augments the function of ion channels), so it generally contributes to affect neuroplasticity and, thereby, behavior-related conditions [44]. Abnormal levels of BDNF were seen in a wide range of neurological diseases, including schizophrenia, depression, and even autism [45]. According to recent studies, altered BDNF levels were observed in ASD patients compared to the controls, revealing that BDNF might play a role in autism pathophysiology [4650]. A relatively higher level of BDNF was seen in mild phenotypes compared to severe autism, emphasizing the probable protective function of this factor [51]. Downregulation of the BDNF in the antiapoptotic signaling pathway in the brains of autistic individuals is one of the possible underlying mechanisms in the pathophysiology of autism [52]. The reduction of BDNF expression as a neuroprotective agent can be caused by raised inflammatory factors, including IL-1β and TNF; therefore, it may have a negative regulatory role in neuroinflammation [53, 54]. The dysbiotic gut microbiota in autistic patients may contribute to this inflammatory condition through immune dysregulation and the release of inflammatory factors such as IL-1β, which crosses the BBB [55]. Animal studies showed that BDNF has been lower in germ-free mice's cortex and hippocampus [56]. Probiotic administration in these sterile mice also resulted in partial and complete normalization of behavior and BDNF levels, respectively. It has also been suggested that probiotics, specifically a combination of the Lactobacillus and Bifidobacterium genera, may be effective in increasing BDNF levels and improving mental health parameters in patients with depression and neurological disorders [57, 58]. Balance of fecal Clostridium spp. and normal BDNF expression were both achieved through fecal microbiota transplantation or Bifidobacterium treatment in an animal model of autism [21]. In another rat model study, Lactobacillus supplementation could increase BDNF levels and attenuate behavioral anomalies [59]. Regarding these relations, further studies are needed to know if the induction and modification of microbial alteration in the gut of autistic patients can be monitored and controlled by BDNF levels.

RANTES AND Eotaxin

Regulated upon Activation, Normal T Cell Expressed and Secreted, RANTES (CCL5), and eotaxin (CCL11) are pro-inflammatory chemokines released by a variety of cells, including blood cells, fibroblasts, endothelium, epithelium, neurons, and glial cells [60, 61]. RANTES [60, 6266] and eotaxin [6568] plasma levels are considerably higher in autistic children. Since RANTES and eotaxin act as pro-inflammatory mediators, their rise implies that both play a neuroinflammatory role in ASD [60, 61, 69, 70]. Although Shen et al. [63] reported no significant correlations between RANTES or eotaxin and behavioral patterns of ASD, Han et al. [64, 65] and Hu et al. [67] found RANTES and eotaxin related to ASD, respectively. Besides, other studies demonstrated that the rise of both factors is ASD related [66]. Moreover, gut microbiota seems to induce RANTES-mediated inflammation [7173]. Earlier studies uncovered the NOD‐like receptor family pyrin domain containing 6–gut microbiota axis and subsequent IL-6 and TNF release as one possible connection of gut microbiota dysbiosis with RANTES-mediated immune dysregulation [74, 75]. Concerning the expression of gene encoding, it has been found that gut microbiota can manipulate eotaxin expression levels [76]. On this matter, antibiotic-treated mice had an altered microbiome with elevated eotaxin and different structures in their microglia [77]. Also, it has been found that mice's eotaxin levels changed after fecal microbiota transfer [78]. Regarding gut microbiota and ASD relation, modified anxiety-like and repetitive behaviors were observed while the levels of RANTES and eotaxin were improved through gut microbiota transplant in ASD mice. These results showed that RANTES and eotaxin play important roles in CNS synaptic transmission and development, and their levels are associated with the structure of microbiota in mice [22]. Clostridiaceae, Erysipelotrichaceae Prevotella families, Candidatus Arthromitus, and Proteus genus were found to be inversely associated with the level of RANTES and eotaxin [22]. In-vivo topical and oral probiotic administrations have reported a connection of RANTES with strains Lactobacillus paracasei SGL 04, Lactobacillus plantarum SGL 07, Lactobacillus fermentum SGL 10, and Lactobacillus brevis SGL 12 lysates, and Lactobacillus rhamnosus GG [79, 80]. Similarly, Probiotics containing Lactobacillus acidophilus, Lactobacillus rhamnosus GG, and Bifidobacterium also changed eotaxin gene expression in an animal [81]. Overall, the important findings implied from these studies suggest a potential mechanism of gut microbiota in ASD pathogenesis and severity through inflammatory factors of RANTES and eotaxin.

GM-CSF

The cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF) drives many aspects of myeloid hemopoietic cell biology, including survival, proliferation, differentiation, and functional activity. It also affects the immune system through dendritic and T-cell functions [82, 83]. GM-CSF triggers chronic inflammation in the CNS and acts as a neuronal growth factor to stimulate neuronal and glial differentiation [8284].
Although some earlier studies presented a low GM-CSF level in autistic patients [85, 86], higher levels of GM-CSF were found consequently in the brains of ASD patients [70, 8284]. Perroud et al. reported higher levels of GM-CSF- IL-1α, TNF-α, and interferon-α among ASD children experiencing co-morbid GI symptoms [87]. The changes in GM-CSF levels in ASD can indicate that an inflammatory process may be involved in developmental and neuroimmune impairment [83]. Results of co-culture experiments by Takada et al. are the first to show that GM-CSF-induced macrophages inhibit the dendritic outgrowth of neurons in autistic individuals. This phenomenon is mediated through the secretion of pro-inflammatory cytokines, IL-1α and TNF-α, and may lead to more severe behavioral effects [88].
Interestingly, GM-CSF levels vary with alterations in gut microbiota [8992] and mostly with IL-17a, a cytokine that correlated with the severity of behavioral symptoms in individuals with ASD [89, 90]. Different species of gut bacteria have been linked to GM-CSF, including Parabacteroide, Prevotella, Streptococcus, Clostridium, Lactobacillus reuteri, Lactobacillus crispatus Enterococcus faecalis, Blautia, Butyricimonass, Roseburia, Anaerotruncus, and Blautia [89, 92]. An important finding showed that gut microbiota-derived metabolites like SCFAs may alter GM-CSF levels [90]. Within a study, GM-CSF as a neuroimmune factor was increased with the administration of probiotics containing Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus [93]. Altogether, the change of GM-CSF neuroinflammatory factors by gut microbiota alteration provides insight into the mechanism of pathogenesis in this way in ASD patients.

HMGB-1

The high mobility group box 1 protein (HMGB-1) is one of the most abundant members of the HMGB protein family and has many potential roles [94]. It has a key role in DNA regulatory activities as a nuclear protein [95]. As an extracellular factor, it is actively released when immune cells respond to an inflammatory condition [96] and also passively released by necrotic or damaged cells [95]. HMGB1 has numerous membrane receptors called pathogen recognition receptors, TLR4, TLR9, and receptors for advanced glycation end products (RAGE) are the dominant ones. Through its interactions with these receptors, HMGB1 promotes inflammation in cells [97]. HMGB1 can cross the blood–brain barrier, promote neurite outgrowth and cell migration, or mediate neuroinflammation after injury [98].
It has been understood that plasma levels of HMGB-1 can elevate in ASD patients [99] and positively correlated with the severity of autism [100]. Another effective inflammatory molecule, the epidermal growth factor receptor, was considered to be related to symptom severity in children with autism, and the HMGB1 level seems to correlate with that [101, 102]. Interestingly, higher HMGB1 levels are found to be associated with higher GI dysfunctions in individuals with autism, which can imply an intestinal concept of pathogenesis [23, 103]. It is similarly studied that fecal levels of HMGB1 were correlated with GI sign severity in ASD children, which regards ASD-related dysbiosis [23]. Microbiome dysbiosis accompanied by intestinal inflammation can lead to the activation of monocytes, upregulating HMGB1 excretion for a pro-inflammatory feedback loop [104].
Higher levels of HMGB1 and TLR4 have also been reported to be associated with autistic-like behaviors in mice, possibly through activation of the HMGB1/TLR4 signaling cascade [105]. Serum levels of TLR4 were elevated in ASD children and positively associated with their hyperactivity scores [106]. Activation of the HMGB1/RAGE/TLR4 axis leads to leukocyte infiltration into nerve cells and results in persistent CNS inflammation. It is suggested that neuroinflammation is strongly related to ASD occurrence [107] through activating the inflammasome system as a mechanism [108]. In addition, it is described that HMGB1 can bind to endogenous secretory RAGE, resulting in a decline in plasma RAGE levels. This may contribute to the pathophysiology of autism by interfering with neuropeptide oxytocin transport from the periphery to the brain [109].
The effect of probiotics and gut microbiota alteration on HMGB1 levels in ASD patients can strengthen the idea and can be further studied. HMGB1 might play a key role in ASD pathogenesis through neuroinflammation and can conduct treatment strategies. However, it is a highly potential factor in the pathophysiology of autism, not precisely clarified, and more research is needed.

Osteopontin

Osteopontin (OPN) is both a soluble proinflammatory cytokine with a well-established role in autoimmune neuroinflammatory diseases and a component of the non-collagenous bone matrix that controls biomineralization in bone tissue [110]. Depending on its location and context, OPN is involved in local inflammation, cell adhesion, immune response, chemotaxis, and protection from apoptosis [111]. Heilmann et al. hypnotized that OPN can activate the immune system, reduce tissue damage, and stimulate mucosal repair during acute inflammation while promoting the Th1 response and strengthening inflammation under chronic circumstances [112].
OPN has been related to the pathogenesis of neuropsychological disorders like multiple sclerosis and Alzheimer's disease [110, 113]. Expression of secreted phosphoprotein 1 and its encoded protein OPN by CD11c + cells were associated with cognitive impairment and common neuropathologies in Alzheimer’s disease [114]. Studies on OPN levels in autistic patients are limited. However, Al-ayadhi and Mostafa [111] found an association between elevated serum levels of OPN and disease severity, indicating the role of OPN in neuroinflammation and the development of brain-specific auto-antibodies. Their findings can support the idea of OPN as an important neuroinflammation factor in the mechanism of ASD.
The possible interaction of OPN with gut microbiota has been discussed in metabolic disorders [115]. However, the role of OPN is not yet studied in association with gut microbiota in neurological disorders, especially in ASD patients, and can be a potential target for future studies. The finding of alterations in specific strains of gut microbiota connected to OPN and symptoms of ASD may help to improve diet, treatment methods, and probiotic supplements.

Calprotectin

Calprotectin is a protein that binds to calcium and is mainly found in neutrophils, which are white blood cells that increase when inflammation and cell damage occur. Calprotectin in stool can indicate intestinal inflammation and serve as a biomarker [116]. Considering the possible role of gut inflammation in the development of ASD, a number of research have studied the association of calprotectin levels in ASD patients, but their results were inconsistent. Some reports show that ASD patients and their relatives may have higher calprotectin levels than control groups [41, 117]. Interestingly, Babinská et al. found that calprotectin levels of ASD individuals were significantly related to all domains of autism diagnostic interview-revised, which measures social interaction, communication, and restricted and repetitive behaviors [41].
Similarly, Iovene et al. reported a significant correlation between autism severity, calprotectin level, and Clostridium spp—abundance [24]. Contrarily, Azouz et al. found no relation between calprotectin and disease severity, though they revealed a moderate correlation between calprotectin and GI symptoms [118]. Tomova et al. also revealed a positive correlation between Costridiacae bacteria, the severity of GI manifestations, and behavioral symptoms of ASD children. Calprotectin levels were also moderately correlated with higher expression of macrophage inflammatory protein 1β, which was associated with communication subscale and total score of autism diagnostic observation schedule, indicating that it may play a role in microbial-neuronal cross-talk [25]. Unlikely, some investigations found no statistically significant difference in calprotectin levels between ASD patients and controls [119122] and, consequently, no appreciable variation in calprotectin levels of ASD patients with and without GI symptoms.
Studies on probiotic effects on calprotectin levels and autism are limited in the literature. Laghi et al. showed that greater calprotectin levels were associated with more Prevotella and fewer Akkermansia bacteria in the gut, indicating these bacteria may have inflammatory or protective effects, respectively [26]. However, Santocchi et al. found probiotic therapy, including eight strains of Streptococcus, Bifidobacterium, and Lactobacillus, to have a favorable impact on adaptive functioning in ASD patients but no discernible impact on calprotectin levels with or without GI symptoms [123]. This indicates that the probiotic effect on autistic patients is more complex than the reduction of gut inflammation, and the role of calprotectin as a probable neuroinflammatory mediator should be more studied.
Overall, the heterogeneities of calprotectin studies could be due to the diversity of trialed individuals, the accuracy of the used methods, and insufficient simultaneous studies of microbiota alterations and calprotectin. However, it is still possible to understand that host-microbiota dysbiosis and inflammation-induced calprotectin trigger neuroinflammatory mechanisms that cause autistic aspects.

Gut Microbiota Metabolites and ASD

Many gut microbiota-derived metabolites are highlighted in ASD, such as complex polysaccharides or metabolic amino acids, which can be neurotransmitters [124]. Several of them have been recently discussed as early diagnostic biomarkers of ASD [7]. One significant group of metabolites through which gut microbiota regulates the host physiology is short-chain fatty acids, which primarily constitute acetate (AA), butyrate (BTA), and propionate (PPA).
The genera Prevotella, Bifidobacterium, and Ruminococcus are the primary producers of acetate [125], the most prevalent SCFA, which is reported to be decreased in ASD [29, 126]. BTA is mainly produced by the Firmicutes phylum, more precisely by Lachnospiraceae and Ruminococcaceae families [127], and PPA is synthesized by the Bacteroidetes phylum (including Bacteroides and Prevotella) and Firmicutes phylum (including Roseburia, Blautia and Coprococcus) [128]. However, alongside Bacteroides, the elevated level of PPA is associated with increased Clostridium and Desulfovibrio species in autistic individuals [129]. Also, a study on autistic children revealed lower Bifidobacterium and higher PPA levels, both of which attenuated at older ages [27].
Unlike some studies [28, 29, 126], others reported higher levels of AA, PPA, and BTA in autistic patients compared to control groups [27, 30, 31, 130, 131]. These gut microbiota-related SCFAs exhibit conflicting pro-inflammatory and anti-inflammatory effects in the host's inflammatory response, possibly due to the differences in binding receptors and local concentrations [132]. Some animal studies revealed that supplementation with the microbial metabolites AA and BTA could reverse the social behavioral phenotypes [133136]. In contrast, intracerebroventricular injection of PPA in rat brains has induced ASD-like symptoms, including reactive gliosis [137]. It has been understood that PPA can lead to gliosis, disturbed neuro-circuitry, and neuroinflammatory response through modulation of the PTEN/AKT pathway in ASD [138]. As the finding data regarding SCFA levels in autistic patients are inconsistent and yet to be studied [7, 28, 124, 139], additional research is required to verify the potential role of SCFAs in the pathophysiology of ASD. They might be considered as neuroinflammatory biomarkers and indicators of gut microbiota modification in autism patients.

MicroRNAs and ASD

Over 60% of human genes are controlled by microRNAs (miRNAs), small, non-coding RNAs of around 18–24 nucleotides that function as epigenetic regulators. MiRNAs modify brain plasticity and neuronal development, and their dysregulation causes a broad spectrum of neurological impairments, including ASD [140144]. The importance of miRNAs as regulators of numerous cellular and physiological processes, including hematopoiesis, immune reactions, and inflammation, is well-established [145]. Additionally, miRNAs are affected by host-microbiota interactions and play a key role in dysbiosis and induced inflammations [146149]. An intensive study found over-expressed miRNAs in ASD and their possible role in impaired neurodevelopment through dysregulated inflammatory genes [150]. Besides, several studies have identified that miRNAs directly and indirectly activate inflammasomes through their interaction with 3'-UTR genes that modulate inflammasome expression [151].
In detail, animal studies suggest that an increase or decrease of miR-146a can be a potential cause of ASD [152]. A clinical study of the postnatal period compared miRNAs of ASD and healthy controls and confirmed miR-146a as the most dysregulated miRNA in ASD [152]. Using in vitro models and postmortem human brain tissues, another study also found that miR-146a overexpression in the brains of ASD patients is detectable as early as childhood [153]. The changes in Gut microbiota-host interaction could induce miR-146a and consequently promote neuroinflammatory pathways [154]. It is highlighted that miR-146a-induced nuclear factor kappa-B augments the inflammation signaling pathway in the gut-brain axis. It has been shown that Bacteroides fragilis, Lactobacillus rhamnosus GG, Lactobacillus acidophilus, Lactobacillus delbrueckii Bulgaricus, and Escherichia coli Nissle 1917 were linked to miR-146a expression [149, 154, 155]. Another research indicates that miR-146a is essential for certain inflammatory cytokine expression and that its absence in the brain leads to an overall compensatory upregulation of miR-155. Enhanced protein carbonylation and decreased cysteine thiol levels were additional indicators of this elevated neuroinflammatory flux due to an upsurge in oxidative stress mediators [156].
Several studies have identified miR-146a and miR-155 to various pathologic conditions indicated by chronic inflammation [157]. A possible explanation is that gut-derived toxins, such as LPS, capable of traversing the blood–brain barrier and are in systemic circulation, can potentially activate the NF-kB-miRNA-146a-miRNA-155 signaling pathway. This pathway would then transmit pathogenic signals originating from the microbiome to the brain, which might disturb the innate immune reactions and lead to neuroinflammatory conditions [158]. MiR-155 could also be altered by gut microbiota dysbiosis [159]. One study added evidence of increased miR-155 expression in the amygdala, frontal cortex, and cerebellum of children with ASD [62]. miRNA-155 is involved in TLR activation by bacterial lipopolysaccharides, activation of tumor necrosis factor-alpha and IL-6, and regulation of suppressor of cytokine signaling 1 on dendritic cells. These activities, alongside the variation with microbiota dysbiosis, can give a candidate role to miRNA-155 in the neuroinflammatory mechanism of the gut-brain axis and ASD [152, 159]. Earlier studies identified probiotics of Lactobacillus fermentum, Lactobacillus salivarius, Lactobacillus rhamnosus GG, Lactobacillus acidophilus, Lactobacillus delbrueckii, Bifidobacterium bifidum, and E coli Nissle 1917 could change the level of miR-155 [149, 155, 159, 160].
Moreover, studies found upregulated miR-181 in ASD patients, expected to impact the ASD-related neurexin 1 gene [152, 161, 162]. Neuroinflammation and immunological dysregulation are two of the many physiological processes linked to the miR-181 family [163165]. On the other hand, some studies show that gut microbiota could regulate miR-181 in mice [148, 166, 167]. It has also been revealed that Lactobacillus rhamnosus and Lactobacillus delbrueckii probiotics affect the miR-181a expression in inflammatory diseases [160]. Additionally, metabolites derived from gut microbiota could affect miR-181 expression in different states [148]. Altogether, these pieces of evidence strengthen the argument about the possible miR-mediated role of gut microbiota through the neuroinflammatory process in ASD.

Probiotics and ASD

Living microorganisms known as probiotics can influence host health through various mechanisms. According to recent research, they can be used as a therapeutic tool to treat ASD by restoring a healthy balance in the gut microbiota, adjusting the levels of neurotransmitters in the tissues, and reducing inflammation in the gut [168, 169].
Animal models revealed that probiotic supply considerably modified the social and emotional behaviors of the rats as well as blood levels of cytokines like IL-6, IL-17a, and IL-10 [59, 170, 171]. On the other hand, only a few trials assessed the impact of probiotics on ASD with the aspect of inflammatory modulation and immune system regulation (Table 2). Sanctuary et al. evaluated the use of Bifidobacterium infantis in combination with a bovine colostrum product in autistic children. Some patients revealed lower frequency of GI symptoms and aberrant behavior, possibly due to a reduction in TNF-α and IL-13 [172]. Tomova et al. also showed a strong correlation between fecal levels of TNF-α and the severity of autism, indicating the possible involvement of GI inflammation and permeability in ASD through inflammatory pathways. They could significantly decrease the TNF-α levels in the feces of autistic children through probiotic supplementation involving strains of Lactobacillus, Bifidobacteria, and Streptococcus [173]. However, Santocchi et al. found the plasma levels of plasma inflammatory biomarkers, including TNF-α, IL-6, leptin, and plasminogen activator inhibitor 1, and fecal calprotectin contrarily unaffected by the probiotic treatment, involving the same genera as Tomova et al.… Nevertheless, there is a greater improvement in some GI symptoms, adaptive functioning, and sensory profiles in the group treated with probiotics compared to placebo in the subgroup of autistic children with GI problems [123]. Similarly, using strains of Bifidobacterium and Lactobacillus alongside an oligosaccharide could improve disease severity and GI problems in autistic children [174].
Table 2
Trials on probiotics effects in inflammation and ASD management
Author
(year)
Study Design, Duration
Sample Size
(Intervention/ Control)
Age (years + SD)
Probiotic
Microbial Alternation
Immunomodulation findings
Clinical Improvement
Scale
Schmitt (2023) [175]
Double-blinded, crossover RCT, 28 days
8/ 7
Range: 15- 45
SB-121, a combination of Limosilactobacillus reuteri, Sephadex® (dextran microparticles), and maltose
N/A
No relevant changes in the plasma TNF-α and HS-CRP, and fecal calprotectin and lactoferrin
Improvements in adaptive behavior and social preference
Vineland-3 adaptive behavior composite score and eye tracking
Kong (2021) [176]
Double-blinded, randomized, placebo-controlled, two-stage pilot trial, 28 weeks
14/ 13
10.3
Lactobacillus plantarum PS128
• The absolute change (V3-V1) in Eubacterium hallii group abundance in the combination therapy group is positively correlated with the baseline SRS cognition score.
• The absolute change (V3-V1) in Rikenelaceae, Alistipes, Christensenellaceae R7, and Ruminococcaceae UCG-002 in the combination therapy group positively correlated with the ABC stereotypic behavior score at baseline.
Christensenellaceae R7 and Ruminococcaceae UCG-002 are found only in the combination treatment group.
↓ IL-1β
Improvement in the total ABC, stereotypic behavior, and SRS cognition score with no significant differences in the total scores or subscales of the ABC and SRS, ↓CGI score
ABC, SRS, and CGI
Santocchi (2020) [123]
Double-blinded RCT, 6 months
42/ 43
4.2
DSF2, consisting of 1 strain of Streptococcus, 3 strains of Bifidobacterium, and 4 strains of Lactobacillus
N/A
No statistically significant changes in plasma levels of IL-6, TNF-α, PAI-1, and fecal calprotectin
No differences in total ADOS-CSS scores, but ↓ total ADOS-CSS scores and ↓ social-affect ADOS-CSS in patients without GI symptoms, Improvement in GI symptoms, adaptive functioning, and sensory profiles in patients with GI problems
Mainly ADOS-CSS, CBCL, and 6-GSI
Wang (2020) [174]
RCT, 12 months
26/ 24
4.4
4 strains of Bifidobacterium infantis Bi-26, Bifidobacterium lactis BL-04, Lactobacillus
Rhamnosus HN001, and Lactobacillus paracasei LPC-37+ Fructo-oligosaccharide
Bifidobacteriales and B. longum, ↓ Clostridium
↑ SCFAs
↓ Autism severity, especially hyper-serotonergic state and dopamine metabolism disorder, and GI symptoms
ATEC, 6-GSI
Sanctuary (2019) [172]
Double-blinded, crossover RCT, 12 weeks
8/8 (prebiotic only1)
6.8 ± 2.4
Bifidobacterium infantis + Bovine colostrum product as a source of prebiotic oligosaccharides
No effect or an inconsistent effect on enterotype
↓ CD4+ cells producing intracellular IL-13, and CD8+ cells producing TNF-α
↓ Lethargy,
↓ Frequency of certain GI symptoms specifically pain with stooling and consistency
ABC score, QPGS-RIII and GIH questionnaire data, and parental reporting
Tomova (2015) [173]
Prospective, open-label, controlled, 4 months
10+ 9 nonautistic siblings/ 10
Range: 2-17
3 strains of Lactobacillus, 2 strains of Bifidobacteria, 1 strain of Streptococcus
Bifidobacteria, Lactobacillus, and Desulfovibrio spp.,
Bacteroidetes/Firmicutes by ↓ Firmicutes
↓ Fecal TNF-α
↑ TNF-α levels linked to ↑ GI symptoms and ASD severity
CARS and ADI
1. The control groups were placebo except for the mentioned ones
2. DSF, marketed as Vivomixx® in EU, Visbiome® in USA, is a mixture containing 450 billion of Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus para-casei, Lactobacillus delbrueckii subsp. bulgaricus
Abbreviations: SD, Standard Deviation; TNF-α, Tumor Necrosis Factor-alpha; HS-CRP, High Sensitivity C-Reactive Protein; IL, Interleukin; ABC, Aberrant Behavior Checklist; SRS, Social Responsiveness Scale; CGI, Clinical Global Impression; QPGS-RIII, Questionnaire on Pediatric Gastrointestinal Symptoms-Rome III Version; GIH, Gastrointestinal History; PAI-1, Plasminogen Activator Inhibitor-1; ADOS-CSS, Autism Diagnostic Observation Schedule - Calibrated Severity Score; CBCL, Child Behavior Check List; GSI, Gastrointestinal Severity Index; SCFA, Short- Chain Fatty Acid; ATEC, Autism Treatment Evaluation Checklist; CARS, Childhood Autism Rating Scale; ADI, Autism Diagnostic Interview
Limosilactobacillus genus can also lead to improvement in adaptive symptoms of ASD [175, 177]. However, Schmitt et al. did not see any relevant changes in the plasma TNF-α and HS-CRP, fecal calprotectin, and lactoferrin with the use of this probiotic [175]. Synergic use of Lactiplantibacillus plantarum and oxytocin was also revealed to have an anti-inflammatory effect through the reduction of IL-1β [176]. The probiotic mixture containing five strains of Bifidobacterium longum with anti-inflammatory and high homeostatic intestinal activity, along with Limosilactobacillus fermentum, Lactiplantibacillus plantarum, and Ligilactobacillus salivarius, showed significantly alternation the diversity of gut microbiota. The species that are consistent with this formulation of probiotics were found in the feces of autistic children, including Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus fermentum, and Ligilactobacillus salivarius [177].
There are no medicines indicated for the core deficits of ASD. Therefore, there is a substantial requirement for the creation of novel pharmacological approaches for patients with ASD. Overall, these findings support that probiotics may serve as a promising therapy due to their beneficial impact on symptoms of ASD. Considering the existing association between immune system dysfunction and behavioral abnormalities [178] and the possible impact of gut microbiota on ASD through inflammatory mediators, it is suggested that neuroinflammatory variables be examined during probiotic administration and the most effective formulation to alter them be determined.

Conclusion

Given the complexity and lack of clarity surrounding the pathophysiology of ASD, research into the role of inflammatory mechanisms and immunological dysregulation has been raised in recent years. Dysregulation pathways in ASD may also be etiologically traced back to gut microbial alterations and host-microbiota dysbiosis. These changes have been associated with ASD symptoms and severities probably through the released metabolites, neural signaling pathway by BDNF, and neuroinflammatory biomarkers, including S100B, HMGB-1, OPN, miRNAs, RANTES, eotaxin, and GM-CSF. In this review, the role of mediators as a triggering mechanism and bridging cause between gut microbiota dysbiosis-induced inflammation from one side, and neuroinflammatory processes of CNS in autism from the other side is emphasized. Probiotics as an applicable therapeutic option to recover microbiota in ASD suggest the relevance of gut microbiota and potential beneficial impacts. However, further studies are essential to evaluate the efficacy of different probiotic formulations considering microbiota alteration types, coincidence neuroinflammatory mediators, intervention length, and autistic age and symptoms. In fact, many ideas have been proposed to explain ASD pathogenesis, but there is currently a lack of intensive immunological, neurochemical, and microbiota studies in the field. This approach can clinically explain the trajectory through microbiota alteration, related metabolites, neurological inflammatory mediators, and the CNS process of ASD. This constructed dogma can be used to create etiologic, diagnostic, prognostic, or therapeutic targets for ASD.

Declarations

Not applicable.
Not applicable.

Competing Interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Fan, Y., and O. Pedersen. 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 19 (1): 55–71.PubMedCrossRef Fan, Y., and O. Pedersen. 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 19 (1): 55–71.PubMedCrossRef
2.
Zurück zum Zitat Morais, L.H., H.L. Schreiber IV., and S.K. Mazmanian. 2021. The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology 19 (4): 241–255.PubMedCrossRef Morais, L.H., H.L. Schreiber IV., and S.K. Mazmanian. 2021. The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology 19 (4): 241–255.PubMedCrossRef
3.
Zurück zum Zitat Iglesias-Vázquez, L., Riba G. Van Ginkel, V. Arija, and J. Canals. 2020. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients 12 (3): 792.PubMedPubMedCentralCrossRef Iglesias-Vázquez, L., Riba G. Van Ginkel, V. Arija, and J. Canals. 2020. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients 12 (3): 792.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Prata, J., A.S. Machado, O. von Doellinger, M.I. Almeida, M.A. Barbosa, R. Coelho, et al. 2019. The contribution of inflammation to autism spectrum disorders: recent clinical evidence. Psychiatric Disorders: Methods and Protocols, 493–510. Prata, J., A.S. Machado, O. von Doellinger, M.I. Almeida, M.A. Barbosa, R. Coelho, et al. 2019. The contribution of inflammation to autism spectrum disorders: recent clinical evidence. Psychiatric Disorders: Methods and Protocols, 493–510.
5.
Zurück zum Zitat Siniscalco, D., S. Schultz, A.L. Brigida, and N. Antonucci. 2018. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals. 11 (2): 56.PubMedPubMedCentralCrossRef Siniscalco, D., S. Schultz, A.L. Brigida, and N. Antonucci. 2018. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals. 11 (2): 56.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Doenyas, C. 2018. Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience 374: 271–286.PubMedCrossRef Doenyas, C. 2018. Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience 374: 271–286.PubMedCrossRef
7.
Zurück zum Zitat Shen, L., X. Liu, H. Zhang, J. Lin, C. Feng, and J. Iqbal. 2020. Biomarkers in autism spectrum disorders: Current progress. Clinica Chimica Acta 502: 41–54.CrossRef Shen, L., X. Liu, H. Zhang, J. Lin, C. Feng, and J. Iqbal. 2020. Biomarkers in autism spectrum disorders: Current progress. Clinica Chimica Acta 502: 41–54.CrossRef
8.
Zurück zum Zitat Sharon, G., N.J. Cruz, D.W. Kang, M.J. Gandal, B. Wang, Y.M. Kim, et al. 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177 (6): 1600–1618.PubMedPubMedCentralCrossRef Sharon, G., N.J. Cruz, D.W. Kang, M.J. Gandal, B. Wang, Y.M. Kim, et al. 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177 (6): 1600–1618.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Cuomo, M., L. Coretti, D. Costabile, R. Della Monica, G. De Riso, M. Buonaiuto, et al. 2023. Host fecal DNA specific methylation signatures mark gut dysbiosis and inflammation in children affected by autism spectrum disorder. Scientific Reports [Internet] 13 (1): 18197. Available from: https://doi.org/10.1038/s41598-023-45132-0.CrossRefPubMed Cuomo, M., L. Coretti, D. Costabile, R. Della Monica, G. De Riso, M. Buonaiuto, et al. 2023. Host fecal DNA specific methylation signatures mark gut dysbiosis and inflammation in children affected by autism spectrum disorder. Scientific Reports [Internet] 13 (1): 18197. Available from: https://​doi.​org/​10.​1038/​s41598-023-45132-0.CrossRefPubMed
10.
Zurück zum Zitat Dargenio, V.N., C. Dargenio, S. Castellaneta, A. De Giacomo, M. Laguardia, F. Schettini, et al. 2023. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 15 (7): 1620.PubMedPubMedCentralCrossRef Dargenio, V.N., C. Dargenio, S. Castellaneta, A. De Giacomo, M. Laguardia, F. Schettini, et al. 2023. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 15 (7): 1620.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Caputi, V., L. Hill, M. Figueiredo, J. Popov, E. Hartung, and N. Pai. 2024. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: A systematic review of pediatric and adult studies. Frontiers in Neuroscience 18: 1341656.PubMedPubMedCentralCrossRef Caputi, V., L. Hill, M. Figueiredo, J. Popov, E. Hartung, and N. Pai. 2024. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: A systematic review of pediatric and adult studies. Frontiers in Neuroscience 18: 1341656.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat De Sales-Millán, A., J.F. Aguirre-Garrido, R.M. González-Cervantes, and J.A. Velázquez-Aragón. 2023. Microbiome–Gut–Mucosal–Immune–Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behavioral Sciences. 13 (7): 548.PubMedPubMedCentralCrossRef De Sales-Millán, A., J.F. Aguirre-Garrido, R.M. González-Cervantes, and J.A. Velázquez-Aragón. 2023. Microbiome–Gut–Mucosal–Immune–Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behavioral Sciences. 13 (7): 548.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Carloni, S., and M. Rescigno. 2023. The gut-brain vascular axis in neuroinflammation. In Seminars in Immunology, 101802. Elsevier. Carloni, S., and M. Rescigno. 2023. The gut-brain vascular axis in neuroinflammation. In Seminars in Immunology, 101802. Elsevier.
14.
Zurück zum Zitat Chu, J., S. Feng, C. Guo, B. Xue, K. He, and L. Li. 2023. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomedicine and Pharmacotherapy 164: 114985.PubMedCrossRef Chu, J., S. Feng, C. Guo, B. Xue, K. He, and L. Li. 2023. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomedicine and Pharmacotherapy 164: 114985.PubMedCrossRef
15.
Zurück zum Zitat Anand, N., V.R. Gorantla, and S.B. Chidambaram. 2022. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells 12 (1): 54.PubMedPubMedCentralCrossRef Anand, N., V.R. Gorantla, and S.B. Chidambaram. 2022. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells 12 (1): 54.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Than, U.T.T., L.T. Nguyen, P.H. Nguyen, X.H. Nguyen, D.P. Trinh, D.H. Hoang, et al. 2023. Inflammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Science and Reports 13 (1): 22587.CrossRef Than, U.T.T., L.T. Nguyen, P.H. Nguyen, X.H. Nguyen, D.P. Trinh, D.H. Hoang, et al. 2023. Inflammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Science and Reports 13 (1): 22587.CrossRef
17.
Zurück zum Zitat Usui, N., H. Kobayashi, and S. Shimada. 2023. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. International Journal of Molecular Sciences 24 (6): 5487.PubMedPubMedCentralCrossRef Usui, N., H. Kobayashi, and S. Shimada. 2023. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. International Journal of Molecular Sciences 24 (6): 5487.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lungba, R.M., S.Z.A. Khan, U. Ajibawo-Aganbi, M.V.P. Bastidas, S. Veliginti, S. Saleem, et al. 2020. The role of the gut microbiota and the immune system in the development of autism. Cureus 12 (10). Lungba, R.M., S.Z.A. Khan, U. Ajibawo-Aganbi, M.V.P. Bastidas, S. Veliginti, S. Saleem, et al. 2020. The role of the gut microbiota and the immune system in the development of autism. Cureus 12 (10).
19.
Zurück zum Zitat Cao, X., K. Liu, J. Liu, Y.W. Liu, L. Xu, H. Wang, et al. 2021. Dysbiotic gut microbiota and dysregulation of cytokine profile in children and teens with autism spectrum disorder. Frontiers in Neuroscience 15: 635925.PubMedPubMedCentralCrossRef Cao, X., K. Liu, J. Liu, Y.W. Liu, L. Xu, H. Wang, et al. 2021. Dysbiotic gut microbiota and dysregulation of cytokine profile in children and teens with autism spectrum disorder. Frontiers in Neuroscience 15: 635925.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Careaga, M., S. Rogers, R.L. Hansen, D.G. Amaral, J. Van de Water, and P. Ashwood. 2017. Immune endophenotypes in children with autism spectrum disorder. Biological Psychiatry 81 (5): 434–441.PubMedCrossRef Careaga, M., S. Rogers, R.L. Hansen, D.G. Amaral, J. Van de Water, and P. Ashwood. 2017. Immune endophenotypes in children with autism spectrum disorder. Biological Psychiatry 81 (5): 434–441.PubMedCrossRef
21.
Zurück zum Zitat Abuaish, S., N.M. Al-Otaibi, T.S. Abujamel, S.A. Alzahrani, S.M. Alotaibi, Y.A. AlShawakir, et al. 2021. Fecal transplant and Bifidobacterium treatments modulate gut Clostridium bacteria and rescue social impairment and hippocampal BDNF expression in a rodent model of autism. Brain Sciences 11 (8): 1038.PubMedPubMedCentralCrossRef Abuaish, S., N.M. Al-Otaibi, T.S. Abujamel, S.A. Alzahrani, S.M. Alotaibi, Y.A. AlShawakir, et al. 2021. Fecal transplant and Bifidobacterium treatments modulate gut Clostridium bacteria and rescue social impairment and hippocampal BDNF expression in a rodent model of autism. Brain Sciences 11 (8): 1038.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Chen, K., Y. Fu, Y. Wang, L. Liao, H. Xu, A. Zhang, et al. 2020. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder. Microbial Ecology 80: 475–486.PubMedCrossRef Chen, K., Y. Fu, Y. Wang, L. Liao, H. Xu, A. Zhang, et al. 2020. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder. Microbial Ecology 80: 475–486.PubMedCrossRef
23.
Zurück zum Zitat Carissimi, C., I. Laudadio, F. Palone, V. Fulci, V. Cesi, F. Cardona, et al. 2019. Functional analysis of gut microbiota and immunoinflammation in children with autism spectrum disorders. Digestive and Liver Disease 2019 07 16th ed 51 (10): 1366–74.CrossRef Carissimi, C., I. Laudadio, F. Palone, V. Fulci, V. Cesi, F. Cardona, et al. 2019. Functional analysis of gut microbiota and immunoinflammation in children with autism spectrum disorders. Digestive and Liver Disease 2019 07 16th ed 51 (10): 1366–74.CrossRef
24.
Zurück zum Zitat Iovene, M.R., F. Bombace, R. Maresca, A. Sapone, P. Iardino, A. Picardi, et al. 2017. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia 182: 349–363.PubMedCrossRef Iovene, M.R., F. Bombace, R. Maresca, A. Sapone, P. Iardino, A. Picardi, et al. 2017. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia 182: 349–363.PubMedCrossRef
25.
Zurück zum Zitat Tomova, A., K. Soltys, G. Repiska, L. Palkova, D. Filcikova, G. Minarik, et al. 2020. Specificity of gut microbiota in children with autism spectrum disorder in Slovakia and its correlation with astrocytes activity marker and specific behavioural patterns. Physiology and Behavior 214: 112745.PubMedCrossRef Tomova, A., K. Soltys, G. Repiska, L. Palkova, D. Filcikova, G. Minarik, et al. 2020. Specificity of gut microbiota in children with autism spectrum disorder in Slovakia and its correlation with astrocytes activity marker and specific behavioural patterns. Physiology and Behavior 214: 112745.PubMedCrossRef
26.
Zurück zum Zitat Laghi, L., P. Mastromarino, M. Prosperi, M.A. Morales, S. Calderoni, E. Santocchi, et al. 2021. Are fecal metabolome and microbiota profiles correlated with autism severity? A cross-sectional study on asd preschoolers. Metabolites 11 (10). Laghi, L., P. Mastromarino, M. Prosperi, M.A. Morales, S. Calderoni, E. Santocchi, et al. 2021. Are fecal metabolome and microbiota profiles correlated with autism severity? A cross-sectional study on asd preschoolers. Metabolites 11 (10).
27.
Zurück zum Zitat Chamtouri, M., N. Gaddour, A. Merghni, M. Mastouri, S. Arboleya, and C.G. De Los Reyes-Gavilán. 2023. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Science and Reports 13 (1): 18218.CrossRef Chamtouri, M., N. Gaddour, A. Merghni, M. Mastouri, S. Arboleya, and C.G. De Los Reyes-Gavilán. 2023. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Science and Reports 13 (1): 18218.CrossRef
29.
Zurück zum Zitat Kang, D.W., Z.E. Ilhan, N.G. Isern, D.W. Hoyt, D.P. Howsmon, M. Shaffer, et al. 2018. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49: 121–131.PubMedCrossRef Kang, D.W., Z.E. Ilhan, N.G. Isern, D.W. Hoyt, D.P. Howsmon, M. Shaffer, et al. 2018. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49: 121–131.PubMedCrossRef
30.
Zurück zum Zitat De Angelis, M., M. Piccolo, L. Vannini, S. Siragusa, A. De Giacomo, D.I. Serrazzanetti, et al. 2013. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8 (10): e76993.PubMedPubMedCentralCrossRef De Angelis, M., M. Piccolo, L. Vannini, S. Siragusa, A. De Giacomo, D.I. Serrazzanetti, et al. 2013. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8 (10): e76993.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Deng, W., S. Wang, F. Li, F. Wang, Y.P. Xing, Y. Li, et al. 2022. Gastrointestinal symptoms have a minor impact on autism spectrum disorder and associations with gut microbiota and short-chain fatty acids. Frontiers in Microbiology 13: 1000419.PubMedPubMedCentralCrossRef Deng, W., S. Wang, F. Li, F. Wang, Y.P. Xing, Y. Li, et al. 2022. Gastrointestinal symptoms have a minor impact on autism spectrum disorder and associations with gut microbiota and short-chain fatty acids. Frontiers in Microbiology 13: 1000419.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Donato, R., B. R cannon, Hsu, K., J Weber, D., G. Sorci, F. Riuzzi, K. Hsu, D. J Weber, et al. 2013. Functions of S100 proteins. Current Molecular Medicine 13 (1): 24–57.PubMedPubMedCentralCrossRef Donato, R., B. R cannon, Hsu, K., J Weber, D., G. Sorci, F. Riuzzi, K. Hsu, D. J Weber, et al. 2013. Functions of S100 proteins. Current Molecular Medicine 13 (1): 24–57.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Esnafoglu, E., S.N. Ayyıldız, S. Cırrık, E.Y. Erturk, A. Erdil, A. Daglı, et al. 2017. Evaluation of serum Neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. International Journal of Developmental Neuroscience. 61: 86–91.PubMedCrossRef Esnafoglu, E., S.N. Ayyıldız, S. Cırrık, E.Y. Erturk, A. Erdil, A. Daglı, et al. 2017. Evaluation of serum Neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. International Journal of Developmental Neuroscience. 61: 86–91.PubMedCrossRef
34.
Zurück zum Zitat Kartalcı, G., A. Çalışkan Demir, Ş Kartalcı, N. Üremiş, and Y. Türköz. 2022. Evaluation of blood Zonulin levels, inflammatory processes and neuronal changes in children with autism spectrum disorder. Psychiatria Danubina 34 (2): 279–287.PubMedCrossRef Kartalcı, G., A. Çalışkan Demir, Ş Kartalcı, N. Üremiş, and Y. Türköz. 2022. Evaluation of blood Zonulin levels, inflammatory processes and neuronal changes in children with autism spectrum disorder. Psychiatria Danubina 34 (2): 279–287.PubMedCrossRef
35.
Zurück zum Zitat Pan, M., J.M. Roe, R. Nudel, A.J. Schork, O. Iakunchykova, A.M. Fjell, et al. 2023. Circulating S100B levels at birth and risk of six major neuropsychiatric or neurological disorders: A two-sample Mendelian Randomization Study. Translational Psychiatry 13 (1): 174.PubMedPubMedCentralCrossRef Pan, M., J.M. Roe, R. Nudel, A.J. Schork, O. Iakunchykova, A.M. Fjell, et al. 2023. Circulating S100B levels at birth and risk of six major neuropsychiatric or neurological disorders: A two-sample Mendelian Randomization Study. Translational Psychiatry 13 (1): 174.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Al-Ayadhi, L.Y., and G.A. Mostafa. 2012. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. Journal of Neuroinflammation 9: 1–8.CrossRef Al-Ayadhi, L.Y., and G.A. Mostafa. 2012. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. Journal of Neuroinflammation 9: 1–8.CrossRef
37.
Zurück zum Zitat Shaker, N.M., G. Taha, H. Kholeif, N.M. Sayed, M.M. El-Sheikh, and M.L. Abulmagd. 2016. Serum levels of S100b, interleukin-6 and anti-transglutaminase Ii IgA as immune markers in a sample of Egyptian children with autistic spectrum disorders. Autism Open Access. 6 (5): 1–7. Shaker, N.M., G. Taha, H. Kholeif, N.M. Sayed, M.M. El-Sheikh, and M.L. Abulmagd. 2016. Serum levels of S100b, interleukin-6 and anti-transglutaminase Ii IgA as immune markers in a sample of Egyptian children with autistic spectrum disorders. Autism Open Access. 6 (5): 1–7.
38.
Zurück zum Zitat Tomova, A., P. Keményová, D. Filčíková, Ž Szapuová, A. Kováč, K. Babinská, et al. 2019. Plasma levels of glial cell marker S100B in children with autism. Physiological Research 68: S315–S323.PubMedCrossRef Tomova, A., P. Keményová, D. Filčíková, Ž Szapuová, A. Kováč, K. Babinská, et al. 2019. Plasma levels of glial cell marker S100B in children with autism. Physiological Research 68: S315–S323.PubMedCrossRef
39.
Zurück zum Zitat Abou-Donia, M.B., H.B. Suliman, D. Siniscalco, N. Antonucci, P. ElKafrawy, and M.V. Brahmajothi. 2019. De novo blood biomarkers in autism: Autoantibodies against neuronal and glial proteins. Behavioral Sciences 9 (5): 47.PubMedPubMedCentralCrossRef Abou-Donia, M.B., H.B. Suliman, D. Siniscalco, N. Antonucci, P. ElKafrawy, and M.V. Brahmajothi. 2019. De novo blood biomarkers in autism: Autoantibodies against neuronal and glial proteins. Behavioral Sciences 9 (5): 47.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ayaydın, H., A. Kirmit, H. Çelik, İ Akaltun, İ Koyuncu, and ŞB. Ulgar. 2020. High serum levels of serum 100 beta protein, neuron-specific enolase, Tau, active caspase-3, M30 and M65 in children with autism spectrum disorders. Clinical Psychopharmacology and Neuroscience. 18 (2): 270.PubMedPubMedCentralCrossRef Ayaydın, H., A. Kirmit, H. Çelik, İ Akaltun, İ Koyuncu, and ŞB. Ulgar. 2020. High serum levels of serum 100 beta protein, neuron-specific enolase, Tau, active caspase-3, M30 and M65 in children with autism spectrum disorders. Clinical Psychopharmacology and Neuroscience. 18 (2): 270.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Babinská, K., A. Tomova, H. Celušáková, J. Babková, G. Repiská, A. Kubranská, et al. 2017. Fecal calprotectin levels correlate with main domains of the autism diagnostic interview-revised (ADI-R) in a sample of individuals with autism spectrum disorders from Slovakia. Physiological Research 66 (Suppl 4): S517–S522.PubMedCrossRef Babinská, K., A. Tomova, H. Celušáková, J. Babková, G. Repiská, A. Kubranská, et al. 2017. Fecal calprotectin levels correlate with main domains of the autism diagnostic interview-revised (ADI-R) in a sample of individuals with autism spectrum disorders from Slovakia. Physiological Research 66 (Suppl 4): S517–S522.PubMedCrossRef
42.
Zurück zum Zitat Romano Spica, V., F. Valeriani, M. Orsini, M.E. Clementi, L. Seguella, G. Gianfranceschi, et al. 2023. S100B Affects Gut Microbiota Biodiversity. International Journal of Molecular Sciences 24 (3): 2248.PubMedPubMedCentralCrossRef Romano Spica, V., F. Valeriani, M. Orsini, M.E. Clementi, L. Seguella, G. Gianfranceschi, et al. 2023. S100B Affects Gut Microbiota Biodiversity. International Journal of Molecular Sciences 24 (3): 2248.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Berding, K., and S.M. Donovan. 2016. Microbiome and nutrition in autism spectrum disorder: Current knowledge and research needs. Nutrition Reviews 74 (12): 723–736.PubMedCrossRef Berding, K., and S.M. Donovan. 2016. Microbiome and nutrition in autism spectrum disorder: Current knowledge and research needs. Nutrition Reviews 74 (12): 723–736.PubMedCrossRef
44.
Zurück zum Zitat Lu, B. 2003. BDNF and activity-dependent synaptic modulation. Learning & memory. 10 (2): 86–98.CrossRef Lu, B. 2003. BDNF and activity-dependent synaptic modulation. Learning & memory. 10 (2): 86–98.CrossRef
45.
Zurück zum Zitat Angelucci, F., S. Brene, and A.A. Mathe. 2005. BDNF in schizophrenia, depression and corresponding animal models. Molecular Psychiatry 10 (4): 345–352.PubMedCrossRef Angelucci, F., S. Brene, and A.A. Mathe. 2005. BDNF in schizophrenia, depression and corresponding animal models. Molecular Psychiatry 10 (4): 345–352.PubMedCrossRef
49.
Zurück zum Zitat Elhamid, S.A.A., M.M. Alkherkhisy, and R.E. Kasem. 2024. Assessment of brain-derived neurotrophic factor levels in serum of children with autism spectrum disorders. Middle East Current Psychiatry. 31 (1): 18.CrossRef Elhamid, S.A.A., M.M. Alkherkhisy, and R.E. Kasem. 2024. Assessment of brain-derived neurotrophic factor levels in serum of children with autism spectrum disorders. Middle East Current Psychiatry. 31 (1): 18.CrossRef
50.
Zurück zum Zitat Cui, T., Z. Liu, Z. Li, Y. Han, W. Xiong, Z. Qu, et al. 2024. Serum brain-derived neurotrophic factor concentration is different between autism spectrum disorders and intellectual disability children and adolescents. Journal of Psychiatric Research 170: 355–360.PubMedCrossRef Cui, T., Z. Liu, Z. Li, Y. Han, W. Xiong, Z. Qu, et al. 2024. Serum brain-derived neurotrophic factor concentration is different between autism spectrum disorders and intellectual disability children and adolescents. Journal of Psychiatric Research 170: 355–360.PubMedCrossRef
51.
Zurück zum Zitat Kasarpalkar, N.J., S.T. Kothari, and U.P. Dave. 2014. Brain-derived neurotrophic factor in children with autism spectrum disorder. Annals of Neurosciences 21 (4): 129.PubMedPubMedCentral Kasarpalkar, N.J., S.T. Kothari, and U.P. Dave. 2014. Brain-derived neurotrophic factor in children with autism spectrum disorder. Annals of Neurosciences 21 (4): 129.PubMedPubMedCentral
52.
Zurück zum Zitat Singh, R., A. Kisku, H. Kungumaraj, V. Nagaraj, A. Pal, S. Kumar, et al. 2023. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 11 (1): 115.PubMedPubMedCentralCrossRef Singh, R., A. Kisku, H. Kungumaraj, V. Nagaraj, A. Pal, S. Kumar, et al. 2023. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 11 (1): 115.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Calabrese, F., A.C. Rossetti, G. Racagni, P. Gass, M.A. Riva, and R. Molteni. 2014. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Frontiers in Cellular Neuroscience 8: 430.PubMedPubMedCentralCrossRef Calabrese, F., A.C. Rossetti, G. Racagni, P. Gass, M.A. Riva, and R. Molteni. 2014. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Frontiers in Cellular Neuroscience 8: 430.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Porter, G.A., and J.C. O’Connor. 2022. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World Journal of Psychiatry 12 (1): 77.PubMedPubMedCentralCrossRef Porter, G.A., and J.C. O’Connor. 2022. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World Journal of Psychiatry 12 (1): 77.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Mehra, A., G. Arora, G. Sahni, M. Kaur, H. Singh, B. Singh, et al. 2023. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. Journal of Traditional & Complementary Medicine 13 (2): 135–149.CrossRef Mehra, A., G. Arora, G. Sahni, M. Kaur, H. Singh, B. Singh, et al. 2023. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. Journal of Traditional & Complementary Medicine 13 (2): 135–149.CrossRef
56.
Zurück zum Zitat Sudo, N., Y. Chida, Y. Aiba, J. Sonoda, N. Oyama, X. Yu, et al. 2004. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology 558 (1): 263–275.PubMedPubMedCentralCrossRef Sudo, N., Y. Chida, Y. Aiba, J. Sonoda, N. Oyama, X. Yu, et al. 2004. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology 558 (1): 263–275.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Dehghani, F., S. Abdollahi, F. Shidfar, C.C.T. Clark, and S. Soltani. 2022. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutritional Neuroscience 1–11. Dehghani, F., S. Abdollahi, F. Shidfar, C.C.T. Clark, and S. Soltani. 2022. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutritional Neuroscience 1–11.
59.
Zurück zum Zitat Sunand, K., G.K. Mohan, and V. Bakshi. 2020. Supplementation of lactobacillus probiotic strains supports gut-brain-axis and defends autistic deficits occurred by valproic acid-induced prenatal model of autism. Pharmacognosy Journal 12 (6s). Sunand, K., G.K. Mohan, and V. Bakshi. 2020. Supplementation of lactobacillus probiotic strains supports gut-brain-axis and defends autistic deficits occurred by valproic acid-induced prenatal model of autism. Pharmacognosy Journal 12 (6s).
60.
Zurück zum Zitat Wang, B., Y. Qin, Q. Wu, X. Li, D. Xie, Z. Zhao, et al. 2022. mTOR signaling pathway regulates the release of proinflammatory molecule CCL5 implicated in the pathogenesis of autism spectrum disorder. Frontiers in Immunology 13: 818518.PubMedPubMedCentralCrossRef Wang, B., Y. Qin, Q. Wu, X. Li, D. Xie, Z. Zhao, et al. 2022. mTOR signaling pathway regulates the release of proinflammatory molecule CCL5 implicated in the pathogenesis of autism spectrum disorder. Frontiers in Immunology 13: 818518.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Roy-O’Reilly, M., R.M. Ritzel, S.E. Conway, I. Staff, G. Fortunato, and L.D. McCullough. 2017. CCL11 (Eotaxin-1) levels predict long-term functional outcomes in patients following ischemic stroke. Translational Stroke Research 8: 578–84.PubMedPubMedCentralCrossRef Roy-O’Reilly, M., R.M. Ritzel, S.E. Conway, I. Staff, G. Fortunato, and L.D. McCullough. 2017. CCL11 (Eotaxin-1) levels predict long-term functional outcomes in patients following ischemic stroke. Translational Stroke Research 8: 578–84.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Rastegari, M., N. Salehi, and F. Zare-Mirakabad. 2023. Biomarker prediction in autism spectrum disorder using a network-based approach. BMC Medical Genomics 16 (1): 12.PubMedPubMedCentralCrossRef Rastegari, M., N. Salehi, and F. Zare-Mirakabad. 2023. Biomarker prediction in autism spectrum disorder using a network-based approach. BMC Medical Genomics 16 (1): 12.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Shen, Y., J. Ou, M. Liu, L. Shi, Y. Li, L. Xiao, et al. 2016. Altered plasma levels of chemokines in autism and their association with social behaviors. Psychiatry Research 244: 300–305.PubMedCrossRef Shen, Y., J. Ou, M. Liu, L. Shi, Y. Li, L. Xiao, et al. 2016. Altered plasma levels of chemokines in autism and their association with social behaviors. Psychiatry Research 244: 300–305.PubMedCrossRef
64.
Zurück zum Zitat Han, Y.M.Y., W.K.Y. Cheung, C.K. Wong, S.L. Sze, T.W.S. Cheng, M.K. Yeung, et al. 2017. Distinct cytokine and chemokine profiles in autism spectrum disorders. Frontiers in Immunology 8: 11.PubMedPubMedCentralCrossRef Han, Y.M.Y., W.K.Y. Cheung, C.K. Wong, S.L. Sze, T.W.S. Cheng, M.K. Yeung, et al. 2017. Distinct cytokine and chemokine profiles in autism spectrum disorders. Frontiers in Immunology 8: 11.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Han, Y.M.Y., S.Y. Yau, M.M.Y. Chan, C.K. Wong, and A.S. Chan. 2022. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sciences 12 (4): 460.PubMedPubMedCentralCrossRef Han, Y.M.Y., S.Y. Yau, M.M.Y. Chan, C.K. Wong, and A.S. Chan. 2022. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sciences 12 (4): 460.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Ashwood, P., P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I.N. Pessah, and J. Van de Water. 2011. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. Journal of Neuroimmunology 232 (1–2): 196–199.PubMedCrossRef Ashwood, P., P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I.N. Pessah, and J. Van de Water. 2011. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. Journal of Neuroimmunology 232 (1–2): 196–199.PubMedCrossRef
67.
Zurück zum Zitat Hu, C., X. Xu, G. Xiong, Q. Xu, B. Zhou, C. Li, et al. 2018. Alterations in plasma cytokine levels in chinese children with autism spectrum disorder. Autism Research. 11 (7): 989–999.PubMedCrossRef Hu, C., X. Xu, G. Xiong, Q. Xu, B. Zhou, C. Li, et al. 2018. Alterations in plasma cytokine levels in chinese children with autism spectrum disorder. Autism Research. 11 (7): 989–999.PubMedCrossRef
68.
Zurück zum Zitat Masi, A., D.S. Quintana, N. Glozier, A.R. Lloyd, I.B. Hickie, and A.J. Guastella. 2015. Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Molecular Psychiatry 20 (4): 440–446.PubMedCrossRef Masi, A., D.S. Quintana, N. Glozier, A.R. Lloyd, I.B. Hickie, and A.J. Guastella. 2015. Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Molecular Psychiatry 20 (4): 440–446.PubMedCrossRef
69.
Zurück zum Zitat Shahi, S.K., S. Ghimire, P. Lehman, and A.K. Mangalam. 2022. Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Frontiers in Immunology 13: 966417.PubMedPubMedCentralCrossRef Shahi, S.K., S. Ghimire, P. Lehman, and A.K. Mangalam. 2022. Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Frontiers in Immunology 13: 966417.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ye, J., H. Wang, L. Cui, S. Chu, and N. Chen. 2021. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Research Bulletin 174: 268–280.PubMedCrossRef Ye, J., H. Wang, L. Cui, S. Chu, and N. Chen. 2021. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Research Bulletin 174: 268–280.PubMedCrossRef
71.
Zurück zum Zitat Ge, Y., X. Wang, Y. Guo, J. Yan, A. Abuduwaili, K. Aximujiang, et al. 2021. Gut microbiota influence tumor development and Alter interactions with the human immune system. Journal of Experimental & Clinical Cancer Research 40 (1): 1–9. Ge, Y., X. Wang, Y. Guo, J. Yan, A. Abuduwaili, K. Aximujiang, et al. 2021. Gut microbiota influence tumor development and Alter interactions with the human immune system. Journal of Experimental & Clinical Cancer Research 40 (1): 1–9.
72.
Zurück zum Zitat Tremaroli, V., and F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415): 242–249.PubMedCrossRef Tremaroli, V., and F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415): 242–249.PubMedCrossRef
73.
Zurück zum Zitat Al Bander, Z., M.D. Nitert, A. Mousa, and N. Naderpoor. 2020. The gut microbiota and inflammation: An overview. International Journal of Environmental Research and Public Health 17 (20): 7618.PubMedPubMedCentralCrossRef Al Bander, Z., M.D. Nitert, A. Mousa, and N. Naderpoor. 2020. The gut microbiota and inflammation: An overview. International Journal of Environmental Research and Public Health 17 (20): 7618.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Elinav, E., T. Strowig, A.L. Kau, J. Henao-Mejia, C.A. Thaiss, C.J. Booth, et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145 (5): 745–757.PubMedPubMedCentralCrossRef Elinav, E., T. Strowig, A.L. Kau, J. Henao-Mejia, C.A. Thaiss, C.J. Booth, et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145 (5): 745–757.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Hu, B., E. Elinav, S. Huber, T. Strowig, L. Hao, A. Hafemann, et al. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proceedings of the National Academy of Sciences. 110 (24): 9862–9867.CrossRef Hu, B., E. Elinav, S. Huber, T. Strowig, L. Hao, A. Hafemann, et al. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proceedings of the National Academy of Sciences. 110 (24): 9862–9867.CrossRef
76.
Zurück zum Zitat Takahashi, K., Y. Sugi, K. Nakano, T. Kobayakawa, Y. Nakanishi, M. Tsuda, et al. 2020. Regulation of gene expression through gut microbiota-dependent DNA methylation in colonic epithelial cells. Immunohorizons 4 (4): 178–190.PubMedCrossRef Takahashi, K., Y. Sugi, K. Nakano, T. Kobayakawa, Y. Nakanishi, M. Tsuda, et al. 2020. Regulation of gene expression through gut microbiota-dependent DNA methylation in colonic epithelial cells. Immunohorizons 4 (4): 178–190.PubMedCrossRef
77.
Zurück zum Zitat Goyal, D., S.A. Ali, and R.K. Singh. 2021. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry 106: 110112.PubMedCrossRef Goyal, D., S.A. Ali, and R.K. Singh. 2021. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry 106: 110112.PubMedCrossRef
78.
Zurück zum Zitat Parker, A., S. Romano, R. Ansorge, A. Aboelnour, G. Le Gall, G.M. Savva, et al. 2022. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 10 (1): 1–25.CrossRef Parker, A., S. Romano, R. Ansorge, A. Aboelnour, G. Le Gall, G.M. Savva, et al. 2022. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 10 (1): 1–25.CrossRef
80.
Zurück zum Zitat Wei, L., L. Fei, X. Ning, T. Haiming, G. Lixin, and M. Xianqin. 2017. Antiallergic effects of probiotic Lactobacillus rhamnosus GG (LGG) on allergic rhinitis induced by ovalbumin in rats. Biomedical Research 28 (1): 111–117. Wei, L., L. Fei, X. Ning, T. Haiming, G. Lixin, and M. Xianqin. 2017. Antiallergic effects of probiotic Lactobacillus rhamnosus GG (LGG) on allergic rhinitis induced by ovalbumin in rats. Biomedical Research 28 (1): 111–117.
81.
Zurück zum Zitat Wu, Z., E. Mehrabi Nasab, P. Arora, and S.S. Athari. 2022. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. Journal of Translational Medicine 20 (1): 130.PubMedPubMedCentralCrossRef Wu, Z., E. Mehrabi Nasab, P. Arora, and S.S. Athari. 2022. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. Journal of Translational Medicine 20 (1): 130.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Xu, N., X. Li, and Y. Zhong. 2015. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators of Inflammation 2015. Xu, N., X. Li, and Y. Zhong. 2015. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators of Inflammation 2015.
83.
Zurück zum Zitat Ahmad, S.F., M.A. Ansari, A. Nadeem, S.A. Bakheet, L.Y. Al-Ayadhi, A.F. Alasmari, et al. 2020. Involvement of CD45 cells in the development of autism spectrum disorder through dysregulation of granulocyte-macrophage colony-stimulating factor, key inflammatory cytokines, and transcription factors. International Immunopharmacology 83: 106466.PubMedCrossRef Ahmad, S.F., M.A. Ansari, A. Nadeem, S.A. Bakheet, L.Y. Al-Ayadhi, A.F. Alasmari, et al. 2020. Involvement of CD45 cells in the development of autism spectrum disorder through dysregulation of granulocyte-macrophage colony-stimulating factor, key inflammatory cytokines, and transcription factors. International Immunopharmacology 83: 106466.PubMedCrossRef
84.
Zurück zum Zitat Alomar, H.A., M.A. Ansari, A. Nadeem, S.M. Attia, S.A. Bakheet, H.A. Al-Mazroua, et al. 2023. A potent and selective CXCR2 antagonist improves neuroimmune dysregulation through the inhibition of NF-κB and notch inflammatory signaling in the BTBR mouse model of autism. Journal of Neuroimmunology 377: 578069.PubMedCrossRef Alomar, H.A., M.A. Ansari, A. Nadeem, S.M. Attia, S.A. Bakheet, H.A. Al-Mazroua, et al. 2023. A potent and selective CXCR2 antagonist improves neuroimmune dysregulation through the inhibition of NF-κB and notch inflammatory signaling in the BTBR mouse model of autism. Journal of Neuroimmunology 377: 578069.PubMedCrossRef
85.
Zurück zum Zitat Rose, D., and P. Ashwood. 2014. Potential cytokine biomarkers in autism spectrum disorders. Biomarkers in Medicine 8 (9): 1171–1181.PubMedCrossRef Rose, D., and P. Ashwood. 2014. Potential cytokine biomarkers in autism spectrum disorders. Biomarkers in Medicine 8 (9): 1171–1181.PubMedCrossRef
86.
Zurück zum Zitat Manzardo, A.M., R. Henkhaus, S. Dhillon, and M.G. Butler. 2012. Plasma cytokine levels in children with autistic disorder and unrelated siblings. International Journal of Developmental Neuroscience 30 (2): 121–127.PubMedCrossRef Manzardo, A.M., R. Henkhaus, S. Dhillon, and M.G. Butler. 2012. Plasma cytokine levels in children with autistic disorder and unrelated siblings. International Journal of Developmental Neuroscience 30 (2): 121–127.PubMedCrossRef
87.
Zurück zum Zitat Ashwood, P. 2023. Preliminary findings of elevated inflammatory plasma cytokines in children with autism who have co-morbid gastrointestinal symptoms. Biomedicines 11 (2): 436.PubMedPubMedCentralCrossRef Ashwood, P. 2023. Preliminary findings of elevated inflammatory plasma cytokines in children with autism who have co-morbid gastrointestinal symptoms. Biomedicines 11 (2): 436.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Takada, R., M. Toritsuka, T. Yamauchi, R. Ishida, Y. Kayashima, Y. Nishi, et al. 2024. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Molecular Autism 15 (1): 1–16.CrossRef Takada, R., M. Toritsuka, T. Yamauchi, R. Ishida, Y. Kayashima, Y. Nishi, et al. 2024. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Molecular Autism 15 (1): 1–16.CrossRef
89.
Zurück zum Zitat Dehhaghi, M., H. Kazemi Shariat Panahi, B. Heng, and G.J. Guillemin. 2020. The gut microbiota, kynurenine pathway, and immune system interaction in the development of brain cancer. Frontiers in Cell and Developmental Biology 8: 562812.PubMedPubMedCentralCrossRef Dehhaghi, M., H. Kazemi Shariat Panahi, B. Heng, and G.J. Guillemin. 2020. The gut microbiota, kynurenine pathway, and immune system interaction in the development of brain cancer. Frontiers in Cell and Developmental Biology 8: 562812.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Dery, K.J., K. Kadono, H. Hirao, A. Górski, and J.W. Kupiec-Weglinski. 2020. Microbiota in organ transplantation: An immunological and therapeutic conundrum? Cellular Immunology 351: 104080.PubMedPubMedCentralCrossRef Dery, K.J., K. Kadono, H. Hirao, A. Górski, and J.W. Kupiec-Weglinski. 2020. Microbiota in organ transplantation: An immunological and therapeutic conundrum? Cellular Immunology 351: 104080.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Wang, J., X. Chen, J. Li, and M. Ishfaq. 2021. Gut microbiota dysbiosis aggravates mycoplasma gallisepticum colonization in the chicken lung. Frontiers in Veterinary Science 8: 788811.PubMedPubMedCentralCrossRef Wang, J., X. Chen, J. Li, and M. Ishfaq. 2021. Gut microbiota dysbiosis aggravates mycoplasma gallisepticum colonization in the chicken lung. Frontiers in Veterinary Science 8: 788811.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Wu, Y.N., L. Zhang, T. Chen, X. Li, L.H. He, and G.X. Liu. 2020. Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation. World Journal of Gastroenterology 26 (36): 5420.PubMedPubMedCentralCrossRef Wu, Y.N., L. Zhang, T. Chen, X. Li, L.H. He, and G.X. Liu. 2020. Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation. World Journal of Gastroenterology 26 (36): 5420.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Chen, Y., Z. Li, K.D. Tye, H. Luo, X. Tang, Y. Liao, et al. 2019. Probiotic supplementation during human pregnancy affects the gut microbiota and immune status. Frontiers in Cellular and Infection Microbiology 9: 254.PubMedPubMedCentralCrossRef Chen, Y., Z. Li, K.D. Tye, H. Luo, X. Tang, Y. Liao, et al. 2019. Probiotic supplementation during human pregnancy affects the gut microbiota and immune status. Frontiers in Cellular and Infection Microbiology 9: 254.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Di Salvo, E., M. Casciaro, S. Quartuccio, L. Genovese, and S. Gangemi. 2018. Do Alarmins Have a Potential Role in Autism Spectrum Disorders Pathogenesis and Progression? Biomolecules 2018 12 20th ed 9 (1): 2. Di Salvo, E., M. Casciaro, S. Quartuccio, L. Genovese, and S. Gangemi. 2018. Do Alarmins Have a Potential Role in Autism Spectrum Disorders Pathogenesis and Progression? Biomolecules 2018 12 20th ed 9 (1): 2.
95.
Zurück zum Zitat Kang, R., R. Chen, Q. Zhang, W. Hou, S. Wu, L. Cao, et al. 2014. HMGB1 in health and disease. Molecular Aspects of Medicine 2014 07 08th ed 40: 1–116.CrossRef Kang, R., R. Chen, Q. Zhang, W. Hou, S. Wu, L. Cao, et al. 2014. HMGB1 in health and disease. Molecular Aspects of Medicine 2014 07 08th ed 40: 1–116.CrossRef
96.
Zurück zum Zitat Fang, P., M. Schachner, and Y.Q. Shen. 2012. HMGB1 in development and diseases of the central nervous system. Molecular Neurobiology 2012 05 13th ed 45 (3): 499–506. Fang, P., M. Schachner, and Y.Q. Shen. 2012. HMGB1 in development and diseases of the central nervous system. Molecular Neurobiology 2012 05 13th ed 45 (3): 499–506.
97.
Zurück zum Zitat Xue, J., J.S. Suarez, M. Minaai, S. Li, G. Gaudino, H.I. Pass, et al. 2021. HMGB1 as a therapeutic target in disease. Journal of Cellular Physiology 2020 10 26th ed 236 (5): 3406–19. Xue, J., J.S. Suarez, M. Minaai, S. Li, G. Gaudino, H.I. Pass, et al. 2021. HMGB1 as a therapeutic target in disease. Journal of Cellular Physiology 2020 10 26th ed 236 (5): 3406–19.
98.
Zurück zum Zitat Dipasquale, V., M.C. Cutrupi, L. Colavita, S. Manti, C. Cuppari, and C. Salpietro. 2017. Neuroinflammation in autism spectrum disorders: role of high mobility group box 1 protein. International Journal of Molecular and Cellular Medicine 2017 09 26th ed 6 (3): 148–55. Dipasquale, V., M.C. Cutrupi, L. Colavita, S. Manti, C. Cuppari, and C. Salpietro. 2017. Neuroinflammation in autism spectrum disorders: role of high mobility group box 1 protein. International Journal of Molecular and Cellular Medicine 2017 09 26th ed 6 (3): 148–55.
99.
Zurück zum Zitat Emanuele, E., M. Boso, N. Brondino, S. Pietra, F. Barale, S. Ucelli di Nemi, et al. 2010. Increased serum levels of high mobility group box 1 protein in patients with autistic disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2010 03 17th ed 34 (4): 681–3.CrossRef Emanuele, E., M. Boso, N. Brondino, S. Pietra, F. Barale, S. Ucelli di Nemi, et al. 2010. Increased serum levels of high mobility group box 1 protein in patients with autistic disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2010 03 17th ed 34 (4): 681–3.CrossRef
100.
Zurück zum Zitat Makris, G., G. Chouliaras, F. Apostolakou, C. Papageorgiou, G.P. Chrousos, I. Papassotiriou, et al. 2021. Increased serum concentrations of high mobility group box 1 (HMGB1) protein in children with autism spectrum disorder. Children (Basel) 2021 06 05th ed 8 (6). Makris, G., G. Chouliaras, F. Apostolakou, C. Papageorgiou, G.P. Chrousos, I. Papassotiriou, et al. 2021. Increased serum concentrations of high mobility group box 1 (HMGB1) protein in children with autism spectrum disorder. Children (Basel) 2021 06 05th ed 8 (6).
101.
Zurück zum Zitat Russo, A.J. 2014. Increased Epidermal Growth Factor Receptor (EGFR) Associated with Hepatocyte Growth Factor (HGF) and Symptom Severity in Children with Autism Spectrum Disorders (ASDs). Journal of Central Nervous System Disease 2014 09 09th ed 6: 79–83. Russo, A.J. 2014. Increased Epidermal Growth Factor Receptor (EGFR) Associated with Hepatocyte Growth Factor (HGF) and Symptom Severity in Children with Autism Spectrum Disorders (ASDs). Journal of Central Nervous System Disease 2014 09 09th ed 6: 79–83.
102.
Zurück zum Zitat Russo, A.J. 2013. Decreased epidermal growth factor (EGF) associated with HMGB1 and increased hyperactivity in children with autism. Biomark Insights 2013 04 04th ed 8 (1): 35–41. Russo, A.J. 2013. Decreased epidermal growth factor (EGF) associated with HMGB1 and increased hyperactivity in children with autism. Biomark Insights 2013 04 04th ed 8 (1): 35–41.
103.
Zurück zum Zitat Babinská, K., M. Bucová, V. Ďurmanová, S. Lakatošová, D. Jánošíková, J. Bakoš, et al. 2014. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism. Physiological Research 63 (Suppl 4): S613–S618.PubMedCrossRef Babinská, K., M. Bucová, V. Ďurmanová, S. Lakatošová, D. Jánošíková, J. Bakoš, et al. 2014. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism. Physiological Research 63 (Suppl 4): S613–S618.PubMedCrossRef
104.
Zurück zum Zitat Rubas, N.C., R. Peres, B.P. Kunihiro, N.P. Allan, K. Phankitnirundorn, R.K. Wells, et al. 2024. HMGB1 mediates microbiome-immune axis dysregulation underlying reduced neutralization capacity in obesity-related post-acute sequelae of SARS-CoV-2. Science and Reports 14 (1): 355.CrossRef Rubas, N.C., R. Peres, B.P. Kunihiro, N.P. Allan, K. Phankitnirundorn, R.K. Wells, et al. 2024. HMGB1 mediates microbiome-immune axis dysregulation underlying reduced neutralization capacity in obesity-related post-acute sequelae of SARS-CoV-2. Science and Reports 14 (1): 355.CrossRef
105.
Zurück zum Zitat Reisi-Vanani, V., Z. Lorigooini, E. Bijad, and H. Amini-Khoei. 2023. Maternal separation stress through triggering of the neuro-immune response in the hippocampus induces autistic-like behaviors in male mice. International Journal of Developmental Neuroscience. Reisi-Vanani, V., Z. Lorigooini, E. Bijad, and H. Amini-Khoei. 2023. Maternal separation stress through triggering of the neuro-immune response in the hippocampus induces autistic-like behaviors in male mice. International Journal of Developmental Neuroscience.
106.
Zurück zum Zitat Kıyat, E., E. Aktepe, D. Kumbul Doğuç, M. Bedir, E. Ertürk, and Ü. Işık. 2024. Comparison of HMGB1, RAGE, TLR4, and NF-κB levels in children and adolescents diagnosed with autism spectrum disorder with healthy controls. International Journal of Developmental Disabilities 1–8. Kıyat, E., E. Aktepe, D. Kumbul Doğuç, M. Bedir, E. Ertürk, and Ü. Işık. 2024. Comparison of HMGB1, RAGE, TLR4, and NF-κB levels in children and adolescents diagnosed with autism spectrum disorder with healthy controls. International Journal of Developmental Disabilities 1–8.
107.
Zurück zum Zitat Saresella, M., I. Marventano, F.R. Guerini, R. Mancuso, L. Ceresa, M. Zanzottera, et al. 2009. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biological Psychiatry 2009 08 22nd ed 66 (10): 978–84. Saresella, M., I. Marventano, F.R. Guerini, R. Mancuso, L. Ceresa, M. Zanzottera, et al. 2009. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biological Psychiatry 2009 08 22nd ed 66 (10): 978–84.
108.
Zurück zum Zitat Saresella, M., F. Piancone, I. Marventano, M. Zoppis, A. Hernis, M. Zanette, et al. 2016. Multiple inflammasome complexes are activated in autistic spectrum disorders. Brain, Behavior, and Immunity 57: 125–33.PubMedCrossRef Saresella, M., F. Piancone, I. Marventano, M. Zoppis, A. Hernis, M. Zanette, et al. 2016. Multiple inflammasome complexes are activated in autistic spectrum disorders. Brain, Behavior, and Immunity 57: 125–33.PubMedCrossRef
109.
Zurück zum Zitat Mao, D., Y. Zheng, F. Xu, X. Han, and H. Zhao. 2022. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Frontiers in Neurology 13: 1029891.PubMedPubMedCentralCrossRef Mao, D., Y. Zheng, F. Xu, X. Han, and H. Zhao. 2022. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Frontiers in Neurology 13: 1029891.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Wesson, J.A., R.J. Johnson, M. Mazzali, A.M. Beshensky, S. Stietz, C. Giachelli, et al. 2003. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. Journal of the American Society of Nephrology 14 (1): 139–147.PubMedCrossRef Wesson, J.A., R.J. Johnson, M. Mazzali, A.M. Beshensky, S. Stietz, C. Giachelli, et al. 2003. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. Journal of the American Society of Nephrology 14 (1): 139–147.PubMedCrossRef
111.
Zurück zum Zitat Al-ayadhi, L.Y., and G.A. Mostafa. 2011. Increased serum osteopontin levels in autistic children: relation to the disease severity. Brain, Behavior, and Immunity 25 (7): 1393–8.PubMedCrossRef Al-ayadhi, L.Y., and G.A. Mostafa. 2011. Increased serum osteopontin levels in autistic children: relation to the disease severity. Brain, Behavior, and Immunity 25 (7): 1393–8.PubMedCrossRef
112.
Zurück zum Zitat Heilmann, K., U. Hoffmann, E. Witte, C. Loddenkemper, C. Sina, S. Schreiber, et al. 2009. Osteopontin as two-sided mediator of intestinal inflammation. Journal of Cellular and Molecular Medicine 13 (6): 1162–1174.PubMedCrossRef Heilmann, K., U. Hoffmann, E. Witte, C. Loddenkemper, C. Sina, S. Schreiber, et al. 2009. Osteopontin as two-sided mediator of intestinal inflammation. Journal of Cellular and Molecular Medicine 13 (6): 1162–1174.PubMedCrossRef
114.
Zurück zum Zitat Lopes, K.D., L. Yu, X. Shen, Y. Qiu, S. Tasaki, A. Iatrou, et al. 2024. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults. Alzheimer’s and Dementia 20 (1): 525–37.PubMedCrossRef Lopes, K.D., L. Yu, X. Shen, Y. Qiu, S. Tasaki, A. Iatrou, et al. 2024. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults. Alzheimer’s and Dementia 20 (1): 525–37.PubMedCrossRef
115.
Zurück zum Zitat Chen, J., P. Zeng, L. Gong, X. Zhang, Z. Ling, K. Bi, et al. 2022. Osteopontin exacerbates high-fat diet-induced metabolic disorders in a microbiome-dependent manner. mBio 13 (6): e02531-22.PubMedPubMedCentralCrossRef Chen, J., P. Zeng, L. Gong, X. Zhang, Z. Ling, K. Bi, et al. 2022. Osteopontin exacerbates high-fat diet-induced metabolic disorders in a microbiome-dependent manner. mBio 13 (6): e02531-22.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Sidler, M.A., S.T. Leach, and A.S. Day. 2008. Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflammatory Bowel Diseases 14 (3): 359–366.PubMedCrossRef Sidler, M.A., S.T. Leach, and A.S. Day. 2008. Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflammatory Bowel Diseases 14 (3): 359–366.PubMedCrossRef
117.
Zurück zum Zitat De Magistris, L., V. Familiari, A. Pascotto, A. Sapone, A. Frolli, P. Iardino, et al. 2010. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition 51 (4): 418–424.PubMedCrossRef De Magistris, L., V. Familiari, A. Pascotto, A. Sapone, A. Frolli, P. Iardino, et al. 2010. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition 51 (4): 418–424.PubMedCrossRef
118.
Zurück zum Zitat Azouz, H.G., N.H.E. Zakaria, A.F. Khalil, S.M. Naguib, and M. Khalil. 2021. Gastrointestinal manifestations and their relation to faecal calprotectin in children with autism. Gastroenterology Review/Przegląd Gastroenterologiczny 16 (4): 352–7.PubMed Azouz, H.G., N.H.E. Zakaria, A.F. Khalil, S.M. Naguib, and M. Khalil. 2021. Gastrointestinal manifestations and their relation to faecal calprotectin in children with autism. Gastroenterology Review/Przegląd Gastroenterologiczny 16 (4): 352–7.PubMed
119.
Zurück zum Zitat Fernell, E., U.L. Fagerberg, and P.M. Hellström. 2007. No evidence for a clear link between active intestinal inflammation and autism based on analyses of faecal calprotectin and rectal nitric oxide. Acta Paediatrica, International Journal of Paediatrics 96 (7): 1076–1079.CrossRef Fernell, E., U.L. Fagerberg, and P.M. Hellström. 2007. No evidence for a clear link between active intestinal inflammation and autism based on analyses of faecal calprotectin and rectal nitric oxide. Acta Paediatrica, International Journal of Paediatrics 96 (7): 1076–1079.CrossRef
120.
Zurück zum Zitat Pusponegoro, H.D., S. Ismael, S. Sastroasmoro, A. Firmansyah, and Y. Vandenplas. 2015. Maladaptive behavior and gastrointestinal disorders in children with autism spectrum disorder. Journal of Pediatric Gastroenterology and Nutrition 18 (4): 230–237.PubMedPubMedCentralCrossRef Pusponegoro, H.D., S. Ismael, S. Sastroasmoro, A. Firmansyah, and Y. Vandenplas. 2015. Maladaptive behavior and gastrointestinal disorders in children with autism spectrum disorder. Journal of Pediatric Gastroenterology and Nutrition 18 (4): 230–237.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Strati, F., D. Cavalieri, D. Albanese, C. De Felice, C. Donati, J. Hayek, et al. 2017. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5: 1–11.CrossRef Strati, F., D. Cavalieri, D. Albanese, C. De Felice, C. Donati, J. Hayek, et al. 2017. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5: 1–11.CrossRef
122.
Zurück zum Zitat Alookaran, J., Y. Liu, T.A. Auchtung, A. Tahanan, M. Hessabi, P. Asgarisabet, et al. 2022. Fungi: Friend or foe? A mycobiome evaluation in children with autism and gastrointestinal symptoms. Journal of Pediatric Gastroenterology and Nutrition 74 (3): 377–382.PubMedPubMedCentralCrossRef Alookaran, J., Y. Liu, T.A. Auchtung, A. Tahanan, M. Hessabi, P. Asgarisabet, et al. 2022. Fungi: Friend or foe? A mycobiome evaluation in children with autism and gastrointestinal symptoms. Journal of Pediatric Gastroenterology and Nutrition 74 (3): 377–382.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Santocchi, E., L. Guiducci, M. Prosperi, S. Calderoni, M. Gaggini, F. Apicella, et al. 2020. Effects of probiotic supplementation on gastrointestinal, sensory and core symptoms in autism spectrum disorders: A randomized controlled trial. Front Psychiatry 11: 550593.PubMedPubMedCentralCrossRef Santocchi, E., L. Guiducci, M. Prosperi, S. Calderoni, M. Gaggini, F. Apicella, et al. 2020. Effects of probiotic supplementation on gastrointestinal, sensory and core symptoms in autism spectrum disorders: A randomized controlled trial. Front Psychiatry 11: 550593.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Peralta-Marzal, L.N., N. Prince, D. Bajic, L. Roussin, L. Naudon, S. Rabot, et al. 2021. The impact of gut microbiota-derived metabolites in autism spectrum disorders. International Journal of Molecular Sciences 22 (18): 10052.PubMedPubMedCentralCrossRef Peralta-Marzal, L.N., N. Prince, D. Bajic, L. Roussin, L. Naudon, S. Rabot, et al. 2021. The impact of gut microbiota-derived metabolites in autism spectrum disorders. International Journal of Molecular Sciences 22 (18): 10052.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6): 1332–1345.PubMedCrossRef Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6): 1332–1345.PubMedCrossRef
126.
Zurück zum Zitat Adams, J.B., L.J. Johansen, L.D. Powell, D. Quig, and R.A. Rubin. 2011. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology 11: 1–13.CrossRef Adams, J.B., L.J. Johansen, L.D. Powell, D. Quig, and R.A. Rubin. 2011. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology 11: 1–13.CrossRef
127.
Zurück zum Zitat Louis, P., and H.J. Flint. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology 19 (1): 29–41.PubMedCrossRef Louis, P., and H.J. Flint. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology 19 (1): 29–41.PubMedCrossRef
128.
Zurück zum Zitat Louis, P., G.L. Hold, and H.J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 12 (10): 661–672.PubMedCrossRef Louis, P., G.L. Hold, and H.J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 12 (10): 661–672.PubMedCrossRef
129.
Zurück zum Zitat MacFabe, D.F. 2012. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease 23 (1): 19260. MacFabe, D.F. 2012. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease 23 (1): 19260.
130.
Zurück zum Zitat Coretti, L., L. Paparo, M.P. Riccio, F. Amato, M. Cuomo, A. Natale, et al. 2018. Gut microbiota features in young children with autism spectrum disorders. Frontiers in Microbiology 9: 3146.PubMedPubMedCentralCrossRef Coretti, L., L. Paparo, M.P. Riccio, F. Amato, M. Cuomo, A. Natale, et al. 2018. Gut microbiota features in young children with autism spectrum disorders. Frontiers in Microbiology 9: 3146.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Wang, L., C.T. Christophersen, M.J. Sorich, J.P. Gerber, M.T. Angley, and M.A. Conlon. 2012. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive Diseases and Sciences 57: 2096–2102.PubMedCrossRef Wang, L., C.T. Christophersen, M.J. Sorich, J.P. Gerber, M.T. Angley, and M.A. Conlon. 2012. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive Diseases and Sciences 57: 2096–2102.PubMedCrossRef
132.
Zurück zum Zitat Yao, Y., X. Cai, W. Fei, Y. Ye, M. Zhao, and C. Zheng. 2022. The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical Reviews in Food Science and Nutrition 62 (1): 1–12.PubMedCrossRef Yao, Y., X. Cai, W. Fei, Y. Ye, M. Zhao, and C. Zheng. 2022. The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical Reviews in Food Science and Nutrition 62 (1): 1–12.PubMedCrossRef
133.
Zurück zum Zitat Osman, A., N.L. Mervosh, A.N. Strat, T.J. Euston, G. Zipursky, R.M. Pollak, et al. 2020. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Osman, A., N.L. Mervosh, A.N. Strat, T.J. Euston, G. Zipursky, R.M. Pollak, et al. 2020. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice.
134.
Zurück zum Zitat Wang, X., Z. Sun, T. Yang, F. Lin, S. Ye, J. Yan, et al. 2023. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems e00415-23. Wang, X., Z. Sun, T. Yang, F. Lin, S. Ye, J. Yan, et al. 2023. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems e00415-23.
135.
Zurück zum Zitat Cristiano, C., E. Hoxha, P. Lippiello, I. Balbo, R. Russo, F. Tempia, et al. 2022. Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice offspring. Biomedicine & Pharmacotherapy 156: 113870.CrossRef Cristiano, C., E. Hoxha, P. Lippiello, I. Balbo, R. Russo, F. Tempia, et al. 2022. Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice offspring. Biomedicine & Pharmacotherapy 156: 113870.CrossRef
136.
Zurück zum Zitat Kratsman, N., D. Getselter, and E. Elliott. 2016. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102: 136–145.PubMedCrossRef Kratsman, N., D. Getselter, and E. Elliott. 2016. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102: 136–145.PubMedCrossRef
137.
Zurück zum Zitat MacFabe, D.F., K. Rodríguez-Capote, J.E. Hoffman, A.E. Franklin, Y. Mohammad-Asef, A.R. Taylor, et al. 2008. A novel rodent model of autism: Intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. American Journal of Biochemistry and Biotechnology 4 (2): 146–166.CrossRef MacFabe, D.F., K. Rodríguez-Capote, J.E. Hoffman, A.E. Franklin, Y. Mohammad-Asef, A.R. Taylor, et al. 2008. A novel rodent model of autism: Intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. American Journal of Biochemistry and Biotechnology 4 (2): 146–166.CrossRef
140.
Zurück zum Zitat Garrido-Torres, N., K. Guzmán-Torres, S. García-Cerro, G. Pinilla Bermúdez, C. Cruz-Baquero, H. Ochoa, et al. 2023. miRNAs as biomarkers of autism spectrum disorder: a systematic review and meta-analysis. European Child and Adolescent Psychiatry, 1–34. Garrido-Torres, N., K. Guzmán-Torres, S. García-Cerro, G. Pinilla Bermúdez, C. Cruz-Baquero, H. Ochoa, et al. 2023. miRNAs as biomarkers of autism spectrum disorder: a systematic review and meta-analysis. European Child and Adolescent Psychiatry, 1–34.
141.
Zurück zum Zitat Mehmetbeyoglu, E., A. Duman, S. Taheri, Y. Ozkul, and M. Rassoulzadegan. 2023. From data to insights: Machine learning empowers prognostic biomarker prediction in Autism. Journal of Personalized Medicine 13 (12): 1713.PubMedPubMedCentralCrossRef Mehmetbeyoglu, E., A. Duman, S. Taheri, Y. Ozkul, and M. Rassoulzadegan. 2023. From data to insights: Machine learning empowers prognostic biomarker prediction in Autism. Journal of Personalized Medicine 13 (12): 1713.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Vaccaro, T.D., J.M. Sorrentino, S. Salvador, T. Veit, D.O. Souza, and R.F. De Almeida. 2018. Alterations in the microRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers. Behavioral Sciences 8 (8): 75.PubMedPubMedCentralCrossRef Vaccaro, T.D., J.M. Sorrentino, S. Salvador, T. Veit, D.O. Souza, and R.F. De Almeida. 2018. Alterations in the microRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers. Behavioral Sciences 8 (8): 75.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Seno, M.M.G., P. Hu, F.G. Gwadry, D. Pinto, C.R. Marshall, G. Casallo, et al. 2011. Gene and miRNA expression profiles in autism spectrum disorders. Brain Research 1380: 85–97.CrossRef Seno, M.M.G., P. Hu, F.G. Gwadry, D. Pinto, C.R. Marshall, G. Casallo, et al. 2011. Gene and miRNA expression profiles in autism spectrum disorders. Brain Research 1380: 85–97.CrossRef
144.
Zurück zum Zitat Ozkul, Y., S. Taheri, K.K. Bayram, E.F. Sener, E. Mehmetbeyoglu, D.B. Öztop, et al. 2020. A heritable profile of six miRNAs in autistic patients and mouse models. Science and Reports 10 (1): 9011.CrossRef Ozkul, Y., S. Taheri, K.K. Bayram, E.F. Sener, E. Mehmetbeyoglu, D.B. Öztop, et al. 2020. A heritable profile of six miRNAs in autistic patients and mouse models. Science and Reports 10 (1): 9011.CrossRef
145.
Zurück zum Zitat Chatterjee, B., M. Sarkar, S. Bose, M.T. Alam, A.A. Chaudhary, A.K. Dixit, et al. 2024. MicroRNAs: Key modulators of inflammation-associated diseases. In Seminars in Cell and Developmental Biology, 364–73. Elsevier. Chatterjee, B., M. Sarkar, S. Bose, M.T. Alam, A.A. Chaudhary, A.K. Dixit, et al. 2024. MicroRNAs: Key modulators of inflammation-associated diseases. In Seminars in Cell and Developmental Biology, 364–73. Elsevier.
146.
Zurück zum Zitat Wortelboer, K., G.J. Bakker, M. Winkelmeijer, N. van Riel, E. Levin, M. Nieuwdorp, et al. 2022. Fecal microbiota transplantation as tool to study the interrelation between microbiota composition and miRNA expression. Microbiological Research 257: 126972.PubMedCrossRef Wortelboer, K., G.J. Bakker, M. Winkelmeijer, N. van Riel, E. Levin, M. Nieuwdorp, et al. 2022. Fecal microbiota transplantation as tool to study the interrelation between microbiota composition and miRNA expression. Microbiological Research 257: 126972.PubMedCrossRef
147.
Zurück zum Zitat Nikolaieva, N., A. Sevcikova, R. Omelka, M. Martiniakova, M. Mego, and S. Ciernikova. 2022. Gut Microbiota–MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 11 (1): 107.PubMedPubMedCentralCrossRef Nikolaieva, N., A. Sevcikova, R. Omelka, M. Martiniakova, M. Mego, and S. Ciernikova. 2022. Gut Microbiota–MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 11 (1): 107.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Fardi, F., L.B. Khasraghi, N. Shahbakhti, A.S. Naseriyan, S. Najafi, S. Sanaaee, et al. 2023. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Research and Clinical Practice 110739. Fardi, F., L.B. Khasraghi, N. Shahbakhti, A.S. Naseriyan, S. Najafi, S. Sanaaee, et al. 2023. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Research and Clinical Practice 110739.
149.
Zurück zum Zitat Behrouzi, A., F. Ashrafian, H. Mazaheri, A. Lari, M. Nouri, F.R. Rad, et al. 2020. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microbial Pathogenesis 144: 104200.PubMedCrossRef Behrouzi, A., F. Ashrafian, H. Mazaheri, A. Lari, M. Nouri, F.R. Rad, et al. 2020. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microbial Pathogenesis 144: 104200.PubMedCrossRef
150.
Zurück zum Zitat Chiappori, F., F.A. Cupaioli, A. Consiglio, N. Di Nanni, E. Mosca, V.F. Licciulli, et al. 2022. Analysis of Faecal Microbiota and Small ncRNAs in Autism: Detection of miRNAs and piRNAs with Possible Implications in Host-Gut Microbiota Cross-Talk. Nutrients 14 (7): 1340.PubMedPubMedCentralCrossRef Chiappori, F., F.A. Cupaioli, A. Consiglio, N. Di Nanni, E. Mosca, V.F. Licciulli, et al. 2022. Analysis of Faecal Microbiota and Small ncRNAs in Autism: Detection of miRNAs and piRNAs with Possible Implications in Host-Gut Microbiota Cross-Talk. Nutrients 14 (7): 1340.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Yi, Y.S. 2024. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. In Seminars in Cell and Developmental Biology, 227–38. Elsevier. Yi, Y.S. 2024. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. In Seminars in Cell and Developmental Biology, 227–38. Elsevier.
152.
Zurück zum Zitat Li, J., X. Xu, J. Liu, S. Zhang, X. Tan, Z. Li, et al. 2022. Decoding microRNAs in autism spectrum disorder. Molecular Therapy-Nucleic Acids 30: 535–546.PubMedPubMedCentralCrossRef Li, J., X. Xu, J. Liu, S. Zhang, X. Tan, Z. Li, et al. 2022. Decoding microRNAs in autism spectrum disorder. Molecular Therapy-Nucleic Acids 30: 535–546.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Nguyen, L.S., J. Fregeac, C. Bole-Feysot, N. Cagnard, A. Iyer, J. Anink, et al. 2018. Role of miR-146a in neural stem cell differentiation and neural lineage determination: Relevance for neurodevelopmental disorders. Molecular Autism 9: 1–12.CrossRef Nguyen, L.S., J. Fregeac, C. Bole-Feysot, N. Cagnard, A. Iyer, J. Anink, et al. 2018. Role of miR-146a in neural stem cell differentiation and neural lineage determination: Relevance for neurodevelopmental disorders. Molecular Autism 9: 1–12.CrossRef
154.
Zurück zum Zitat Li, M., W.D. Chen, and Y.D. Wang. 2020. The roles of the gut microbiota–miRNA interaction in the host pathophysiology. Molecular Medicine 26: 1–9.CrossRef Li, M., W.D. Chen, and Y.D. Wang. 2020. The roles of the gut microbiota–miRNA interaction in the host pathophysiology. Molecular Medicine 26: 1–9.CrossRef
156.
Zurück zum Zitat Zhao, W., J.G. Spiers, N. Vassileff, A. Khadka, E.J. Jaehne, M. van den Buuse, et al. 2023. microRNA-146a modulates behavioural activity, neuroinflammation, and oxidative stress in adult mice. Molecular and Cellular Neuroscience 124.PubMedCrossRef Zhao, W., J.G. Spiers, N. Vassileff, A. Khadka, E.J. Jaehne, M. van den Buuse, et al. 2023. microRNA-146a modulates behavioural activity, neuroinflammation, and oxidative stress in adult mice. Molecular and Cellular Neuroscience 124.PubMedCrossRef
157.
Zurück zum Zitat Testa, U., E. Pelosi, G. Castelli, and C. Labbaye. 2017. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA 3 (3): 22.PubMedPubMedCentral Testa, U., E. Pelosi, G. Castelli, and C. Labbaye. 2017. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA 3 (3): 22.PubMedPubMedCentral
158.
Zurück zum Zitat Alexandrov, P., Y. Zhao, W. Li, and W. Lukiw. 2019. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a-and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia neuropathologica 57 (3): 211–9.PubMedCrossRef Alexandrov, P., Y. Zhao, W. Li, and W. Lukiw. 2019. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a-and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia neuropathologica 57 (3): 211–9.PubMedCrossRef
159.
Zurück zum Zitat Yan, X.Y., J.P. Yao, Y.Q. Li, W. Zhang, M.H. Xi, M. Chen, et al. 2022. Global trends in research on miRNA–microbiome interaction from 2011 to 2021: A bibliometric analysis. Frontiers in Pharmacology 13: 974741.PubMedPubMedCentralCrossRef Yan, X.Y., J.P. Yao, Y.Q. Li, W. Zhang, M.H. Xi, M. Chen, et al. 2022. Global trends in research on miRNA–microbiome interaction from 2011 to 2021: A bibliometric analysis. Frontiers in Pharmacology 13: 974741.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Schepici, G., E. Cavalli, P. Bramanti, and E. Mazzon. 2019. Autism spectrum disorder and miRNA: An overview of experimental models. Brain Sciences 9 (10): 265.PubMedPubMedCentralCrossRef Schepici, G., E. Cavalli, P. Bramanti, and E. Mazzon. 2019. Autism spectrum disorder and miRNA: An overview of experimental models. Brain Sciences 9 (10): 265.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Frye, R.E., S. Rose, S. McCullough, S.C. Bennuri, P.A. Porter-Gill, H. Dweep, et al. 2021. MicroRNA expression profiles in autism spectrum disorder: Role for miR-181 in immunomodulation. Journal of Personalized Medicine 11 (9): 922.PubMedPubMedCentralCrossRef Frye, R.E., S. Rose, S. McCullough, S.C. Bennuri, P.A. Porter-Gill, H. Dweep, et al. 2021. MicroRNA expression profiles in autism spectrum disorder: Role for miR-181 in immunomodulation. Journal of Personalized Medicine 11 (9): 922.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Hutchison, E.R., E.M. Kawamoto, D.D. Taub, A. Lal, K. Abdelmohsen, Y. Zhang, et al. 2013. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61 (7): 1018–1028.PubMedPubMedCentralCrossRef Hutchison, E.R., E.M. Kawamoto, D.D. Taub, A. Lal, K. Abdelmohsen, Y. Zhang, et al. 2013. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61 (7): 1018–1028.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Williams, A., J. Henao-Mejia, C.C.D. Harman, and R.A. Flavell. 2013. miR-181 and metabolic regulation in the immune system. In Cold Spring Harbor symposia on quantitative biology, 223–30. Cold Spring Harbor Laboratory Press. Williams, A., J. Henao-Mejia, C.C.D. Harman, and R.A. Flavell. 2013. miR-181 and metabolic regulation in the immune system. In Cold Spring Harbor symposia on quantitative biology, 223–30. Cold Spring Harbor Laboratory Press.
166.
Zurück zum Zitat Virtue, A.T., S.J. McCright, J.M. Wright, M.T. Jimenez, W.K. Mowel, J.J. Kotzin, et al. 2019. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine 11 (496): eaav1892.PubMedPubMedCentralCrossRef Virtue, A.T., S.J. McCright, J.M. Wright, M.T. Jimenez, W.K. Mowel, J.J. Kotzin, et al. 2019. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine 11 (496): eaav1892.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Fan, Y., M. Qin, J. Zhu, X. Chen, J. Luo, T. Chen, et al. 2022. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Critical Reviews in Food Science and Nutrition 1–18. Fan, Y., M. Qin, J. Zhu, X. Chen, J. Luo, T. Chen, et al. 2022. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Critical Reviews in Food Science and Nutrition 1–18.
168.
Zurück zum Zitat Dinan, T.G., C. Stanton, and J.F. Cryan. 2013. Psychobiotics: A novel class of psychotropic. Biological Psychiatry 74 (10): 720–726.PubMedCrossRef Dinan, T.G., C. Stanton, and J.F. Cryan. 2013. Psychobiotics: A novel class of psychotropic. Biological Psychiatry 74 (10): 720–726.PubMedCrossRef
169.
Zurück zum Zitat Ng, Q.X., Soh AY, W. Loke, D.Y. Lim, and W.S. Yeo. 2018. The role of inflammation in irritable bowel syndrome (IBS). The Journal of Inflammation Research 345–9. Ng, Q.X., Soh AY, W. Loke, D.Y. Lim, and W.S. Yeo. 2018. The role of inflammation in irritable bowel syndrome (IBS). The Journal of Inflammation Research 345–9.
170.
Zurück zum Zitat Adıgüzel, E., B. Çiçek, G. Ünal, M.F. Aydın, and D. Barlak-Keti. 2022. Probiotics and prebiotics alleviate behavioral deficits, inflammatory response, and gut dysbiosis in prenatal VPA-induced rodent model of autism. Physiology and Behavior 256: 113961.PubMedCrossRef Adıgüzel, E., B. Çiçek, G. Ünal, M.F. Aydın, and D. Barlak-Keti. 2022. Probiotics and prebiotics alleviate behavioral deficits, inflammatory response, and gut dysbiosis in prenatal VPA-induced rodent model of autism. Physiology and Behavior 256: 113961.PubMedCrossRef
171.
Zurück zum Zitat Wang, X., J. Yang, H. Zhang, J. Yu, and Z. Yao. 2019. Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice. Autism Research. 12 (4): 576–588.PubMedCrossRef Wang, X., J. Yang, H. Zhang, J. Yu, and Z. Yao. 2019. Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice. Autism Research. 12 (4): 576–588.PubMedCrossRef
172.
Zurück zum Zitat Sanctuary, M.R., J.N. Kain, S.Y. Chen, K. Kalanetra, D.G. Lemay, D.R. Rose, et al. 2019. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE 14 (1): e0210064.PubMedPubMedCentralCrossRef Sanctuary, M.R., J.N. Kain, S.Y. Chen, K. Kalanetra, D.G. Lemay, D.R. Rose, et al. 2019. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE 14 (1): e0210064.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Tomova, A., V. Husarova, S. Lakatosova, J. Bakos, B. Vlkova, K. Babinska, et al. 2015. Gastrointestinal microbiota in children with autism in Slovakia. Physiology and Behavior 138: 179–187.PubMedCrossRef Tomova, A., V. Husarova, S. Lakatosova, J. Bakos, B. Vlkova, K. Babinska, et al. 2015. Gastrointestinal microbiota in children with autism in Slovakia. Physiology and Behavior 138: 179–187.PubMedCrossRef
174.
Zurück zum Zitat Wang, Y., N. Li, J.J. Yang, D.M. Zhao, B. Chen, G.Q. Zhang, et al. 2020. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacological Research 157: 104784.PubMedCrossRef Wang, Y., N. Li, J.J. Yang, D.M. Zhao, B. Chen, G.Q. Zhang, et al. 2020. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacological Research 157: 104784.PubMedCrossRef
175.
Zurück zum Zitat Schmitt, L.M., E.G. Smith, E.V. Pedapati, P.S. Horn, M. Will, M. Lamy, et al. 2023. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Science and Reports 13 (1): 5192.CrossRef Schmitt, L.M., E.G. Smith, E.V. Pedapati, P.S. Horn, M. Will, M. Lamy, et al. 2023. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Science and Reports 13 (1): 5192.CrossRef
176.
Zurück zum Zitat Kong, X.J., J. Liu, K. Liu, M. Koh, H. Sherman, S. Liu, et al. 2021. Probiotic and oxytocin combination therapy in patients with autism spectrum disorder: A randomized, double-blinded, placebo-controlled pilot trial. Nutrients 13 (5): 1552.PubMedPubMedCentralCrossRef Kong, X.J., J. Liu, K. Liu, M. Koh, H. Sherman, S. Liu, et al. 2021. Probiotic and oxytocin combination therapy in patients with autism spectrum disorder: A randomized, double-blinded, placebo-controlled pilot trial. Nutrients 13 (5): 1552.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Guidetti, C., E. Salvini, M. Viri, F. Deidda, A. Amoruso, A. Visciglia, et al. 2022. Randomized double-blind crossover study for evaluating a probiotic mixture on gastrointestinal and behavioral symptoms of autistic children. Journal of Clinical Medicine 11 (18): 5263.PubMedPubMedCentralCrossRef Guidetti, C., E. Salvini, M. Viri, F. Deidda, A. Amoruso, A. Visciglia, et al. 2022. Randomized double-blind crossover study for evaluating a probiotic mixture on gastrointestinal and behavioral symptoms of autistic children. Journal of Clinical Medicine 11 (18): 5263.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Gładysz, D., A. Krzywdzińska, and K.K. Hozyasz. 2018. Immune abnormalities in autism spectrum disorder—could they hold promise for causative treatment? Molecular Neurobiology 55: 6387–6435.PubMedPubMedCentralCrossRef Gładysz, D., A. Krzywdzińska, and K.K. Hozyasz. 2018. Immune abnormalities in autism spectrum disorder—could they hold promise for causative treatment? Molecular Neurobiology 55: 6387–6435.PubMedPubMedCentralCrossRef
Metadaten
Titel
Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis?
verfasst von
Fatemeh Zarimeidani
Rahem Rahmati
Mehrnaz Mostafavi
Mohammad Darvishi
Sanaz Khodadadi
Mahya Mohammadi
Farid Shamlou
Salar Bakhtiyari
Iraj Alipourfard
Publikationsdatum
02.08.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02061-y

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Frühzeitige HPV-Impfung schützt auch Männer!

Die HPV-Impfung schützt auch Männer effektiv vor Genitalwarzen, so das Ergebnis einer Literaturstudie. Inwieweit sich mit der Impfung jedoch Karzinome verhindern lassen, vor allem bei Risikogruppen, bleibt unklar.

Op.-Entscheidung bei Divertikulitis: Lebensqualität zählt!

Soll man Menschen, die schon mehrfach schmerzhafte Divertikulitisepisoden durchgemacht haben, eine Op. anbieten? Ein Team aus Helsinki rät, dies von der Lebensqualität abhängig zu machen.

Nach kardiovaskulärer Erkrankung steigt das Krebsrisiko

Wer an einer kardiovaskulären Erkrankung (CVD) leidet, hat offenbar ein erhöhtes Risiko, in der Folge auch noch eine Krebsdiagnose zu erhalten. Der Zusammenhang scheint für diverse CVD und Krebsentitäten zu gelten.

Reisediarrhö: Expertin rät von Stand-by-Antibiotika ab

Macht es Sinn, Fernreisenden für den Fall einer Durchfallerkrankung ein Stand-by-Antibiotikum mitzugeben? Dr. Tinja Lääveri, Infektiologin und Resistenzforscherin aus Helsinki, sah das beim ESCMID-Kongress äußerst kritisch.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.