Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2019

21.05.2019 | Review Paper

Gut Microbiota Disorder, Gut Epithelial and Blood–Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways

verfasst von: Menizibeya O. Welcome

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Emerging evidences indicate a critical role of the gut microbiota in etiopathogenesis of dementia, a debilitating multifactorial disorder characterized by progressive deterioration of cognition and behavior that interferes with the social and professional functions of the sufferer. Available data suggest that gut microbiota disorder that triggers development of dementia is characterized by substantial reduction in specific species belonging to the Firmicutes and Bacteroidetes phyla and presence of pathogenic species, predominantly, pro-inflammatory bacteria of the Proteobacteria phylum. These changes in gut microbiota microecology promote the production of toxic metabolites and pro-inflammatory cytokines, and reduction in beneficial substances such as short chain fatty acids and other anti-inflammatory factors, thereby, enhancing destruction of the gut epithelial barrier with concomitant activation of local and distant immune cells as well as dysregulation of enteric neurons and glia. This subsequently leads to blood–brain barrier dysfunctions that trigger neuroinflammatory reactions and predisposes to apoptotic neuronal and glial cell death, particularly in the hippocampus and cerebral cortex, which underlie the development of dementia. However, the molecular switches that control these processes in the histo-hematic barriers of the gut and brain are not exactly known. This review integrates very recent data on the molecular mechanisms that link gut microbiota disorder to gut epithelial and blood–brain barrier dysfunctions, underlying the development of dementia. The signaling pathways that link gut microbiota disorder with impairment in cognition and behavior are also discussed. The review also highlights potential therapeutic options for dementia.
Literatur
Zurück zum Zitat Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O. R., et al. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256.CrossRefPubMedPubMedCentral Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O. R., et al. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256.CrossRefPubMedPubMedCentral
Zurück zum Zitat Alhasson, F., Das, S., Seth, R., Dattaroy, D., Chandrashekaran, V., Ryan, C. N., et al. (2017). Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS ONE, 12(3), e0172914.CrossRefPubMedPubMedCentral Alhasson, F., Das, S., Seth, R., Dattaroy, D., Chandrashekaran, V., Ryan, C. N., et al. (2017). Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS ONE, 12(3), e0172914.CrossRefPubMedPubMedCentral
Zurück zum Zitat Alkasir, R., Li, J., Li, X., Jin, M., & Zhu, B. (2017). Human gut microbiota: The links with dementia development. Protein Cell, 8(2), 90–102.CrossRefPubMed Alkasir, R., Li, J., Li, X., Jin, M., & Zhu, B. (2017). Human gut microbiota: The links with dementia development. Protein Cell, 8(2), 90–102.CrossRefPubMed
Zurück zum Zitat Almeida, O. P., & Lautenschlager, N. T. (2005). Dementia associated with infectious diseases. International Psychogeriatrics, 17(Suppl 1), S65–S77.CrossRefPubMed Almeida, O. P., & Lautenschlager, N. T. (2005). Dementia associated with infectious diseases. International Psychogeriatrics, 17(Suppl 1), S65–S77.CrossRefPubMed
Zurück zum Zitat Amasheh, S., Fromm, M., & Günzel, D. (2011). Claudins of intestine and nephron: A correlation of molecular tight junction structure and barrier function. Acta Psychologica, 201(1), 133–140. Amasheh, S., Fromm, M., & Günzel, D. (2011). Claudins of intestine and nephron: A correlation of molecular tight junction structure and barrier function. Acta Psychologica, 201(1), 133–140.
Zurück zum Zitat Asgari, E., Farrar, C. A., Lynch, N., Ali, Y. M., Roscher, S., Stover, C., et al. (2014). Mannan-binding lectin-associated serine protease 2 is critical for the development of renal ischemia reperfusion injury and mediates tissue injury in the absence of complement C4. The THE FASEB JOURNALournal, 28(9), 3996–4003.CrossRef Asgari, E., Farrar, C. A., Lynch, N., Ali, Y. M., Roscher, S., Stover, C., et al. (2014). Mannan-binding lectin-associated serine protease 2 is critical for the development of renal ischemia reperfusion injury and mediates tissue injury in the absence of complement C4. The THE FASEB JOURNALournal, 28(9), 3996–4003.CrossRef
Zurück zum Zitat Awad, W. A., Hess, C., & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins (Basel), 9(2), 60.CrossRef Awad, W. A., Hess, C., & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins (Basel), 9(2), 60.CrossRef
Zurück zum Zitat Bayliss, J. A., Lemus, M., Santos, V. V., Deo, M., Elsworth, J. D., & Andrews, Z. B. (2016). Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson’s disease. Journal of Neurochemistry, 137, 460–471.CrossRefPubMedPubMedCentral Bayliss, J. A., Lemus, M., Santos, V. V., Deo, M., Elsworth, J. D., & Andrews, Z. B. (2016). Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson’s disease. Journal of Neurochemistry, 137, 460–471.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutrition Reviews, 75(5), 374–389.CrossRefPubMed Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutrition Reviews, 75(5), 374–389.CrossRefPubMed
Zurück zum Zitat Bjarnadottir, H., Arnardottir, M., & Ludviksson, B. R. (2016). Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics, 68, 315–325.CrossRefPubMedPubMedCentral Bjarnadottir, H., Arnardottir, M., & Ludviksson, B. R. (2016). Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics, 68, 315–325.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. V., et al. (2016). The effect of host genetics on the gut microbiome. Nature Genetics, 48(11), 1407–1412.CrossRefPubMed Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. V., et al. (2016). The effect of host genetics on the gut microbiome. Nature Genetics, 48(11), 1407–1412.CrossRefPubMed
Zurück zum Zitat Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J. S., Nasuti, C., et al. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Scientific Report, 7, 2426.CrossRef Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J. S., Nasuti, C., et al. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Scientific Report, 7, 2426.CrossRef
Zurück zum Zitat Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., et al. (2018). SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Molecular Neurobiology, 55(10), 7987–8000.CrossRefPubMedPubMedCentral Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., et al. (2018). SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Molecular Neurobiology, 55(10), 7987–8000.CrossRefPubMedPubMedCentral
Zurück zum Zitat Brady, A. M., Geno, K. A., Dalecki, A. G., Cheng, X., & Nahm, M. H. (2014). Commercially available complement component-depleted sera are unexpectedly codepleted of ficolin-2. Clinical and Vaccine Immunology, 21(9), 1323–1329.CrossRefPubMedPubMedCentral Brady, A. M., Geno, K. A., Dalecki, A. G., Cheng, X., & Nahm, M. H. (2014). Commercially available complement component-depleted sera are unexpectedly codepleted of ficolin-2. Clinical and Vaccine Immunology, 21(9), 1323–1329.CrossRefPubMedPubMedCentral
Zurück zum Zitat Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014). The gut microbiota influences blood–brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158.CrossRefPubMedPubMedCentral Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014). The gut microbiota influences blood–brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158.CrossRefPubMedPubMedCentral
Zurück zum Zitat Britton, E., & McLaughlin, J. T. (2013). Ageing and the gut. Proceedings of the Nutrition Society, 72(1), 173–177.CrossRefPubMed Britton, E., & McLaughlin, J. T. (2013). Ageing and the gut. Proceedings of the Nutrition Society, 72(1), 173–177.CrossRefPubMed
Zurück zum Zitat Browne, T. C., McQuillan, K., McManus, R. M., O’Reilly, J. A., Mills, K. H., & Lynch, M. A. (2013). IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. Journal of Immunology, 190(5), 2241–2251.CrossRef Browne, T. C., McQuillan, K., McManus, R. M., O’Reilly, J. A., Mills, K. H., & Lynch, M. A. (2013). IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. Journal of Immunology, 190(5), 2241–2251.CrossRef
Zurück zum Zitat Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota–gut–brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), 472–487.CrossRefPubMed Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota–gut–brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), 472–487.CrossRefPubMed
Zurück zum Zitat Butterfield, D. A., & Boyd-Kimball, D. (2018). Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. Journal of Alzheimer’s Disease, 62(3), 1345–1367.CrossRefPubMedPubMedCentral Butterfield, D. A., & Boyd-Kimball, D. (2018). Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. Journal of Alzheimer’s Disease, 62(3), 1345–1367.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cai, Z., Hussain, M. D., & Yan, L. J. (2014a). Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. International Journal of Neuroscience, 124(5), 307–321.CrossRefPubMed Cai, Z., Hussain, M. D., & Yan, L. J. (2014a). Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. International Journal of Neuroscience, 124(5), 307–321.CrossRefPubMed
Zurück zum Zitat Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., et al. (2014b). Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4940–4945.CrossRefPubMedPubMedCentral Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., et al. (2014b). Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4940–4945.CrossRefPubMedPubMedCentral
Zurück zum Zitat Canani, R. B., Costanzo, M. D., Leone, L., Bedogni, G., Brambilla, P., Cianfarani, S., et al. (2011). Epigenetic mechanisms elicited by nutrition in early life. Nutrition Research Reviews, 24(2), 198–205.CrossRefPubMed Canani, R. B., Costanzo, M. D., Leone, L., Bedogni, G., Brambilla, P., Cianfarani, S., et al. (2011). Epigenetic mechanisms elicited by nutrition in early life. Nutrition Research Reviews, 24(2), 198–205.CrossRefPubMed
Zurück zum Zitat Capaldo, C. T., Powell, D. N., & Kalman, D. (2017). Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine (Berlin), 95(9), 927–934.CrossRef Capaldo, C. T., Powell, D. N., & Kalman, D. (2017). Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine (Berlin), 95(9), 927–934.CrossRef
Zurück zum Zitat Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., et al. (2017). INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68.CrossRefPubMed Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., et al. (2017). INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68.CrossRefPubMed
Zurück zum Zitat Ceccarelli, G., Brenchley, J. M., Cavallari, E. N., Scheri, G. C., Fratino, M., Pinacchio, C., et al. (2017). Impact of high-dose multi-strain probiotic supplementation on neurocognitive performance and central nervous system immune activation of HIV-1 infected individuals. Nutrients, 9(11), 1269.CrossRefPubMedCentral Ceccarelli, G., Brenchley, J. M., Cavallari, E. N., Scheri, G. C., Fratino, M., Pinacchio, C., et al. (2017). Impact of high-dose multi-strain probiotic supplementation on neurocognitive performance and central nervous system immune activation of HIV-1 infected individuals. Nutrients, 9(11), 1269.CrossRefPubMedCentral
Zurück zum Zitat Cenit, M. C., Sanz, Y., & Codoñer-Franch, P. (2017). Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 23(30), 5486–5498.CrossRefPubMedPubMedCentral Cenit, M. C., Sanz, Y., & Codoñer-Franch, P. (2017). Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 23(30), 5486–5498.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chaudhuri, K., Samarakoon, S. M. S., Chandola, H. M., Kumar, R., & Ravishankar, B. (2011). Evaluation of diet and life style in etiopathogenesis of senile dementia: A survey study. Ayu, 32(2), 171–176.CrossRefPubMedPubMedCentral Chaudhuri, K., Samarakoon, S. M. S., Chandola, H. M., Kumar, R., & Ravishankar, B. (2011). Evaluation of diet and life style in etiopathogenesis of senile dementia: A survey study. Ayu, 32(2), 171–176.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13(4), 3391–3396.CrossRefPubMedPubMedCentral Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13(4), 3391–3396.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cheng, D., Wang, X., Xi, Y., Cao, J., & Jiang, W. (2017). Identification of the Al-binding proteins that account for aluminum neurotoxicity and transport in vivo. Toxicol Research (Cambridge), 7(1), 127–135.CrossRef Cheng, D., Wang, X., Xi, Y., Cao, J., & Jiang, W. (2017). Identification of the Al-binding proteins that account for aluminum neurotoxicity and transport in vivo. Toxicol Research (Cambridge), 7(1), 127–135.CrossRef
Zurück zum Zitat Chertkow, H., Feldman, H. H., Jacova, C., & Massoud, F. (2013). Definitions of dementia and predementia states in Alzheimer’s disease and vascular cognitive impairment: Consensus from the Canadian conference on diagnosis of dementia. Alzheimer’s Research & Therapy, 5(Suppl 1), S2.CrossRef Chertkow, H., Feldman, H. H., Jacova, C., & Massoud, F. (2013). Definitions of dementia and predementia states in Alzheimer’s disease and vascular cognitive impairment: Consensus from the Canadian conference on diagnosis of dementia. Alzheimer’s Research & Therapy, 5(Suppl 1), S2.CrossRef
Zurück zum Zitat Chia, W. J., Tan, F. C., Ong, W. Y., & Dawe, G. S. (2015). Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochemistry International, 87, 43–59.CrossRefPubMed Chia, W. J., Tan, F. C., Ong, W. Y., & Dawe, G. S. (2015). Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochemistry International, 87, 43–59.CrossRefPubMed
Zurück zum Zitat Chiappelli, F. (2018). Advances in psychobiology. New York: Nova Science Publishers. Chiappelli, F. (2018). Advances in psychobiology. New York: Nova Science Publishers.
Zurück zum Zitat Chin-Chan, M., Navarro-Yepes, J., & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience, 9, 124.CrossRefPubMedPubMedCentral Chin-Chan, M., Navarro-Yepes, J., & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience, 9, 124.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chio, C. C., Chang, C. H., Wang, C. C., Cheong, C. U., Chao, C. M., Cheng, B. C., et al. (2013). Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α. BMC Neuroscience, 14, 33.CrossRefPubMedPubMedCentral Chio, C. C., Chang, C. H., Wang, C. C., Cheong, C. U., Chao, C. M., Cheng, B. C., et al. (2013). Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α. BMC Neuroscience, 14, 33.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chunchai, T., Thunapong, W., Yasom, S., Wanchai, K., Eaimworawuthikul, S., Metzler, G., et al. (2018). Decreased microglial activation through gut–brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. Journal of Neuroinflammation, 15, 11.CrossRefPubMedPubMedCentral Chunchai, T., Thunapong, W., Yasom, S., Wanchai, K., Eaimworawuthikul, S., Metzler, G., et al. (2018). Decreased microglial activation through gut–brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. Journal of Neuroinflammation, 15, 11.CrossRefPubMedPubMedCentral
Zurück zum Zitat Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition, 13, 43.CrossRefPubMedPubMedCentral Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition, 13, 43.CrossRefPubMedPubMedCentral
Zurück zum Zitat Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F., & Dinan, T. G. (2014). Gut microbiota: The neglected endocrine organ. Molecular Endocrinology, 28(8), 1221–1238.CrossRefPubMedPubMedCentral Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F., & Dinan, T. G. (2014). Gut microbiota: The neglected endocrine organ. Molecular Endocrinology, 28(8), 1221–1238.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cong, X., Judge, M., Xu, W., Diallo, A., Janton, S., Brownell, E. A., et al. (2017). Influence of feeding type on gut microbiome development in hospitalized preterm infants. Nursing Research, 66(2), 123–133.CrossRefPubMedPubMedCentral Cong, X., Judge, M., Xu, W., Diallo, A., Janton, S., Brownell, E. A., et al. (2017). Influence of feeding type on gut microbiome development in hospitalized preterm infants. Nursing Research, 66(2), 123–133.CrossRefPubMedPubMedCentral
Zurück zum Zitat Coppo, R. (2018). The gut-kidney axis in IgA nephropathy: Role of microbiota and diet on genetic predisposition. Pediatric Nephrology (Berlin, Germany), 33(1), 53–61.CrossRef Coppo, R. (2018). The gut-kidney axis in IgA nephropathy: Role of microbiota and diet on genetic predisposition. Pediatric Nephrology (Berlin, Germany), 33(1), 53–61.CrossRef
Zurück zum Zitat Coraci, I. S., Husemann, J., Berman, J. W., Hulette, C., Dufour, J. H., Campanella, G. K., et al. (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. American Journal of Pathology, 160(1), 101–112.CrossRefPubMedPubMedCentral Coraci, I. S., Husemann, J., Berman, J. W., Hulette, C., Dufour, J. H., Campanella, G. K., et al. (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. American Journal of Pathology, 160(1), 101–112.CrossRefPubMedPubMedCentral
Zurück zum Zitat Corraini, P., Henderson, V. W., Ording, A. G., Pedersen, L., Horváth-Puhó, E., & Sørensen, H. T. (2017). Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke. Stroke, 48(1), 180–186.CrossRefPubMed Corraini, P., Henderson, V. W., Ording, A. G., Pedersen, L., Horváth-Puhó, E., & Sørensen, H. T. (2017). Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke. Stroke, 48(1), 180–186.CrossRefPubMed
Zurück zum Zitat Crehan, H., Hardy, J., & Pocock, J. (2012). Microglia, Alzheimer’s disease, and complement. International Journal of Alzheimer’s Disease, 2012, 983640.PubMedPubMedCentral Crehan, H., Hardy, J., & Pocock, J. (2012). Microglia, Alzheimer’s disease, and complement. International Journal of Alzheimer’s Disease, 2012, 983640.PubMedPubMedCentral
Zurück zum Zitat Cristiano, C., Lama, A., Lembo, F., Mollica, M. P., Calignano, A., & Mattace Raso, G. (2018). Interplay between peripheral and central inflammation in autism spectrum disorders: Possible nutritional and therapeutic strategies. Frontiers Physiology, 9, 184.CrossRef Cristiano, C., Lama, A., Lembo, F., Mollica, M. P., Calignano, A., & Mattace Raso, G. (2018). Interplay between peripheral and central inflammation in autism spectrum disorders: Possible nutritional and therapeutic strategies. Frontiers Physiology, 9, 184.CrossRef
Zurück zum Zitat Cupidi, C., Frangipane, F., Gallo, M., Clodomiro, A., Colao, R., Bernardi, L., et al. (2017). Role of Niemann-Pick Type C disease mutations in dementia. Journal of Alzheimer’s Disease, 55(3), 1249–1259.CrossRefPubMed Cupidi, C., Frangipane, F., Gallo, M., Clodomiro, A., Colao, R., Bernardi, L., et al. (2017). Role of Niemann-Pick Type C disease mutations in dementia. Journal of Alzheimer’s Disease, 55(3), 1249–1259.CrossRefPubMed
Zurück zum Zitat Davenport, E. R., Cusanovich, D. A., Michelini, K., Barreiro, L. B., Ober, C., & Gilad, Y. (2015). Genome-wide association studies of the human gut microbiota. PLoS ONE, 10(11), e0140301.CrossRefPubMedPubMedCentral Davenport, E. R., Cusanovich, D. A., Michelini, K., Barreiro, L. B., Ober, C., & Gilad, Y. (2015). Genome-wide association studies of the human gut microbiota. PLoS ONE, 10(11), e0140301.CrossRefPubMedPubMedCentral
Zurück zum Zitat David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.CrossRefPubMed David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.CrossRefPubMed
Zurück zum Zitat de Jager, C. A., Msemburi, W., Pepper, K., & Combrinck, M. I. (2017). Dementia prevalence in a rural region of South Africa: A cross-sectional community study. Journal of Alzheimer’s Disease, 60(3), 1087–1096.CrossRefPubMedPubMedCentral de Jager, C. A., Msemburi, W., Pepper, K., & Combrinck, M. I. (2017). Dementia prevalence in a rural region of South Africa: A cross-sectional community study. Journal of Alzheimer’s Disease, 60(3), 1087–1096.CrossRefPubMedPubMedCentral
Zurück zum Zitat De Preter, V., Vanhoutte, T., Huys, G., Swings, J., Rutgeerts, P., & Verbeke, K. (2006). Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Alimentary Pharmacology & Therapeutics, 23(7), 963–974.CrossRef De Preter, V., Vanhoutte, T., Huys, G., Swings, J., Rutgeerts, P., & Verbeke, K. (2006). Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Alimentary Pharmacology & Therapeutics, 23(7), 963–974.CrossRef
Zurück zum Zitat Degn, S. E., Jensen, L., Olszowski, T., Jensenius, J. C., & Thiel, S. (2013). Co-complexes of MASP-1 and MASP-2 associated with the soluble pattern-recognition molecules drive lectin pathway activation in a manner inhibitable by MAp44. Journal of Immunology, 191(3), 1334–1345.CrossRef Degn, S. E., Jensen, L., Olszowski, T., Jensenius, J. C., & Thiel, S. (2013). Co-complexes of MASP-1 and MASP-2 associated with the soluble pattern-recognition molecules drive lectin pathway activation in a manner inhibitable by MAp44. Journal of Immunology, 191(3), 1334–1345.CrossRef
Zurück zum Zitat Di Fede, G., Giaccone, G., Salmona, M., & Tagliavini, F. (2018). Translational research in Alzheimer’s and Prion diseases. Journal of Alzheimer’s Disease, 62(3), 1247–1259.CrossRefPubMedPubMedCentral Di Fede, G., Giaccone, G., Salmona, M., & Tagliavini, F. (2018). Translational research in Alzheimer’s and Prion diseases. Journal of Alzheimer’s Disease, 62(3), 1247–1259.CrossRefPubMedPubMedCentral
Zurück zum Zitat Di Lorenzo, F., & Di Lorenzo, B. (2013). Iron and aluminum in Alzheimer’s disease. Neuroendocrinology Letters, 34(6), 504–507.PubMed Di Lorenzo, F., & Di Lorenzo, B. (2013). Iron and aluminum in Alzheimer’s disease. Neuroendocrinology Letters, 34(6), 504–507.PubMed
Zurück zum Zitat Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 595(2), 489–503.CrossRefPubMed Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 595(2), 489–503.CrossRefPubMed
Zurück zum Zitat Doens, D., & Fernández, P. L. (2014). Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. Journal of Neuroinflammation, 11, 48.CrossRefPubMedPubMedCentral Doens, D., & Fernández, P. L. (2014). Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. Journal of Neuroinflammation, 11, 48.CrossRefPubMedPubMedCentral
Zurück zum Zitat Dong, S., Duan, Y., Hu, Y., & Zhao, Z. (2012). Advances in the pathogenesis of Alzheimer’s disease: A re-evaluation of amyloid cascade hypothesis. Translational Neurodegeneration, 1, 18.CrossRefPubMedPubMedCentral Dong, S., Duan, Y., Hu, Y., & Zhao, Z. (2012). Advances in the pathogenesis of Alzheimer’s disease: A re-evaluation of amyloid cascade hypothesis. Translational Neurodegeneration, 1, 18.CrossRefPubMedPubMedCentral
Zurück zum Zitat Dong, J., Robertson, J. D., Markesbery, W. R., & Lovell, M. A. (2008). Serum zinc in the progression of Alzheimer’s disease. Journal of Alzheimer’s Disease, 15(3), 443–450.CrossRefPubMed Dong, J., Robertson, J. D., Markesbery, W. R., & Lovell, M. A. (2008). Serum zinc in the progression of Alzheimer’s disease. Journal of Alzheimer’s Disease, 15(3), 443–450.CrossRefPubMed
Zurück zum Zitat Dunn, N., Mullee, M., Perry, V. H., & Holmes, C. (2005). Association between dementia and infectious disease: Evidence from a case-control study. Alzheimer Disease and Associated Disorders, 19(2), 91–94.CrossRefPubMed Dunn, N., Mullee, M., Perry, V. H., & Holmes, C. (2005). Association between dementia and infectious disease: Evidence from a case-control study. Alzheimer Disease and Associated Disorders, 19(2), 91–94.CrossRefPubMed
Zurück zum Zitat El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D., & Silverstein, S. C. (1998). Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 19(1 Suppl), S81–S84.CrossRefPubMed El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D., & Silverstein, S. C. (1998). Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 19(1 Suppl), S81–S84.CrossRefPubMed
Zurück zum Zitat Engel, G. L. (1954). Studies of ulcerative colitis. II. The nature of the somatic processes and the adequacy of psychosomatic hypotheses. American Journal of Medicine, 16, 416–433.CrossRefPubMed Engel, G. L. (1954). Studies of ulcerative colitis. II. The nature of the somatic processes and the adequacy of psychosomatic hypotheses. American Journal of Medicine, 16, 416–433.CrossRefPubMed
Zurück zum Zitat Erdő, F., Denes, L., & de Lange, E. (2017). Age-associated physiological and pathological changes at the blood–brain barrier: A review. Journal of Cerebral Blood Flow and Metabolism, 37(1), 4–24.CrossRefPubMed Erdő, F., Denes, L., & de Lange, E. (2017). Age-associated physiological and pathological changes at the blood–brain barrier: A review. Journal of Cerebral Blood Flow and Metabolism, 37(1), 4–24.CrossRefPubMed
Zurück zum Zitat Evans, P. H. (1993). Free radicals in brain metabolism and pathology. British Medical Bulletin, 49(3), 577–587.CrossRefPubMed Evans, P. H. (1993). Free radicals in brain metabolism and pathology. British Medical Bulletin, 49(3), 577–587.CrossRefPubMed
Zurück zum Zitat Evans, P. H., Klinowski, J., & Yano, E. (1991). Cephaloconiosis: A free radical perspective on the proposed particulate-induced etiopathogenesis of Alzheimer’s dementia and related disorders. Medical Hypotheses, 34(3), 209–219.CrossRefPubMed Evans, P. H., Klinowski, J., & Yano, E. (1991). Cephaloconiosis: A free radical perspective on the proposed particulate-induced etiopathogenesis of Alzheimer’s dementia and related disorders. Medical Hypotheses, 34(3), 209–219.CrossRefPubMed
Zurück zum Zitat Evans, P. H., Yano, E., Klinowski, J., & Peterhans, E. (1992). Oxidative damage in Alzheimer’s dementia, and the potential etiopathogenic role of aluminosilicates, microglia and micronutrient interactions. EXS, 62, 178–189.PubMed Evans, P. H., Yano, E., Klinowski, J., & Peterhans, E. (1992). Oxidative damage in Alzheimer’s dementia, and the potential etiopathogenic role of aluminosilicates, microglia and micronutrient interactions. EXS, 62, 178–189.PubMed
Zurück zum Zitat Fang, X. (2016). Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. International Journal of Neuroscience, 126(9), 771–776.CrossRefPubMed Fang, X. (2016). Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. International Journal of Neuroscience, 126(9), 771–776.CrossRefPubMed
Zurück zum Zitat Fattahi, M. J., & Mirshafiey, A. (2014). Positive and negative effects of prostaglandins in Alzheimer’s disease. Psychiatry and Clinical Neurosciences, 68(1), 50–60.CrossRefPubMed Fattahi, M. J., & Mirshafiey, A. (2014). Positive and negative effects of prostaglandins in Alzheimer’s disease. Psychiatry and Clinical Neurosciences, 68(1), 50–60.CrossRefPubMed
Zurück zum Zitat Fernandez-Prado, R., Esteras, R., Perez-Gomez, M. V., Gracia-Iguacel, C., Gonzalez-Parra, E., Sanz, A. B., et al. (2017). Nutrients turned into toxins: Microbiota modulation of nutrient properties in chronic kidney disease. Nutrients, 9(5), 489.CrossRefPubMedCentral Fernandez-Prado, R., Esteras, R., Perez-Gomez, M. V., Gracia-Iguacel, C., Gonzalez-Parra, E., Sanz, A. B., et al. (2017). Nutrients turned into toxins: Microbiota modulation of nutrient properties in chronic kidney disease. Nutrients, 9(5), 489.CrossRefPubMedCentral
Zurück zum Zitat Fiebich, B. L., Schleicher, S., Spleiss, O., Czygan, M., & Hüll, M. (2001). Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: Possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. Journal of Neurochemistry, 79(5), 950–958.CrossRefPubMed Fiebich, B. L., Schleicher, S., Spleiss, O., Czygan, M., & Hüll, M. (2001). Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: Possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. Journal of Neurochemistry, 79(5), 950–958.CrossRefPubMed
Zurück zum Zitat Fiest, K. M., Jetté, N., Roberts, J. I., Maxwell, C. J., Smith, E. E., Black, S. E., et al. (2016). The prevalence and incidence of dementia: A systematic review and meta-analysis. Canadian Journal of Neurological Sciences, 43(1), S3–S50.CrossRef Fiest, K. M., Jetté, N., Roberts, J. I., Maxwell, C. J., Smith, E. E., Black, S. E., et al. (2016). The prevalence and incidence of dementia: A systematic review and meta-analysis. Canadian Journal of Neurological Sciences, 43(1), S3–S50.CrossRef
Zurück zum Zitat Figarska, S. M., Vonk, J. M., & Boezen, H. M. (2014). NFE2L2 polymorphisms, mortality, and metabolism in the general population. Physiological Genomics, 46(12), 411–417.CrossRefPubMedPubMedCentral Figarska, S. M., Vonk, J. M., & Boezen, H. M. (2014). NFE2L2 polymorphisms, mortality, and metabolism in the general population. Physiological Genomics, 46(12), 411–417.CrossRefPubMedPubMedCentral
Zurück zum Zitat Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut–brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124–136.CrossRefPubMedPubMedCentral Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut–brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124–136.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fransen, F., van Beek, A. A., Borghuis, T., El Aidy, S., Hugenholtz, F., van der Gaast, et al. (2017). Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Frontiers in Immunology, 8, 1385.CrossRefPubMedPubMedCentral Fransen, F., van Beek, A. A., Borghuis, T., El Aidy, S., Hugenholtz, F., van der Gaast, et al. (2017). Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Frontiers in Immunology, 8, 1385.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fratiglioni, L., De Ronchi, D., & Agüero-Torres, H. (1999). Worldwide prevalence and incidence of dementia. Drugs and Aging, 15(5), 365–375.CrossRefPubMed Fratiglioni, L., De Ronchi, D., & Agüero-Torres, H. (1999). Worldwide prevalence and incidence of dementia. Drugs and Aging, 15(5), 365–375.CrossRefPubMed
Zurück zum Zitat Gambuzza, M. E., Sofo, V., Salmeri, F. M., Soraci, L., Marino, S., & Bramanti, P. (2014). Toll-like receptors in Alzheimer’s disease: A therapeutic perspective. CNS & Neurological Disorders: Drug Targets, 13(9), 1542–1558.CrossRef Gambuzza, M. E., Sofo, V., Salmeri, F. M., Soraci, L., Marino, S., & Bramanti, P. (2014). Toll-like receptors in Alzheimer’s disease: A therapeutic perspective. CNS & Neurological Disorders: Drug Targets, 13(9), 1542–1558.CrossRef
Zurück zum Zitat Genuis, S. J., & Kelln, K. L. (2015). Toxicant exposure and bioaccumulation: A common and potentially reversible cause of cognitive dysfunction and dementia. Behavioural Neurology, 2015, 620143.CrossRefPubMedPubMedCentral Genuis, S. J., & Kelln, K. L. (2015). Toxicant exposure and bioaccumulation: A common and potentially reversible cause of cognitive dysfunction and dementia. Behavioural Neurology, 2015, 620143.CrossRefPubMedPubMedCentral
Zurück zum Zitat Geschwind, M. D. (2010). Rapidly progressive dementia: Prion diseases and other rapid dementias. Continuum (Minneap Minn)., 16(2), 31–56.PubMed Geschwind, M. D. (2010). Rapidly progressive dementia: Prion diseases and other rapid dementias. Continuum (Minneap Minn)., 16(2), 31–56.PubMed
Zurück zum Zitat Ghaisas, S., Maher, J., & Kanthasamy, A. (2016). Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics, 158, 52–62.CrossRef Ghaisas, S., Maher, J., & Kanthasamy, A. (2016). Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics, 158, 52–62.CrossRef
Zurück zum Zitat Ghosh, S., Wu, M. D., Shaftel, S. S., Kyrkanides, S., LaFerla, F. M., Olschowka, J. A., et al. (2013). Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. Journal of Neuroscience, 33(11), 5053–5064.CrossRefPubMed Ghosh, S., Wu, M. D., Shaftel, S. S., Kyrkanides, S., LaFerla, F. M., Olschowka, J. A., et al. (2013). Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. Journal of Neuroscience, 33(11), 5053–5064.CrossRefPubMed
Zurück zum Zitat Gordon, S. (2002). Pattern recognition receptors: Doubling up for the innate immune response. Cell, 111(7), 927–930.CrossRefPubMed Gordon, S. (2002). Pattern recognition receptors: Doubling up for the innate immune response. Cell, 111(7), 927–930.CrossRefPubMed
Zurück zum Zitat Griñán-Ferré, C., Corpas, R., Puigoriol-Illamola, D., Palomera-Ávalos, V., Sanfeliu, C., & Pallàs, M. (2018). Understanding epigenetics in the neurodegeneration of Alzheimer’s disease: SAMP8 mouse model. Journal of Alzheimer’s Disease, 62(3), 943–963.CrossRefPubMedPubMedCentral Griñán-Ferré, C., Corpas, R., Puigoriol-Illamola, D., Palomera-Ávalos, V., Sanfeliu, C., & Pallàs, M. (2018). Understanding epigenetics in the neurodegeneration of Alzheimer’s disease: SAMP8 mouse model. Journal of Alzheimer’s Disease, 62(3), 943–963.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hanamsagar, R., Hanke, M. L., & Kielian, T. (2012). Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends in Immunology, 33(7), 333–342.CrossRefPubMedPubMedCentral Hanamsagar, R., Hanke, M. L., & Kielian, T. (2012). Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends in Immunology, 33(7), 333–342.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hartz, A., Pagel, J., Humberg, A., Preuss, M., Schreiter, L., Rupp, J., et al. (2017). The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants. PLoS ONE, 12(5), e0178032.CrossRefPubMedPubMedCentral Hartz, A., Pagel, J., Humberg, A., Preuss, M., Schreiter, L., Rupp, J., et al. (2017). The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants. PLoS ONE, 12(5), e0178032.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hasan, M. K., Liu, C., Wang, F., Ahammed, G. J., Zhou, J., Xu, M. X., et al. (2016). Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere, 161, 536–545.CrossRefPubMed Hasan, M. K., Liu, C., Wang, F., Ahammed, G. J., Zhou, J., Xu, M. X., et al. (2016). Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere, 161, 536–545.CrossRefPubMed
Zurück zum Zitat Héja, D., Kocsis, A., Dobó, J., Szilágyi, K., Szász, R., Závodszky, P., et al. (2012). Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10498–10503.CrossRefPubMedPubMedCentral Héja, D., Kocsis, A., Dobó, J., Szilágyi, K., Szász, R., Závodszky, P., et al. (2012). Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10498–10503.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hickman, S. E., Allison, E. K., & El Khoury, J. (2008). Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. Journal of Neuroscience, 28(33), 8354–8360.CrossRefPubMed Hickman, S. E., Allison, E. K., & El Khoury, J. (2008). Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. Journal of Neuroscience, 28(33), 8354–8360.CrossRefPubMed
Zurück zum Zitat Ho, J. T. K., Chan, G. C. F., & Li, J. C. B. (2015). Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunology, 16, 21.CrossRefPubMedPubMedCentral Ho, J. T. K., Chan, G. C. F., & Li, J. C. B. (2015). Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunology, 16, 21.CrossRefPubMedPubMedCentral
Zurück zum Zitat Houghteling, P. D., & Walker, W. A. (2015). Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? Journal of Pediatric Gastroenterology and Nutrition, 60(3), 294–307.CrossRefPubMedPubMedCentral Houghteling, P. D., & Walker, W. A. (2015). Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? Journal of Pediatric Gastroenterology and Nutrition, 60(3), 294–307.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., et al. (2018). Microbiome-host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome, 6(1), 55.CrossRefPubMedPubMedCentral Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., et al. (2018). Microbiome-host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome, 6(1), 55.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hu, N., Tan, M.-S., Sun, L., Jiang, T., Wang, Y.-L., Tan, L., et al. (2014). Decreased expression of CD33 in peripheral mononuclear cells of Alzheimer’s disease patients. Neuroscience Letters, 563, 51–54.CrossRefPubMed Hu, N., Tan, M.-S., Sun, L., Jiang, T., Wang, Y.-L., Tan, L., et al. (2014). Decreased expression of CD33 in peripheral mononuclear cells of Alzheimer’s disease patients. Neuroscience Letters, 563, 51–54.CrossRefPubMed
Zurück zum Zitat Hu, X., Wang, T., & Jin, F. (2016). Alzheimer’s disease and gut microbiota. Science China Life Sciences, 59(10), 1006–1023.CrossRefPubMed Hu, X., Wang, T., & Jin, F. (2016). Alzheimer’s disease and gut microbiota. Science China Life Sciences, 59(10), 1006–1023.CrossRefPubMed
Zurück zum Zitat Hulse, G. K., Lautenschlager, N. T., Tait, R. J., & Almeida, O. P. (2005). Dementia associated with alcohol and other drug use. International Psychogeriatrics, 17(1), S109–S127.CrossRefPubMed Hulse, G. K., Lautenschlager, N. T., Tait, R. J., & Almeida, O. P. (2005). Dementia associated with alcohol and other drug use. International Psychogeriatrics, 17(1), S109–S127.CrossRefPubMed
Zurück zum Zitat Hung, Y.-N., Kadziola, Z., Brnabic, A. J. M., Yeh, J.-F., Fuh, J.-L., Hwang, J.-P., et al. (2016). The epidemiology and burden of Alzheimer’s disease in Taiwan utilizing data from the National Health Insurance Research Database. ClinicoEconomics and Outcomes Research, 8, 387–395.CrossRefPubMedPubMedCentral Hung, Y.-N., Kadziola, Z., Brnabic, A. J. M., Yeh, J.-F., Fuh, J.-L., Hwang, J.-P., et al. (2016). The epidemiology and burden of Alzheimer’s disease in Taiwan utilizing data from the National Health Insurance Research Database. ClinicoEconomics and Outcomes Research, 8, 387–395.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hwang, S., Lim, J. W., & Kim, H. (2017). Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients, 9(8), 883.CrossRefPubMedCentral Hwang, S., Lim, J. W., & Kim, H. (2017). Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients, 9(8), 883.CrossRefPubMedCentral
Zurück zum Zitat Iemolo, F., Duro, G., Rizzo, C., Castiglia, L., Hachinski, V., & Caruso, C. (2009). Pathophysiology of vascular dementia. Immunity & Ageing, 6, 13.CrossRef Iemolo, F., Duro, G., Rizzo, C., Castiglia, L., Hachinski, V., & Caruso, C. (2009). Pathophysiology of vascular dementia. Immunity & Ageing, 6, 13.CrossRef
Zurück zum Zitat Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T., et al. (2018). A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host & Microbe, 24(2), 296–307.CrossRef Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T., et al. (2018). A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host & Microbe, 24(2), 296–307.CrossRef
Zurück zum Zitat James, B. D., & Schneider, J. A. (2010). Increasing incidence of dementia in the oldest old: Evidence and implications. Alzheimer’s Research & Therapy, 2, 9.CrossRef James, B. D., & Schneider, J. A. (2010). Increasing incidence of dementia in the oldest old: Evidence and implications. Alzheimer’s Research & Therapy, 2, 9.CrossRef
Zurück zum Zitat Jamilian, M., Bahmani, F., Vahedpoor, Z., Salmani, A., Tajabadi-Ebrahimi, M., Jafari, P., et al. (2016). Effects of probiotic supplementation on metabolic status in pregnant women: A randomized, double-blind, placebo-controlled trial. Archives of Iranian Medicine, 19(10), 687–692.PubMed Jamilian, M., Bahmani, F., Vahedpoor, Z., Salmani, A., Tajabadi-Ebrahimi, M., Jafari, P., et al. (2016). Effects of probiotic supplementation on metabolic status in pregnant women: A randomized, double-blind, placebo-controlled trial. Archives of Iranian Medicine, 19(10), 687–692.PubMed
Zurück zum Zitat Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. Journal of Immunology, 181(10), 7254–7262.CrossRef Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. Journal of Immunology, 181(10), 7254–7262.CrossRef
Zurück zum Zitat Jiang, C., Li, G., Huang, P., Liu, Z., & Zhao, B. (2017). The gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease, 58(1), 1–15.CrossRefPubMed Jiang, C., Li, G., Huang, P., Liu, Z., & Zhao, B. (2017). The gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease, 58(1), 1–15.CrossRefPubMed
Zurück zum Zitat Jo, E.-K., Kim, J. K., Shin, D.-M., & Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148–159.CrossRef Jo, E.-K., Kim, J. K., Shin, D.-M., & Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148–159.CrossRef
Zurück zum Zitat Johnell, K. (2015). Inappropriate drug use in people with cognitive impairment and dementia: A systematic review. Current Clinical Pharmacology, 10(3), 178–184.CrossRefPubMedPubMedCentral Johnell, K. (2015). Inappropriate drug use in people with cognitive impairment and dementia: A systematic review. Current Clinical Pharmacology, 10(3), 178–184.CrossRefPubMedPubMedCentral
Zurück zum Zitat Juárez-Rebollar, D., Rios, C., Nava-Ruíz, C., & Méndez-Armenta, M. (2017). Metallothionein in brain disorders. Oxidative Medicine and Cellular Longevity, 2017, 5828056.CrossRefPubMedPubMedCentral Juárez-Rebollar, D., Rios, C., Nava-Ruíz, C., & Méndez-Armenta, M. (2017). Metallothionein in brain disorders. Oxidative Medicine and Cellular Longevity, 2017, 5828056.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kalaria, R. N. (2016). Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathologica, 131, 659–685.CrossRefPubMedPubMedCentral Kalaria, R. N. (2016). Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathologica, 131, 659–685.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kang, D.-W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., et al. (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 5, 10.CrossRefPubMedPubMedCentral Kang, D.-W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., et al. (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 5, 10.CrossRefPubMedPubMedCentral
Zurück zum Zitat Katan, M., Moon, Y. P., Paik, M. C., Sacco, R. L., Wright, C. B., & Elkind, M. S. V. (2013). Infectious burden and cognitive function: The Northern Manhattan study. Neurology, 80(13), 1209–1215.CrossRefPubMedPubMedCentral Katan, M., Moon, Y. P., Paik, M. C., Sacco, R. L., Wright, C. B., & Elkind, M. S. V. (2013). Infectious burden and cognitive function: The Northern Manhattan study. Neurology, 80(13), 1209–1215.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B., et al. (2015). Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death and Differentiation, 22(10), 1676–1686.CrossRefPubMedPubMedCentral Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B., et al. (2015). Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death and Differentiation, 22(10), 1676–1686.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G., & Hyland, N. P. (2015). Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 9, 392.PubMedPubMedCentral Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G., & Hyland, N. P. (2015). Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 9, 392.PubMedPubMedCentral
Zurück zum Zitat Killin, L. O. J., Starr, J. M., Shiue, I. J., & Russ, T. C. (2016). Environmental risk factors for dementia: A systematic review. BMC Geriatrics, 16, 175.CrossRefPubMedPubMedCentral Killin, L. O. J., Starr, J. M., Shiue, I. J., & Russ, T. C. (2016). Environmental risk factors for dementia: A systematic review. BMC Geriatrics, 16, 175.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kilpatrick, D. C., & Chalmers, J. D. (2012). Human L-ficolin (ficolin-2) and its clinical significance. Journal of Biomedicine and Biotechnology, 2012, 138797.CrossRefPubMedPubMedCentral Kilpatrick, D. C., & Chalmers, J. D. (2012). Human L-ficolin (ficolin-2) and its clinical significance. Journal of Biomedicine and Biotechnology, 2012, 138797.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kim, S.-H., Turnbull, J., & Guimond, S. (2011). Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. Journal of Endocrinology, 209, 139–151.CrossRefPubMed Kim, S.-H., Turnbull, J., & Guimond, S. (2011). Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. Journal of Endocrinology, 209, 139–151.CrossRefPubMed
Zurück zum Zitat Kjeldsen, L., Johnsen, A. H., Sengeløv, H., & Borregaard, N. (1993). Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. Journal of Biological Chemistry, 268(14), 10425–10432.PubMed Kjeldsen, L., Johnsen, A. H., Sengeløv, H., & Borregaard, N. (1993). Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. Journal of Biological Chemistry, 268(14), 10425–10432.PubMed
Zurück zum Zitat Knopman, D. S. (2006). Dementia and cerebrovascular disease. Mayo Clinic Proceedings, 81(2), 223–230.CrossRefPubMed Knopman, D. S. (2006). Dementia and cerebrovascular disease. Mayo Clinic Proceedings, 81(2), 223–230.CrossRefPubMed
Zurück zum Zitat Kobylecki, C., Jones, M., Thompson, J. C., Richardson, A. M., Neary, D., Mann, D. M. A., et al. (2015). Cognitive-behavioural features of progressive supranuclear palsy syndrome overlap with frontotemporal dementia. Journal of Neurology, 262(4), 916–922.CrossRefPubMed Kobylecki, C., Jones, M., Thompson, J. C., Richardson, A. M., Neary, D., Mann, D. M. A., et al. (2015). Cognitive-behavioural features of progressive supranuclear palsy syndrome overlap with frontotemporal dementia. Journal of Neurology, 262(4), 916–922.CrossRefPubMed
Zurück zum Zitat Koedrith, P., & Seo, Y. R. (2011). Advances in carcinogenic metal toxicity and potential molecular markers. International Journal of Molecular Sciences, 12(12), 9576–9595.CrossRefPubMedPubMedCentral Koedrith, P., & Seo, Y. R. (2011). Advances in carcinogenic metal toxicity and potential molecular markers. International Journal of Molecular Sciences, 12(12), 9576–9595.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lach, G., Schellekens, H., Dinan, T. G., & Cryan, J. F. (2018). Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 15(1), 36–59.CrossRefPubMed Lach, G., Schellekens, H., Dinan, T. G., & Cryan, J. F. (2018). Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 15(1), 36–59.CrossRefPubMed
Zurück zum Zitat Land, W. G. (2015). The role of damage-associated molecular patterns (DAMPs) in human diseases Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos University Medical Journal, 15(2), e157–e170.PubMedPubMedCentral Land, W. G. (2015). The role of damage-associated molecular patterns (DAMPs) in human diseases Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos University Medical Journal, 15(2), e157–e170.PubMedPubMedCentral
Zurück zum Zitat Lee, S., Kim, J. H., Kim, J. H., Seo, J. W., Han, H. S., Lee, W. H., et al. (2011). Lipocalin-2 Is a chemokine inducer in the central nervous system: Role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. Journal of Biological Chemistry, 286(51), 43855–43870.CrossRefPubMedPubMedCentral Lee, S., Kim, J. H., Kim, J. H., Seo, J. W., Han, H. S., Lee, W. H., et al. (2011). Lipocalin-2 Is a chemokine inducer in the central nervous system: Role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. Journal of Biological Chemistry, 286(51), 43855–43870.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lee, S., Lee, W. H., Lee, M. S., Mori, K., & Suk, K. (2012). Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. Journal of Neuroscience Research, 90(3), 540–550.CrossRefPubMed Lee, S., Lee, W. H., Lee, M. S., Mori, K., & Suk, K. (2012). Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. Journal of Neuroscience Research, 90(3), 540–550.CrossRefPubMed
Zurück zum Zitat Lee, E. S., Song, E. J., & Nam, Y. D. (2017). Dysbiosis of gut microbiome and its impact on epigenetic regulation. Journal of Clinical Epigenetics, 3, S1. Lee, E. S., Song, E. J., & Nam, Y. D. (2017). Dysbiosis of gut microbiome and its impact on epigenetic regulation. Journal of Clinical Epigenetics, 3, S1.
Zurück zum Zitat Leverenz, J. B., Quinn, J. F., Zabetian, C., Zhang, J., Montine, K. S., & Montine, T. J. (2009). Cognitive impairment and dementia in patients with Parkinson disease. Current Topics in Medicinal Chemistry, 9(10), 903–912.PubMedPubMedCentral Leverenz, J. B., Quinn, J. F., Zabetian, C., Zhang, J., Montine, K. S., & Montine, T. J. (2009). Cognitive impairment and dementia in patients with Parkinson disease. Current Topics in Medicinal Chemistry, 9(10), 903–912.PubMedPubMedCentral
Zurück zum Zitat Lewis, K. N., Mele, J., Hayes, J. D., & Buffenstein, R. (2010). Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integrative and Comparative Biology, 50(5), 829–843.CrossRefPubMedPubMedCentral Lewis, K. N., Mele, J., Hayes, J. D., & Buffenstein, R. (2010). Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integrative and Comparative Biology, 50(5), 829–843.CrossRefPubMedPubMedCentral
Zurück zum Zitat Li, M.-F., Li, Jun, & Sun, Li. (2016). CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity. Scientific Report, 6, 39287.CrossRef Li, M.-F., Li, Jun, & Sun, Li. (2016). CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity. Scientific Report, 6, 39287.CrossRef
Zurück zum Zitat Li, X., Melief, E., Postupna, N., Montine, K. S., Keene, C. D., & Montine, T. J. (2015). Prostaglandin E2 receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial Aβ42 phagocytosis. American Journal of Pathology, 185(1), 230–239.CrossRefPubMedPubMedCentral Li, X., Melief, E., Postupna, N., Montine, K. S., Keene, C. D., & Montine, T. J. (2015). Prostaglandin E2 receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial Aβ42 phagocytosis. American Journal of Pathology, 185(1), 230–239.CrossRefPubMedPubMedCentral
Zurück zum Zitat Li, D.-D., Zhang, W., Wang, Z.-Y., & Zhao, P. (2017). Serum copper, zinc, and iron levels in patients with Alzheimer’s disease: A meta-analysis of case-control studies. Frontiers in Aging Neuroscience, 9, 300.CrossRefPubMedPubMedCentral Li, D.-D., Zhang, W., Wang, Z.-Y., & Zhao, P. (2017). Serum copper, zinc, and iron levels in patients with Alzheimer’s disease: A meta-analysis of case-control studies. Frontiers in Aging Neuroscience, 9, 300.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lian, H., Litvinchuk, A., Chiang, A. C., Aithmitti, N., Jankowsky, J. L., & Zheng, H. (2016). Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. Journal of Neuroscience, 36(2), 577–589.CrossRefPubMed Lian, H., Litvinchuk, A., Chiang, A. C., Aithmitti, N., Jankowsky, J. L., & Zheng, H. (2016). Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. Journal of Neuroscience, 36(2), 577–589.CrossRefPubMed
Zurück zum Zitat Liang, X., Wang, Q., Hand, T., Wu, L., Breyer, R. M., Montine, T. J., et al. (2005). Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. Journal of Neuroscience, 25(44), 10180–10187.CrossRefPubMed Liang, X., Wang, Q., Hand, T., Wu, L., Breyer, R. M., Montine, T. J., et al. (2005). Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. Journal of Neuroscience, 25(44), 10180–10187.CrossRefPubMed
Zurück zum Zitat Licastro, F., & Porcellini, E. (2016). Persistent infections, immune-senescence and Alzheimer’s disease. Oncoscience, 3(5–6), 135–142.PubMedPubMedCentral Licastro, F., & Porcellini, E. (2016). Persistent infections, immune-senescence and Alzheimer’s disease. Oncoscience, 3(5–6), 135–142.PubMedPubMedCentral
Zurück zum Zitat Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., et al. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7(4), e35240.CrossRefPubMedPubMedCentral Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., et al. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7(4), e35240.CrossRefPubMedPubMedCentral
Zurück zum Zitat Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A. J., Penke, B., et al. (2012). TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. Journal of Immunology, 188(3), 1098–1107.CrossRef Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A. J., Penke, B., et al. (2012). TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. Journal of Immunology, 188(3), 1098–1107.CrossRef
Zurück zum Zitat Luettig, J., Rosenthal, R., Barmeyer, C., & Schulzke, J. D. (2015). Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers, 3(1–2), e977176.CrossRefPubMedPubMedCentral Luettig, J., Rosenthal, R., Barmeyer, C., & Schulzke, J. D. (2015). Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers, 3(1–2), e977176.CrossRefPubMedPubMedCentral
Zurück zum Zitat Magni, G., Bernasconi, G., Mauro, P., D’Odorico, A., Sturniolo, G. C., Canton, G., et al. (1991). Psychiatric diagnoses in ulcerative colitis. A controlled study. British Journal of Psychiatry, 158, 413–415.CrossRef Magni, G., Bernasconi, G., Mauro, P., D’Odorico, A., Sturniolo, G. C., Canton, G., et al. (1991). Psychiatric diagnoses in ulcerative colitis. A controlled study. British Journal of Psychiatry, 158, 413–415.CrossRef
Zurück zum Zitat Maguen, S., Madden, E., Cohen, B., Bertenthal, D., & Seal, K. (2014). Association of mental health problems with gastrointestinal disorders in Iraq and Afghanistan veterans. Depression and Anxiety, 31(2), 160–165.CrossRefPubMed Maguen, S., Madden, E., Cohen, B., Bertenthal, D., & Seal, K. (2014). Association of mental health problems with gastrointestinal disorders in Iraq and Afghanistan veterans. Depression and Anxiety, 31(2), 160–165.CrossRefPubMed
Zurück zum Zitat Mahla, R. S., Reddy, M. C., Prasad, D. V. R., & Kumar, H. (2013). Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Frontiers in Immunology, 4, 248.CrossRefPubMedPubMedCentral Mahla, R. S., Reddy, M. C., Prasad, D. V. R., & Kumar, H. (2013). Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Frontiers in Immunology, 4, 248.CrossRefPubMedPubMedCentral
Zurück zum Zitat Maloney, B., & Lahiri, D. K. (2016). Epigenetics of dementia: Understanding the disease as a transformation rather than a state. The Lancet Neurology, 15(7), 760–774.CrossRefPubMed Maloney, B., & Lahiri, D. K. (2016). Epigenetics of dementia: Understanding the disease as a transformation rather than a state. The Lancet Neurology, 15(7), 760–774.CrossRefPubMed
Zurück zum Zitat Mariadason, J. M., Barkla, D. H., & Gibson, P. R. (1997). Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. American Journal of Physiology, 272, G705–G712.PubMed Mariadason, J. M., Barkla, D. H., & Gibson, P. R. (1997). Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. American Journal of Physiology, 272, G705–G712.PubMed
Zurück zum Zitat Mariadason, J. M., Catto-Smith, A., & Gibson, P. R. (1999). Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. Gut, 44, 394–399.CrossRefPubMedPubMedCentral Mariadason, J. M., Catto-Smith, A., & Gibson, P. R. (1999). Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. Gut, 44, 394–399.CrossRefPubMedPubMedCentral
Zurück zum Zitat Martin, C. M. (2006). The “reversible” dementia of idiopathic normal pressure hydrocephalus. The Consultant pharmacist, 21(11), 888–893.CrossRefPubMed Martin, C. M. (2006). The “reversible” dementia of idiopathic normal pressure hydrocephalus. The Consultant pharmacist, 21(11), 888–893.CrossRefPubMed
Zurück zum Zitat Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., & Rydel, R. E. (1993). Beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends in Neurosciences, 16(10), 409–414.CrossRefPubMed Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., & Rydel, R. E. (1993). Beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends in Neurosciences, 16(10), 409–414.CrossRefPubMed
Zurück zum Zitat Mattsson, E., Heying, R., Van De Gevel, J. S., Hartung, T., & Beekhuizen, H. (2008). Staphylococcal peptidoglycan initiates an inflammatory response and procoagulant activity in human vascular endothelial cells: A comparison with highly purified lipoteichoic acid and TSST-1. FEMS Immunology and Medical Microbiology, 52(1), 110–117.CrossRefPubMed Mattsson, E., Heying, R., Van De Gevel, J. S., Hartung, T., & Beekhuizen, H. (2008). Staphylococcal peptidoglycan initiates an inflammatory response and procoagulant activity in human vascular endothelial cells: A comparison with highly purified lipoteichoic acid and TSST-1. FEMS Immunology and Medical Microbiology, 52(1), 110–117.CrossRefPubMed
Zurück zum Zitat McCarthy, C. G., Goulopoulou, S., Wenceslau, C. F., Spitler, K., Matsumoto, T., & Webb, R. C. (2014). Toll-like receptors and damage-associated molecular patterns: Novel links between inflammation and hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 306(2), H184–H196.CrossRefPubMed McCarthy, C. G., Goulopoulou, S., Wenceslau, C. F., Spitler, K., Matsumoto, T., & Webb, R. C. (2014). Toll-like receptors and damage-associated molecular patterns: Novel links between inflammation and hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 306(2), H184–H196.CrossRefPubMed
Zurück zum Zitat McKegney, F. P., Gordon, R. O., & Levine, S. M. (1970). A psychosomatic comparison of patients with ulcerative colitis and Crohn’s disease. Psychosomatic Medicine, 32, 153–166.CrossRefPubMed McKegney, F. P., Gordon, R. O., & Levine, S. M. (1970). A psychosomatic comparison of patients with ulcerative colitis and Crohn’s disease. Psychosomatic Medicine, 32, 153–166.CrossRefPubMed
Zurück zum Zitat Megyeri, M., Harmat, V., Major, B., Végh, Á., Balczer, J., Héja, D., et al. (2013). Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. Journal of Biological Chemistry, 288(13), 8922–8934.CrossRefPubMedPubMedCentral Megyeri, M., Harmat, V., Major, B., Végh, Á., Balczer, J., Héja, D., et al. (2013). Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. Journal of Biological Chemistry, 288(13), 8922–8934.CrossRefPubMedPubMedCentral
Zurück zum Zitat Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., et al. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755–764.CrossRefPubMed Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., et al. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755–764.CrossRefPubMed
Zurück zum Zitat Millington, C., Sonego, S., Karunaweera, N., Rangel, A., Aldrich-Wright, J. R., Campbell, I. L., et al. (2014). Chronic neuroinflammation in Alzheimer’s disease: New perspectives on animal models and promising candidate drugs. BioMed Research International, 2014, 309129.CrossRefPubMedPubMedCentral Millington, C., Sonego, S., Karunaweera, N., Rangel, A., Aldrich-Wright, J. R., Campbell, I. L., et al. (2014). Chronic neuroinflammation in Alzheimer’s disease: New perspectives on animal models and promising candidate drugs. BioMed Research International, 2014, 309129.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19.CrossRefPubMedPubMedCentral Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mittermaier, C., Dejaco, C., Waldhoer, T., Oefferlbauer-Ernst, A., Miehsler, W., Beier, M., et al. (2004). Impact of depressive mood on relapse in patients with inflammatory bowel disease: A prospective 18-month follow-up study. Psychosomatic Medicine, 66(1), 79–84.CrossRefPubMed Mittermaier, C., Dejaco, C., Waldhoer, T., Oefferlbauer-Ernst, A., Miehsler, W., Beier, M., et al. (2004). Impact of depressive mood on relapse in patients with inflammatory bowel disease: A prospective 18-month follow-up study. Psychosomatic Medicine, 66(1), 79–84.CrossRefPubMed
Zurück zum Zitat Møller-Kristensen, M., Thiel, S., Sjöholm, A., Matsushita, M., & Jensenius, J. C. (2007). Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway. International Immunology, 19(2), 141–149.CrossRefPubMed Møller-Kristensen, M., Thiel, S., Sjöholm, A., Matsushita, M., & Jensenius, J. C. (2007). Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway. International Immunology, 19(2), 141–149.CrossRefPubMed
Zurück zum Zitat Myhre, O., Utkilen, H., Duale, N., Brunborg, G., & Hofer, T. (2013). Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: Possible impact of environmental exposures. Oxidative Medicine and Cellular Longevity, 2013, 726954.CrossRefPubMedPubMedCentral Myhre, O., Utkilen, H., Duale, N., Brunborg, G., & Hofer, T. (2013). Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: Possible impact of environmental exposures. Oxidative Medicine and Cellular Longevity, 2013, 726954.CrossRefPubMedPubMedCentral
Zurück zum Zitat Naudé, P. J. W., Nyakas, C., Eiden, L. E., Ait-Ali, D., van der Heide, R., Engelborghs, S., et al. (2012). Lipocalin 2: Novel component of proinflammatory signaling in Alzheimer’s disease. The FASEB Journal, 26(7), 2811–2823.CrossRefPubMedPubMedCentral Naudé, P. J. W., Nyakas, C., Eiden, L. E., Ait-Ali, D., van der Heide, R., Engelborghs, S., et al. (2012). Lipocalin 2: Novel component of proinflammatory signaling in Alzheimer’s disease. The FASEB Journal, 26(7), 2811–2823.CrossRefPubMedPubMedCentral
Zurück zum Zitat Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23(3), 255–264.CrossRefPubMed Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23(3), 255–264.CrossRefPubMed
Zurück zum Zitat Neugroschl, J., & Wang, S. (2011). Alzheimer’s disease: Diagnosis and treatment across the spectrum of disease severity. Mount Sinai Journal of Medicine, 78(4), 596–612.CrossRefPubMed Neugroschl, J., & Wang, S. (2011). Alzheimer’s disease: Diagnosis and treatment across the spectrum of disease severity. Mount Sinai Journal of Medicine, 78(4), 596–612.CrossRefPubMed
Zurück zum Zitat Nielsen, B. S., Borregaard, N., Bundgaard, J. R., Timshel, S., Sehested, M., & Kjeldsen, L. (1996). Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut, 38, 414–420.CrossRefPubMedPubMedCentral Nielsen, B. S., Borregaard, N., Bundgaard, J. R., Timshel, S., Sehested, M., & Kjeldsen, L. (1996). Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut, 38, 414–420.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nzengue, Y., Candéias, S. M., Sauvaigo, S., Douki, T., Favier, A., Rachidi, W., et al. (2011). The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: Its redox biomarkers. Journal of Trace Elements in Medicine and Biology, 25(3), 171–180.CrossRefPubMed Nzengue, Y., Candéias, S. M., Sauvaigo, S., Douki, T., Favier, A., Rachidi, W., et al. (2011). The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: Its redox biomarkers. Journal of Trace Elements in Medicine and Biology, 25(3), 171–180.CrossRefPubMed
Zurück zum Zitat O’Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science, 350(6265), 1214–1215.CrossRefPubMed O’Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science, 350(6265), 1214–1215.CrossRefPubMed
Zurück zum Zitat O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48.CrossRefPubMed O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48.CrossRefPubMed
Zurück zum Zitat Park, J.-H., Lee, D.-W., Park, K. S., & Joung, H. J. (2013). Serum trace metal levels in Alzheimer’s disease and normal control groups. American Journal of Alzheimer’s Disease & Other Dementias, 29(1), 76–83.CrossRef Park, J.-H., Lee, D.-W., Park, K. S., & Joung, H. J. (2013). Serum trace metal levels in Alzheimer’s disease and normal control groups. American Journal of Alzheimer’s Disease & Other Dementias, 29(1), 76–83.CrossRef
Zurück zum Zitat Peng, L., He, Z., Chen, W., Holzman, I. R., & Lin, J. (2007). Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatric Research, 61, 37–41.CrossRefPubMed Peng, L., He, Z., Chen, W., Holzman, I. R., & Lin, J. (2007). Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatric Research, 61, 37–41.CrossRefPubMed
Zurück zum Zitat Percy, M. E., Kruck, T. P. A., Pogue, A. I., & Lukiw, W. J. (2011). Towards the prevention of potential aluminum toxic effects and an effective treatment for Alzheimer’s disease. Journal of Inorganic Biochemistry, 105(11), 1505–1512.CrossRefPubMedPubMedCentral Percy, M. E., Kruck, T. P. A., Pogue, A. I., & Lukiw, W. J. (2011). Towards the prevention of potential aluminum toxic effects and an effective treatment for Alzheimer’s disease. Journal of Inorganic Biochemistry, 105(11), 1505–1512.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., et al. (2017). Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology, 153(2), 448–459.CrossRefPubMed Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., et al. (2017). Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology, 153(2), 448–459.CrossRefPubMed
Zurück zum Zitat Psichas, A., Sleeth, M. L., Murphy, K. G., Brooks, L., Bewick, G. A., Hanyaloglu, A. C., et al. (2015). The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity, 39(3), 424–429.CrossRefPubMed Psichas, A., Sleeth, M. L., Murphy, K. G., Brooks, L., Bewick, G. A., Hanyaloglu, A. C., et al. (2015). The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity, 39(3), 424–429.CrossRefPubMed
Zurück zum Zitat Rangaraju, S., Raza, S. A., Li, N. X., Betarbet, R., Dammer, E. B., Duong, D., et al. (2018). Differential phagocytic properties of CD45low microglia and CD45high brain mononuclear phagocytes-activation and age-related effects. Frontiers in Immunology, 9, 405.CrossRefPubMedPubMedCentral Rangaraju, S., Raza, S. A., Li, N. X., Betarbet, R., Dammer, E. B., Duong, D., et al. (2018). Differential phagocytic properties of CD45low microglia and CD45high brain mononuclear phagocytes-activation and age-related effects. Frontiers in Immunology, 9, 405.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ransohoff, R. M. (2016). How neuroinflammation contributes to neurodegeneration. Science, 353(6301), 777–783.CrossRefPubMed Ransohoff, R. M. (2016). How neuroinflammation contributes to neurodegeneration. Science, 353(6301), 777–783.CrossRefPubMed
Zurück zum Zitat Ray, R., Juranek, J. K., & Rai, V. (2016). RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neuroscience and Biobehavioral Reviews, 62, 48–55.CrossRefPubMed Ray, R., Juranek, J. K., & Rai, V. (2016). RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neuroscience and Biobehavioral Reviews, 62, 48–55.CrossRefPubMed
Zurück zum Zitat Rayaprolu, S., Mullen, B., Baker, M., Lynch, T., Finger, E., Seeley, W. W., et al. (2013). TREM2 in neurodegeneration: Evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Molecular Neurodegeneration, 8, 19.CrossRefPubMedPubMedCentral Rayaprolu, S., Mullen, B., Baker, M., Lynch, T., Finger, E., Seeley, W. W., et al. (2013). TREM2 in neurodegeneration: Evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Molecular Neurodegeneration, 8, 19.CrossRefPubMedPubMedCentral
Zurück zum Zitat Rayner, C. K., & Horowitz, M. (2013). Physiology of the ageing gut. Current Opinion in Clinical Nutrition & Metabolic Care, 16(1), 33–38.CrossRef Rayner, C. K., & Horowitz, M. (2013). Physiology of the ageing gut. Current Opinion in Clinical Nutrition & Metabolic Care, 16(1), 33–38.CrossRef
Zurück zum Zitat Remely, M., Aumueller, E., Jahn, D., Hippe, B., Brath, H., & Haslberger, A. G. (2014a). Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes, 5(1), 33–43.CrossRefPubMed Remely, M., Aumueller, E., Jahn, D., Hippe, B., Brath, H., & Haslberger, A. G. (2014a). Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes, 5(1), 33–43.CrossRefPubMed
Zurück zum Zitat Remely, M., Aumueller, E., Merold, C., Dworzak, S., Hippe, B., Zanner, J., et al. (2014b). Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene, 537(1), 85–92.CrossRefPubMed Remely, M., Aumueller, E., Merold, C., Dworzak, S., Hippe, B., Zanner, J., et al. (2014b). Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene, 537(1), 85–92.CrossRefPubMed
Zurück zum Zitat Ribet, D., & Cossart, P. (2015). How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection, 17(3), 173–183.CrossRefPubMed Ribet, D., & Cossart, P. (2015). How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection, 17(3), 173–183.CrossRefPubMed
Zurück zum Zitat Rizzi, L., Rosset, I., & Roriz-Cruz, M. (2014). Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Research International, 2014, 908915.CrossRefPubMedPubMedCentral Rizzi, L., Rosset, I., & Roriz-Cruz, M. (2014). Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Research International, 2014, 908915.CrossRefPubMedPubMedCentral
Zurück zum Zitat Romijn, A. R., Rucklidge, J. J., Kuijer, R. G., & Frampton, C. (2017). A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Australian and New Zealand Journal of Psychiatry, 51(8), 810–821.CrossRefPubMed Romijn, A. R., Rucklidge, J. J., Kuijer, R. G., & Frampton, C. (2017). A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Australian and New Zealand Journal of Psychiatry, 51(8), 810–821.CrossRefPubMed
Zurück zum Zitat Rossi, M., Johnson, D. W., & Campbell, K. L. (2015). The kidney–gut axis: Implications for nutrition care. Journal of Renal Nutrition, 25(5), 399–403.CrossRefPubMed Rossi, M., Johnson, D. W., & Campbell, K. L. (2015). The kidney–gut axis: Implications for nutrition care. Journal of Renal Nutrition, 25(5), 399–403.CrossRefPubMed
Zurück zum Zitat Sambamurti, K., Greig, N. H., & Lahiri, D. K. (2002). Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease. NeuroMolecular Medicine, 1(1), 1–31.CrossRefPubMed Sambamurti, K., Greig, N. H., & Lahiri, D. K. (2002). Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease. NeuroMolecular Medicine, 1(1), 1–31.CrossRefPubMed
Zurück zum Zitat Sánchez-Villegas, A., Delgado-Rodríguez, M., Alonso, A., Schlatter, J., Lahortiga, F., Serra Majem, L., et al. (2009). Association of the Mediterranean dietary pattern with the incidence of depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Archives of General Psychiatry, 66(10), 1090–1098.CrossRefPubMed Sánchez-Villegas, A., Delgado-Rodríguez, M., Alonso, A., Schlatter, J., Lahortiga, F., Serra Majem, L., et al. (2009). Association of the Mediterranean dietary pattern with the incidence of depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Archives of General Psychiatry, 66(10), 1090–1098.CrossRefPubMed
Zurück zum Zitat Sandahl, T. D., Kelsen, J., Dige, A., Dahlerup, J. F., Agnholt, J., Hvas, C. L., et al. (2014). The lectin pathway of the complement system is downregulated in Crohn’s disease patients who respond to anti-TNF-α therapy. Journal of Crohn’s and Colitis, 8(6), 521–528.CrossRefPubMed Sandahl, T. D., Kelsen, J., Dige, A., Dahlerup, J. F., Agnholt, J., Hvas, C. L., et al. (2014). The lectin pathway of the complement system is downregulated in Crohn’s disease patients who respond to anti-TNF-α therapy. Journal of Crohn’s and Colitis, 8(6), 521–528.CrossRefPubMed
Zurück zum Zitat Sanguinetti, E., Collado, M. C., Marrachelli, V. G., Monleon, D., Selma-Royo, M., Pardo-Tendero, M. M., et al. (2018). Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Scientific Report, 8(1), 4907.CrossRef Sanguinetti, E., Collado, M. C., Marrachelli, V. G., Monleon, D., Selma-Royo, M., Pardo-Tendero, M. M., et al. (2018). Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Scientific Report, 8(1), 4907.CrossRef
Zurück zum Zitat Saraswati, S., & Sitaraman, R. (2014). Aging and the human gut microbiota-from correlation to causality. Frontiers in Microbiology, 5, 764.PubMed Saraswati, S., & Sitaraman, R. (2014). Aging and the human gut microbiota-from correlation to causality. Frontiers in Microbiology, 5, 764.PubMed
Zurück zum Zitat Saresella, M., La Rosa, F., Piancone, F., Zoppis, M., Marventano, I., Calabrese, E., et al. (2016). The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Molecular Neurodegeneration, 11, 23.CrossRefPubMedPubMedCentral Saresella, M., La Rosa, F., Piancone, F., Zoppis, M., Marventano, I., Calabrese, E., et al. (2016). The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Molecular Neurodegeneration, 11, 23.CrossRefPubMedPubMedCentral
Zurück zum Zitat Savignac, H. M., Corona, G., Mills, H., Chen, L., Spencer, J. P., Tzortzis, G., et al. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochemistry International, 63(8), 756–764.CrossRefPubMedPubMedCentral Savignac, H. M., Corona, G., Mills, H., Chen, L., Spencer, J. P., Tzortzis, G., et al. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochemistry International, 63(8), 756–764.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sawada, N., Murata, M., Kikuchi, K., Osanai, M., Tobioka, H., Kojima, T., et al. (2003). Tight junctions and human diseases. Medical Electron Microscopy, 36(3), 147–156.CrossRefPubMed Sawada, N., Murata, M., Kikuchi, K., Osanai, M., Tobioka, H., Kojima, T., et al. (2003). Tight junctions and human diseases. Medical Electron Microscopy, 36(3), 147–156.CrossRefPubMed
Zurück zum Zitat Schaefer, A. K., Melnyk, J. E., He, Z., Del Rosario, F., & Grimes, C. L. (2018). Pathogen- and microbial- associated molecular patterns (PAMPs/MAMPs) and the innate immune response in Crohn’s disease. In S. Chatterjee, W. Jungraithmayr, & D. Bagchi (Eds.), Immunity and inflammation in health and disease: Emerging roles of nutraceuticals and functional foods in immune support (pp. 175–187). Amsterdam: Academic Press.CrossRef Schaefer, A. K., Melnyk, J. E., He, Z., Del Rosario, F., & Grimes, C. L. (2018). Pathogen- and microbial- associated molecular patterns (PAMPs/MAMPs) and the innate immune response in Crohn’s disease. In S. Chatterjee, W. Jungraithmayr, & D. Bagchi (Eds.), Immunity and inflammation in health and disease: Emerging roles of nutraceuticals and functional foods in immune support (pp. 175–187). Amsterdam: Academic Press.CrossRef
Zurück zum Zitat Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B., Salloway, S., et al. (2016). Alzheimer’s disease. The Lancet, 388(10043), 505–517.CrossRef Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B., Salloway, S., et al. (2016). Alzheimer’s disease. The Lancet, 388(10043), 505–517.CrossRef
Zurück zum Zitat Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189.CrossRefPubMedPubMedCentral Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189.CrossRefPubMedPubMedCentral
Zurück zum Zitat Shen, X.-L., Song, N., Du, X.-X., Li, Y., Xie, J.-X., & Jiang, H. (2017). Nesfatin-1 protects dopaminergic neurons against MPP +/MPTP-induced neurotoxicity through the C-Raf–ERK1/2-dependent anti-apoptotic pathway. Scientific Report, 7, 40961.CrossRef Shen, X.-L., Song, N., Du, X.-X., Li, Y., Xie, J.-X., & Jiang, H. (2017). Nesfatin-1 protects dopaminergic neurons against MPP +/MPTP-induced neurotoxicity through the C-Raf–ERK1/2-dependent anti-apoptotic pathway. Scientific Report, 7, 40961.CrossRef
Zurück zum Zitat Shi, S., Wang, G., Zhang, K., Zhang, Z., Liang, K., Li, K., et al. (2017). Expression of S100β protein in patients with vascular dementia after basal ganglia hemorrhage and its clinical significance. Experimental and Therapeutic Medicine, 13(5), 1917–1921.CrossRefPubMedPubMedCentral Shi, S., Wang, G., Zhang, K., Zhang, Z., Liang, K., Li, K., et al. (2017). Expression of S100β protein in patients with vascular dementia after basal ganglia hemorrhage and its clinical significance. Experimental and Therapeutic Medicine, 13(5), 1917–1921.CrossRefPubMedPubMedCentral
Zurück zum Zitat Shprecher, D., Schwalb, J., & Kurlan, R. (2008). Normal pressure hydrocephalus: Diagnosis and treatment. Current Neurology and Neuroscience Reports, 8(5), 371–376.CrossRefPubMedPubMedCentral Shprecher, D., Schwalb, J., & Kurlan, R. (2008). Normal pressure hydrocephalus: Diagnosis and treatment. Current Neurology and Neuroscience Reports, 8(5), 371–376.CrossRefPubMedPubMedCentral
Zurück zum Zitat Skandalis, S. S., Dobra, K., Götte, M., Karousou, E., & Misra, S. (2015). Impact of extracellular matrix on cellular behavior: A source of molecular targets in disease. BioMed Research International, 2015, 482879.CrossRefPubMedPubMedCentral Skandalis, S. S., Dobra, K., Götte, M., Karousou, E., & Misra, S. (2015). Impact of extracellular matrix on cellular behavior: A source of molecular targets in disease. BioMed Research International, 2015, 482879.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sochocka, M., Zwolińska, K., & Leszek, J. (2017). The infectious etiology of Alzheimer’s disease. Current Neuropharmacology, 15(7), 996–1009.CrossRefPubMedPubMedCentral Sochocka, M., Zwolińska, K., & Leszek, J. (2017). The infectious etiology of Alzheimer’s disease. Current Neuropharmacology, 15(7), 996–1009.CrossRefPubMedPubMedCentral
Zurück zum Zitat Soenen, S., Rayner, C. K., Jones, K. L., & Horowitz, M. (2016). The ageing gastrointestinal tract. Current Opinion in Clinical Nutrition & Metabolic Care, 19(1), 12–18.CrossRef Soenen, S., Rayner, C. K., Jones, K. L., & Horowitz, M. (2016). The ageing gastrointestinal tract. Current Opinion in Clinical Nutrition & Metabolic Care, 19(1), 12–18.CrossRef
Zurück zum Zitat Song, J., & Kim, O. Y. (2018). Perspectives in lipocalin-2: Emerging biomarker for medical diagnosis and prognosis for Alzheimer’s disease. Clinical Nutrition Research, 7(1), 1–10.CrossRefPubMedPubMedCentral Song, J., & Kim, O. Y. (2018). Perspectives in lipocalin-2: Emerging biomarker for medical diagnosis and prognosis for Alzheimer’s disease. Clinical Nutrition Research, 7(1), 1–10.CrossRefPubMedPubMedCentral
Zurück zum Zitat Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., et al. (2011). Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32(5), 763–777.CrossRefPubMed Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., et al. (2011). Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32(5), 763–777.CrossRefPubMed
Zurück zum Zitat Stanga, S., Lanni, C., Govoni, S., Uberti, D., D’Orazi, G., & Racchi, M. (2010). Unfolded p53 in the pathogenesis of Alzheimer’s disease: Is HIPK2 the link? Aging (Albany, NY), 2(9), 545–554.CrossRef Stanga, S., Lanni, C., Govoni, S., Uberti, D., D’Orazi, G., & Racchi, M. (2010). Unfolded p53 in the pathogenesis of Alzheimer’s disease: Is HIPK2 the link? Aging (Albany, NY), 2(9), 545–554.CrossRef
Zurück zum Zitat Starr, J. M., & Whalley, L. J. (1994). Drug-induced dementia: Incidence, management and prevention. Drug Safety, 11(5), 310–317.CrossRefPubMed Starr, J. M., & Whalley, L. J. (1994). Drug-induced dementia: Incidence, management and prevention. Drug Safety, 11(5), 310–317.CrossRefPubMed
Zurück zum Zitat Streit, W. J., Mrak, R. E., & Griffin, W. S. T. (2004). Microglia and neuroinflammation: A pathological perspective. Journal of Neuroinflammation, 1, 14.CrossRefPubMedPubMedCentral Streit, W. J., Mrak, R. E., & Griffin, W. S. T. (2004). Microglia and neuroinflammation: A pathological perspective. Journal of Neuroinflammation, 1, 14.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. Journal of Physiology, 558(Pt 1), 263–275.CrossRefPubMedPubMedCentral Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. Journal of Physiology, 558(Pt 1), 263–275.CrossRefPubMedPubMedCentral
Zurück zum Zitat Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., et al. (2018). Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Scientific Report, 8(1), 1395.CrossRef Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., et al. (2018). Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Scientific Report, 8(1), 1395.CrossRef
Zurück zum Zitat Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820.CrossRefPubMed Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820.CrossRefPubMed
Zurück zum Zitat Takeuchi, M., & Yamagishi, S. (2008). Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design, 14(10), 973–978.CrossRefPubMed Takeuchi, M., & Yamagishi, S. (2008). Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design, 14(10), 973–978.CrossRefPubMed
Zurück zum Zitat Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.CrossRefPubMed Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.CrossRefPubMed
Zurück zum Zitat Tanaka, S., & Nagashima, H. (2018). Establishment of an Alzheimer’s disease model with latent herpesvirus infection using PS2 and Tg2576 double transgenic mice. Experimental Animals, 67(2), 185–192.CrossRefPubMed Tanaka, S., & Nagashima, H. (2018). Establishment of an Alzheimer’s disease model with latent herpesvirus infection using PS2 and Tg2576 double transgenic mice. Experimental Animals, 67(2), 185–192.CrossRefPubMed
Zurück zum Zitat Tang, S.-C., Yang, K.-C., Hu, C.-J., Chiou, H.-Y., Wu, C. C., & Jeng, J.-S. (2017). Elevated plasma level of soluble form of RAGE in ischemic stroke patients with dementia. NeuroMolecular Medicine, 19(4), 579–583.CrossRefPubMedPubMedCentral Tang, S.-C., Yang, K.-C., Hu, C.-J., Chiou, H.-Y., Wu, C. C., & Jeng, J.-S. (2017). Elevated plasma level of soluble form of RAGE in ischemic stroke patients with dementia. NeuroMolecular Medicine, 19(4), 579–583.CrossRefPubMedPubMedCentral
Zurück zum Zitat Taskesen, E., Mishra, A., van der Sluis, S., International FTD-Genomics Consortium, Ferrari, R., Veldink, J. H., et al. (2017). Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with amyotrophic lateral sclerosis by DNA-methylation and GWAS. Scientific Report, 7, 8899.CrossRef Taskesen, E., Mishra, A., van der Sluis, S., International FTD-Genomics Consortium, Ferrari, R., Veldink, J. H., et al. (2017). Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with amyotrophic lateral sclerosis by DNA-methylation and GWAS. Scientific Report, 7, 8899.CrossRef
Zurück zum Zitat Thakur, A. K., Shakya, A., Husain, G. M., Emerald, M., & Kumar, V. (2014). Gut-microbiota and mental health: Current and future perspectives. Journal of Pharmacology & Clinical Toxicology, 2(1), 1016. Thakur, A. K., Shakya, A., Husain, G. M., Emerald, M., & Kumar, V. (2014). Gut-microbiota and mental health: Current and future perspectives. Journal of Pharmacology & Clinical Toxicology, 2(1), 1016.
Zurück zum Zitat Thelen, T., Hao, Y., Medeiros, A. I., Curtis, J. L., Serezani, C. H., Kobzik, L., et al. (2010). The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. Journal of Immunology, 185(7), 4328–4335.CrossRef Thelen, T., Hao, Y., Medeiros, A. I., Curtis, J. L., Serezani, C. H., Kobzik, L., et al. (2010). The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. Journal of Immunology, 185(7), 4328–4335.CrossRef
Zurück zum Zitat Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.CrossRefPubMed Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.CrossRefPubMed
Zurück zum Zitat Thome, J., Kornhuber, J., Münch, G., Schinzel, R., Taneli, Y., Zielke, B., et al. (1996). New hypothesis on etiopathogenesis of Alzheimer syndrome. Advanced glycation end products (AGEs). Nervenarzt, 67(11), 924–929.CrossRefPubMed Thome, J., Kornhuber, J., Münch, G., Schinzel, R., Taneli, Y., Zielke, B., et al. (1996). New hypothesis on etiopathogenesis of Alzheimer syndrome. Advanced glycation end products (AGEs). Nervenarzt, 67(11), 924–929.CrossRefPubMed
Zurück zum Zitat Thorsvik, S., Bakke, I., van Beelen, Granlund A., Røyset, E. S., Jan Damås, K., Østvik, A. E., et al. (2018). Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn’s disease. Cell and Tissue Research, 374(2), 339–348.CrossRefPubMedPubMedCentral Thorsvik, S., Bakke, I., van Beelen, Granlund A., Røyset, E. S., Jan Damås, K., Østvik, A. E., et al. (2018). Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn’s disease. Cell and Tissue Research, 374(2), 339–348.CrossRefPubMedPubMedCentral
Zurück zum Zitat Tóbon-Velasco, J. C., Cuevas, E., & Torres-Ramos, M. A. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders: Drug Targets, 13(9), 1615–1626.CrossRef Tóbon-Velasco, J. C., Cuevas, E., & Torres-Ramos, M. A. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders: Drug Targets, 13(9), 1615–1626.CrossRef
Zurück zum Zitat Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92(1), 163–175.CrossRefPubMed Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92(1), 163–175.CrossRefPubMed
Zurück zum Zitat Uribarri, J., Cai, W., Peppa, M., Goodman, S., Ferrucci, L., Striker, G., et al. (2007). Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(4), 427–433.CrossRef Uribarri, J., Cai, W., Peppa, M., Goodman, S., Ferrucci, L., Striker, G., et al. (2007). Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(4), 427–433.CrossRef
Zurück zum Zitat Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.CrossRefPubMed Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.CrossRefPubMed
Zurück zum Zitat Varadarajan, S., Yatin, S., Aksenova, M., & Butterfield, D. A. (2000). Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. Journal of Structural Biology, 130(2–3), 184–208.CrossRefPubMed Varadarajan, S., Yatin, S., Aksenova, M., & Butterfield, D. A. (2000). Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. Journal of Structural Biology, 130(2–3), 184–208.CrossRefPubMed
Zurück zum Zitat Veerappan, C. S., Sleiman, S., & Coppola, G. (2013). Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics, 10(4), 709–721.CrossRefPubMedPubMedCentral Veerappan, C. S., Sleiman, S., & Coppola, G. (2013). Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics, 10(4), 709–721.CrossRefPubMedPubMedCentral
Zurück zum Zitat Venegas, C., & Heneka, M. T. (2017). Danger-associated molecular patterns in Alzheimer’s disease. Journal of Leukocyte Biology, 101(1), 87–98.CrossRefPubMed Venegas, C., & Heneka, M. T. (2017). Danger-associated molecular patterns in Alzheimer’s disease. Journal of Leukocyte Biology, 101(1), 87–98.CrossRefPubMed
Zurück zum Zitat Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Report, 7, 13537.CrossRef Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Report, 7, 13537.CrossRef
Zurück zum Zitat Wang, H., Lee, I.-S., Braun, C., & Enck, P. (2016a). Effect of probiotics on central nervous system functions in animals and humans: A systematic review. Journal of Neurogastroenterology and Motility, 22(4), 589–605.CrossRefPubMedPubMedCentral Wang, H., Lee, I.-S., Braun, C., & Enck, P. (2016a). Effect of probiotics on central nervous system functions in animals and humans: A systematic review. Journal of Neurogastroenterology and Motility, 22(4), 589–605.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang, Y., Ulland, T. K., Ulrich, J. D., Song, W., Tzaferis, J. A., Hole, J. T., et al. (2016b). TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. Journal of Experimental Medicine, 213(5), 667–675.CrossRefPubMedPubMedCentral Wang, Y., Ulland, T. K., Ulrich, J. D., Song, W., Tzaferis, J. A., Hole, J. T., et al. (2016b). TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. Journal of Experimental Medicine, 213(5), 667–675.CrossRefPubMedPubMedCentral
Zurück zum Zitat Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T., & Turner, J. R. (2008). Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Laboratory Investigation, 88(10), 1110–1120.CrossRefPubMed Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T., & Turner, J. R. (2008). Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Laboratory Investigation, 88(10), 1110–1120.CrossRefPubMed
Zurück zum Zitat Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef
Zurück zum Zitat Wenning, G., Litvan, I., Jankovic, J., Granata, R., Mangone, C. A., McKee, A., et al. (1998). Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. Journal of Neurology, Neurosurgery and Psychiatry, 64, 184–189.CrossRefPubMedPubMedCentral Wenning, G., Litvan, I., Jankovic, J., Granata, R., Mangone, C. A., McKee, A., et al. (1998). Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. Journal of Neurology, Neurosurgery and Psychiatry, 64, 184–189.CrossRefPubMedPubMedCentral
Zurück zum Zitat Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cellular and Molecular Life Sciences, 74(20), 3769–3787.CrossRefPubMed Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cellular and Molecular Life Sciences, 74(20), 3769–3787.CrossRefPubMed
Zurück zum Zitat Williams, C.-A., Lin, Y., Maynard, A., & Cheng, S.-Y. (2013). Involvement of NF kappa B in potentiated effect of Mn-containing dithiocarbamates on MPP + induced cell death. Cellular and Molecular Neurobiology, 33(6), 815–823.CrossRefPubMed Williams, C.-A., Lin, Y., Maynard, A., & Cheng, S.-Y. (2013). Involvement of NF kappa B in potentiated effect of Mn-containing dithiocarbamates on MPP + induced cell death. Cellular and Molecular Neurobiology, 33(6), 815–823.CrossRefPubMed
Zurück zum Zitat Wimo, A., Jonsson, L., & Winblad, B. (2006). An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dementia and Geriatric Cognitive Disorders, 21(3), 175–181.CrossRefPubMed Wimo, A., Jonsson, L., & Winblad, B. (2006). An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dementia and Geriatric Cognitive Disorders, 21(3), 175–181.CrossRefPubMed
Zurück zum Zitat Wimo, A., Winblad, B., & Jönsson, L. (2010). The worldwide societal costs of dementia: Estimates for 2009. Alzheimer’s & Dementia, 6(2), 98–103.CrossRef Wimo, A., Winblad, B., & Jönsson, L. (2010). The worldwide societal costs of dementia: Estimates for 2009. Alzheimer’s & Dementia, 6(2), 98–103.CrossRef
Zurück zum Zitat Wing, M. R., Patel, S. S., Ramezani, A., & Raj, D. S. (2016). Gut microbiome in chronic kidney disease. Experimental Physiology, 101(4), 471–477.CrossRefPubMed Wing, M. R., Patel, S. S., Ramezani, A., & Raj, D. S. (2016). Gut microbiome in chronic kidney disease. Experimental Physiology, 101(4), 471–477.CrossRefPubMed
Zurück zum Zitat Woollacott, I. O. C., Nicholas, J. M., Heslegrave, A., Heller, C., Foiani, M. S., Dick, K. M., et al. (2018). Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimer’s Research & Therapy, 10(1), 79. https://doi.org/10.1186/s13195-018-0405-8.CrossRef Woollacott, I. O. C., Nicholas, J. M., Heslegrave, A., Heller, C., Foiani, M. S., Dick, K. M., et al. (2018). Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimer’s Research & Therapy, 10(1), 79. https://​doi.​org/​10.​1186/​s13195-018-0405-8.CrossRef
Zurück zum Zitat Wozniak, M. A., Mee, A. P., & Itzhaki, R. F. (2009). Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. Journal of Pathology, 217(1), 131–138.CrossRefPubMed Wozniak, M. A., Mee, A. P., & Itzhaki, R. F. (2009). Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. Journal of Pathology, 217(1), 131–138.CrossRefPubMed
Zurück zum Zitat Xu, Y., Yan, J., Zhou, P., Li, J., Gao, H., Xia, Y., et al. (2012). Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 97(1), 1–13.CrossRefPubMedPubMedCentral Xu, Y., Yan, J., Zhou, P., Li, J., Gao, H., Xia, Y., et al. (2012). Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 97(1), 1–13.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yin, Z., Raj, D., Saiepour, N., Van Dam, D., Brouwer, N., Holtman, I. R., et al. (2017). Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiology of Aging, 55, 115–122.CrossRefPubMed Yin, Z., Raj, D., Saiepour, N., Van Dam, D., Brouwer, N., Holtman, I. R., et al. (2017). Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiology of Aging, 55, 115–122.CrossRefPubMed
Zurück zum Zitat Yoshiike, Y., Kimura, T., Yamashita, S., Furudate, H., Mizoroki, T., Murayama, M., et al. (2008). GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE, 3(8), e3029.CrossRefPubMedPubMedCentral Yoshiike, Y., Kimura, T., Yamashita, S., Furudate, H., Mizoroki, T., Murayama, M., et al. (2008). GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE, 3(8), e3029.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yu, Y., & Ye, R. D. (2015). Microglial Aβ receptors in Alzheimer’s disease. Cellular and Molecular Neurobiology, 35(1), 71–83.CrossRefPubMed Yu, Y., & Ye, R. D. (2015). Microglial Aβ receptors in Alzheimer’s disease. Cellular and Molecular Neurobiology, 35(1), 71–83.CrossRefPubMed
Zurück zum Zitat Zamboni, G., Grafman, J., Krueger, F., Knutson, K. M., & Huey, E. D. (2010). Anosognosia for behavioral disturbances in frontotemporal dementia and corticobasal syndrome: A voxel-based morphometry study. Dementia and Geriatric Cognitive Disorders, 29(1), 88–96.CrossRefPubMedPubMedCentral Zamboni, G., Grafman, J., Krueger, F., Knutson, K. M., & Huey, E. D. (2010). Anosognosia for behavioral disturbances in frontotemporal dementia and corticobasal syndrome: A voxel-based morphometry study. Dementia and Geriatric Cognitive Disorders, 29(1), 88–96.CrossRefPubMedPubMedCentral
Zurück zum Zitat Zeissig, S., Bürgel, N., Günzel, D., Richter, J., Mankertz, J., Wahnschaffe, U., et al. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut, 56(1), 61–72.CrossRefPubMed Zeissig, S., Bürgel, N., Günzel, D., Richter, J., Mankertz, J., Wahnschaffe, U., et al. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut, 56(1), 61–72.CrossRefPubMed
Zurück zum Zitat Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786–796.CrossRefPubMed Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786–796.CrossRefPubMed
Zurück zum Zitat Zhu, C. S., Grandhi, R., Patterson, T. T., & Nicholson, S. E. (2018). A review of traumatic brain injury and the gut microbiome: Insights into novel mechanisms of secondary brain injury and promising targets for neuroprotection. Brain Science, 8(6), 113.CrossRef Zhu, C. S., Grandhi, R., Patterson, T. T., & Nicholson, S. E. (2018). A review of traumatic brain injury and the gut microbiome: Insights into novel mechanisms of secondary brain injury and promising targets for neuroprotection. Brain Science, 8(6), 113.CrossRef
Zurück zum Zitat Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: From simple barriers to multifunctional molecular gates. Nature Reviews Molecular Cell Biology, 17, 564–580.CrossRefPubMed Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: From simple barriers to multifunctional molecular gates. Nature Reviews Molecular Cell Biology, 17, 564–580.CrossRefPubMed
Metadaten
Titel
Gut Microbiota Disorder, Gut Epithelial and Blood–Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways
verfasst von
Menizibeya O. Welcome
Publikationsdatum
21.05.2019
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2019
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08547-5

Weitere Artikel der Ausgabe 3/2019

NeuroMolecular Medicine 3/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.