Skip to main content
Erschienen in:

29.03.2024 | Systematic Review

Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature

verfasst von: Eline Hermans, Jozefien Meersschaut, Isis Van herteryck, Mathias Devreese, Johan Vande Walle, Peter De Paepe, Pieter A. De Cock

Erschienen in: Clinical Pharmacokinetics | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

Drug dosing should ideally be based on the drug concentrations at the target site, which, for most drugs, corresponds to the tissue. The exact influence of growth and development on drug tissue distribution is unclear. This systematic review compiles the current knowledge on the tissue distribution of systemically applied drugs in children, with the aim to identify priorities in tissue pharmacokinetic (PK) research in this population.

Methods

A systematic literature search was performed in the MEDLINE and Embase databases.

Results

Forty-two relevant articles were identified, of which 71% investigated antibiotics, while drug classes from the other studies were anticancer drugs, antifungals, anthelmintics, sedatives, thyreostatics, immunomodulators, antiarrhythmics, and exon skipping therapy. The majority of studies (83%) applied tissue biopsy as the sampling technique. Tonsil and/or adenoid tissue was most frequently examined (70% of all included patients). The majority of studies had a small sample size (median 9, range 1–93), did not include the youngest age categories (neonates and infants), and were of low reporting quality. Due to the heterogeneous data from different study compounds, dosing schedules, populations, and target tissues, the possibility for comparison of PK data between studies was limited.

Conclusion

The influence of growth and development on drug tissue distribution continues to be a knowledge gap, due to the paucity of tissue PK data in children, especially in the younger age categories. Future research in this field should be encouraged as techniques to safely investigate drug tissue disposition in children are available.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Müller M, et al. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48(5):1441–53.PubMedPubMedCentralCrossRef Müller M, et al. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48(5):1441–53.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Brunner M, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28(6):1754–9.PubMedCrossRef Brunner M, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28(6):1754–9.PubMedCrossRef
3.
Zurück zum Zitat Joukhadar C, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29(2):385–91.PubMedCrossRef Joukhadar C, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29(2):385–91.PubMedCrossRef
4.
Zurück zum Zitat Brunner M, et al. Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution. AAPS Journal. 2006;8(2):E263–71.PubMedPubMedCentralCrossRef Brunner M, et al. Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution. AAPS Journal. 2006;8(2):E263–71.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chaurasia CS, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24(5):1014–25.PubMedCrossRef Chaurasia CS, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24(5):1014–25.PubMedCrossRef
6.
Zurück zum Zitat Fischman AJ, et al. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41(8):581–602.PubMedCrossRef Fischman AJ, et al. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41(8):581–602.PubMedCrossRef
7.
Zurück zum Zitat Azeredo FJ, et al. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet. 2014;53(3):205–12.PubMedCrossRef Azeredo FJ, et al. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet. 2014;53(3):205–12.PubMedCrossRef
8.
Zurück zum Zitat Rodvold KA, et al. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017;36:114–23.PubMedCrossRef Rodvold KA, et al. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017;36:114–23.PubMedCrossRef
9.
Zurück zum Zitat Shannon RJ, et al. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn. 2013;40(3):343–58.PubMedPubMedCentralCrossRef Shannon RJ, et al. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn. 2013;40(3):343–58.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Ray A, et al. Antibiotic Tissue Penetration in Diabetic Foot Infections A Review of the Microdialysis Literature and Needs for Future Research. J Am Podiatr Med Assoc. 2015;105(6):520–31.PubMedCrossRef Ray A, et al. Antibiotic Tissue Penetration in Diabetic Foot Infections A Review of the Microdialysis Literature and Needs for Future Research. J Am Podiatr Med Assoc. 2015;105(6):520–31.PubMedCrossRef
11.
Zurück zum Zitat Finazzi S, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part I. Antibiotics (Basel). 2022;11(9). Finazzi S, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part I. Antibiotics (Basel). 2022;11(9).
12.
Zurück zum Zitat Viaggi B, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel). 2022;11(9). Viaggi B, et al. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel). 2022;11(9).
13.
Zurück zum Zitat van den Anker JN, et al. Developmental pharmacokinetics. Handb Exp Pharmacol. 2011;205:51–75.PubMedCrossRef van den Anker JN, et al. Developmental pharmacokinetics. Handb Exp Pharmacol. 2011;205:51–75.PubMedCrossRef
14.
Zurück zum Zitat Zuppa AF, et al. Pharmacokinetics and pharmacodynamics in the critically ill child. Pediatric clinics of North America. 2008;55(3):735-55, xii. Zuppa AF, et al. Pharmacokinetics and pharmacodynamics in the critically ill child. Pediatric clinics of North America. 2008;55(3):735-55, xii.
15.
Zurück zum Zitat Sullins AK, et al. Pharmacokinetics of antibacterial agents in the CSF of children and adolescents. Paediatr Drugs. 2013;15(2):93–117.PubMedCrossRef Sullins AK, et al. Pharmacokinetics of antibacterial agents in the CSF of children and adolescents. Paediatr Drugs. 2013;15(2):93–117.PubMedCrossRef
16.
Zurück zum Zitat Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb). 2010;90(5):279–92.PubMedCrossRef Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb). 2010;90(5):279–92.PubMedCrossRef
17.
Zurück zum Zitat Kanji S, et al. Reporting Guidelines for Clinical Pharmacokinetic Studies: The ClinPK Statement. Clin Pharmacokinet. 2015;54(7):783–95.PubMedCrossRef Kanji S, et al. Reporting Guidelines for Clinical Pharmacokinetic Studies: The ClinPK Statement. Clin Pharmacokinet. 2015;54(7):783–95.PubMedCrossRef
18.
Zurück zum Zitat Keij FM, et al. Pharmacokinetics of Clavulanic Acid in the Pediatric Population: A Systematic Literature Review. Clin Pharmacokinet. 2022;61(5):637–53.PubMedPubMedCentralCrossRef Keij FM, et al. Pharmacokinetics of Clavulanic Acid in the Pediatric Population: A Systematic Literature Review. Clin Pharmacokinet. 2022;61(5):637–53.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Vervalcke J, et al. Pharmacokinetics and target attainment of ß-lactam antibiotics in older people: a systematic review of current literature. Clin Pharmacokinet. 2023;62(1):1–43.PubMedCrossRef Vervalcke J, et al. Pharmacokinetics and target attainment of ß-lactam antibiotics in older people: a systematic review of current literature. Clin Pharmacokinet. 2023;62(1):1–43.PubMedCrossRef
21.
Zurück zum Zitat Adrianzén Vargas MR, et al. Pharmacokinetics of intravenous flucloxacillin and amoxicillin in neonatal and infant cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 2004;25(2):256–60.PubMedCrossRef Adrianzén Vargas MR, et al. Pharmacokinetics of intravenous flucloxacillin and amoxicillin in neonatal and infant cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 2004;25(2):256–60.PubMedCrossRef
22.
Zurück zum Zitat Averono G, et al. Evaluation of amoxicillin plasma and tissue levels in pediatric patients undergoing tonsillectomy. Int J Pediatr Otorhinolaryngol. 2010;74(9):995–8.PubMedCrossRef Averono G, et al. Evaluation of amoxicillin plasma and tissue levels in pediatric patients undergoing tonsillectomy. Int J Pediatr Otorhinolaryngol. 2010;74(9):995–8.PubMedCrossRef
23.
Zurück zum Zitat Meier H, et al. Penetration of ampicillin and sulbactam into human costal cartilage. Infection. 1994;22(2):152–5.PubMedCrossRef Meier H, et al. Penetration of ampicillin and sulbactam into human costal cartilage. Infection. 1994;22(2):152–5.PubMedCrossRef
24.
Zurück zum Zitat Ernstson S, et al. Penetration of cefaclor to adenoid tissue and middle ear effusion in chronic OME. Acta Otolaryngol. 1985;99:7–12.CrossRef Ernstson S, et al. Penetration of cefaclor to adenoid tissue and middle ear effusion in chronic OME. Acta Otolaryngol. 1985;99:7–12.CrossRef
25.
Zurück zum Zitat Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during cardiac surgery in infants. J Thorac Cardiovasc Surg. 2014;148(6):2634–41.PubMedCrossRef Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during cardiac surgery in infants. J Thorac Cardiovasc Surg. 2014;148(6):2634–41.PubMedCrossRef
26.
Zurück zum Zitat Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117(1):87–94.PubMedPubMedCentralCrossRef Himebauch AS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117(1):87–94.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Nahata MC, et al. Pharmacokinetics and tissue concentrations of cefazolin in pediatric patients undergoing gastrointestinal surgery. Eur J Drug Metab Pharmacokinet. 1991;16(1):49–52.PubMedCrossRef Nahata MC, et al. Pharmacokinetics and tissue concentrations of cefazolin in pediatric patients undergoing gastrointestinal surgery. Eur J Drug Metab Pharmacokinet. 1991;16(1):49–52.PubMedCrossRef
28.
Zurück zum Zitat Tetzlaff TR, et al. Antibiotic concentrations in pus and bone of children with osteomyelitis. J Pediatr. 1978;92(1):135–40.PubMedCrossRef Tetzlaff TR, et al. Antibiotic concentrations in pus and bone of children with osteomyelitis. J Pediatr. 1978;92(1):135–40.PubMedCrossRef
29.
Zurück zum Zitat Bairamis TN, et al. Concentrations of cefpodoxime in plasma, adenoid, and tonsillar tissue after repeated administrations of cefpodoxime proxetil in children. J Antimicrob Chemother. 1996;37(4):821–4.PubMedCrossRef Bairamis TN, et al. Concentrations of cefpodoxime in plasma, adenoid, and tonsillar tissue after repeated administrations of cefpodoxime proxetil in children. J Antimicrob Chemother. 1996;37(4):821–4.PubMedCrossRef
31.
Zurück zum Zitat Kobayashi M, et al. Ceftizoxime level in the myocardium (right atrial muscle and mitral papillary muscle) during open heart surgery. Jpn J Surg. 1988;18(2):136–41.PubMedCrossRef Kobayashi M, et al. Ceftizoxime level in the myocardium (right atrial muscle and mitral papillary muscle) during open heart surgery. Jpn J Surg. 1988;18(2):136–41.PubMedCrossRef
32.
Zurück zum Zitat Green ER, et al. A comparison of the penetration characteristics of cephapirin and cephalothin into right atrial appendage, muscle, fat, and pericardial fluid of pediatric patients undergoing open-heart operation. Ann Thorac Surg. 1981;31(2):155–60.PubMedCrossRef Green ER, et al. A comparison of the penetration characteristics of cephapirin and cephalothin into right atrial appendage, muscle, fat, and pericardial fluid of pediatric patients undergoing open-heart operation. Ann Thorac Surg. 1981;31(2):155–60.PubMedCrossRef
33.
Zurück zum Zitat Brzezinska H, et al. Concentrations of cloxacillin and erythromycin in the tonsils of children after administration of therapeutic doses. Int J Pediatr Otorhinolaryngol. 1984;7(1):51–61.PubMedCrossRef Brzezinska H, et al. Concentrations of cloxacillin and erythromycin in the tonsils of children after administration of therapeutic doses. Int J Pediatr Otorhinolaryngol. 1984;7(1):51–61.PubMedCrossRef
34.
Zurück zum Zitat Saito H, et al. Pharmacokinetics of flomoxef in mucosal tissue of the middle ear and mastoid following intravenous administration in humans. Chemotherapy. 1990;36(3):193–9.PubMedCrossRef Saito H, et al. Pharmacokinetics of flomoxef in mucosal tissue of the middle ear and mastoid following intravenous administration in humans. Chemotherapy. 1990;36(3):193–9.PubMedCrossRef
35.
Zurück zum Zitat Roberts JA, et al. A novel way to investigate the effects of plasma exchange on antibiotic levels: use of microdialysis. Int J Antimicrob Agents. 2008;31(3):240–4.PubMedCrossRef Roberts JA, et al. A novel way to investigate the effects of plasma exchange on antibiotic levels: use of microdialysis. Int J Antimicrob Agents. 2008;31(3):240–4.PubMedCrossRef
36.
Zurück zum Zitat Hermans E, et al. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int J Antimicrob Agents. 2023;62(5): 106970.PubMedCrossRef Hermans E, et al. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int J Antimicrob Agents. 2023;62(5): 106970.PubMedCrossRef
37.
Zurück zum Zitat Meier H, et al. Penetration of ticarcillin/clavulanate into cartilage. J Antimicrob Chemother. 1989;24:101–5.PubMedCrossRef Meier H, et al. Penetration of ticarcillin/clavulanate into cartilage. J Antimicrob Chemother. 1989;24:101–5.PubMedCrossRef
38.
Zurück zum Zitat Baschiera F, et al. Improved tonsillar disposition of azithromycin following a 3-day oral treatment with 20 mg kg(-1) in paediatric patients. Pharmacol Res. 2002;46(1):95–100.PubMedCrossRef Baschiera F, et al. Improved tonsillar disposition of azithromycin following a 3-day oral treatment with 20 mg kg(-1) in paediatric patients. Pharmacol Res. 2002;46(1):95–100.PubMedCrossRef
39.
Zurück zum Zitat Vaudaux BP, et al. Concentrations of azithromycin in tonsillar and/or adenoid tissue from paediatric patients. J Antimicrob Chemother. 1996;37:45–51.PubMedCrossRef Vaudaux BP, et al. Concentrations of azithromycin in tonsillar and/or adenoid tissue from paediatric patients. J Antimicrob Chemother. 1996;37:45–51.PubMedCrossRef
40.
Zurück zum Zitat Falchi M, et al. Penetration of erythromycin into tonsillar tissue. Curr Med Res Opin. 1985;9(9):611–5.PubMedCrossRef Falchi M, et al. Penetration of erythromycin into tonsillar tissue. Curr Med Res Opin. 1985;9(9):611–5.PubMedCrossRef
41.
Zurück zum Zitat Sundberg L, et al. Penetration of erythromycin in Waldeyer’s ring-adenoid tissue. Acta Otolaryngol. 1981;92:3–9.CrossRef Sundberg L, et al. Penetration of erythromycin in Waldeyer’s ring-adenoid tissue. Acta Otolaryngol. 1981;92:3–9.CrossRef
42.
Zurück zum Zitat Scaglione F, et al. Miocamycin distribution in tonsillar and pulmonary tissues after repeated administration. J Chemother. 1990;2(6):384–9.PubMedCrossRef Scaglione F, et al. Miocamycin distribution in tonsillar and pulmonary tissues after repeated administration. J Chemother. 1990;2(6):384–9.PubMedCrossRef
43.
Zurück zum Zitat Bégué P, et al. Pharmacokinetics of roxithromycin in paediatrics. J Antimicrob Chemother. 1987;20:101–6.PubMedCrossRef Bégué P, et al. Pharmacokinetics of roxithromycin in paediatrics. J Antimicrob Chemother. 1987;20:101–6.PubMedCrossRef
44.
Zurück zum Zitat Galioto GB, et al. Roxithromycin disposition in tonsils after single and repeated administrations. Antimicrob Agents Chemother. 1988;32(9):1461–3.PubMedPubMedCentralCrossRef Galioto GB, et al. Roxithromycin disposition in tonsils after single and repeated administrations. Antimicrob Agents Chemother. 1988;32(9):1461–3.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Chin A, et al. Evaluation of two different dosage regimens of clindamycin and the penetration into human appendix. Ther Drug Monit. 1989;11(4):421–4.PubMedCrossRef Chin A, et al. Evaluation of two different dosage regimens of clindamycin and the penetration into human appendix. Ther Drug Monit. 1989;11(4):421–4.PubMedCrossRef
46.
Zurück zum Zitat Nagar H, et al. Penetration of clindamycin and metronidazole into the appendix and peritoneal fluid in children. Eur J Clin Pharmacol. 1989;37(2):209–10.PubMedCrossRef Nagar H, et al. Penetration of clindamycin and metronidazole into the appendix and peritoneal fluid in children. Eur J Clin Pharmacol. 1989;37(2):209–10.PubMedCrossRef
47.
Zurück zum Zitat Akkerman OW, et al. Drug concentration in lung tissue in multidrug-resistant tuberculosis. Eur Respir J. 2013;42(6):1750–2.PubMedCrossRef Akkerman OW, et al. Drug concentration in lung tissue in multidrug-resistant tuberculosis. Eur Respir J. 2013;42(6):1750–2.PubMedCrossRef
48.
Zurück zum Zitat Watanabe A, et al. Penetration of minocycline hydrochloride into lung tissue and sputum. Chemotherapy. 2001;47(1):1–9.PubMedCrossRef Watanabe A, et al. Penetration of minocycline hydrochloride into lung tissue and sputum. Chemotherapy. 2001;47(1):1–9.PubMedCrossRef
49.
Zurück zum Zitat Schroepf S, et al. Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap. Int J Antimicrob Agents. 2021;58(4):1–8. Schroepf S, et al. Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap. Int J Antimicrob Agents. 2021;58(4):1–8.
50.
Zurück zum Zitat Lopez-Varela E, et al. Drug concentration at the site of disease in children with pulmonary tuberculosis. J Antimicrob Chemother. 2022;77(6):1710–9.PubMedPubMedCentralCrossRef Lopez-Varela E, et al. Drug concentration at the site of disease in children with pulmonary tuberculosis. J Antimicrob Chemother. 2022;77(6):1710–9.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Front D, et al. In vivo measurements of the fraction of dose of bleomycin labeled with cobalt 57 delivered to human tumors. Cancer. 1991;67(10):2477–83.PubMedCrossRef Front D, et al. In vivo measurements of the fraction of dose of bleomycin labeled with cobalt 57 delivered to human tumors. Cancer. 1991;67(10):2477–83.PubMedCrossRef
53.
Zurück zum Zitat Beck O, et al. Safety and activity of the combination of ceritinib and dasatinib in osteosarcoma. Cancers. 2020;12(4):1–15. Beck O, et al. Safety and activity of the combination of ceritinib and dasatinib in osteosarcoma. Cancers. 2020;12(4):1–15.
54.
Zurück zum Zitat Wang YM, et al. Clinical pharmacokinetics of methotrexate in children. Clin Pharmacokinet. 1984;9(4):335–48.PubMedCrossRef Wang YM, et al. Clinical pharmacokinetics of methotrexate in children. Clin Pharmacokinet. 1984;9(4):335–48.PubMedCrossRef
55.
Zurück zum Zitat Touitou Y, et al. o, p’-DDD (mitotane) treatment for Cushing’s syndrome: adrenal drug concentration and inhibition in vitro of steroid synthesis. Eur J Clin Pharmacol. 1985;29(4):483–7.PubMedCrossRef Touitou Y, et al. o, p’-DDD (mitotane) treatment for Cushing’s syndrome: adrenal drug concentration and inhibition in vitro of steroid synthesis. Eur J Clin Pharmacol. 1985;29(4):483–7.PubMedCrossRef
56.
Zurück zum Zitat Malcolm JC, et al. Impact of cyclic changes in pharmacokinetics and absorbed dose in pediatric neuroblastoma patients receiving [177Lu]Lu-DOTATATE. EJNMMI Physics. 2022;9(1):1–14. Malcolm JC, et al. Impact of cyclic changes in pharmacokinetics and absorbed dose in pediatric neuroblastoma patients receiving [177Lu]Lu-DOTATATE. EJNMMI Physics. 2022;9(1):1–14.
57.
Zurück zum Zitat Saimot AG, et al. Albendazole as a potential treatment for human hydatidosis. Lancet (London, England). 1983;2(8351):652–6.PubMedCrossRef Saimot AG, et al. Albendazole as a potential treatment for human hydatidosis. Lancet (London, England). 1983;2(8351):652–6.PubMedCrossRef
58.
Zurück zum Zitat Kanto JH, et al. Concentrations of diazepam in adipose tissue of children. Br J Anaesth. 1974;46:168.PubMedCrossRef Kanto JH, et al. Concentrations of diazepam in adipose tissue of children. Br J Anaesth. 1974;46:168.PubMedCrossRef
59.
Zurück zum Zitat Okuno A, et al. Pharmacokinetics of methimazole in children and adolescents with Graves' disease. Studies on plasma and intrathyroidal concentrations. Acta endocrinologica. 1987;115(1):112–8. Okuno A, et al. Pharmacokinetics of methimazole in children and adolescents with Graves' disease. Studies on plasma and intrathyroidal concentrations. Acta endocrinologica. 1987;115(1):112–8.
60.
Zurück zum Zitat Sandborn WJ, et al. Measurement of colonic tissue cyclosporine concentration in children with severe ulcerative colitis. J Pediatr Gastroenterol Nutr. 1992;15(2):125–9.PubMed Sandborn WJ, et al. Measurement of colonic tissue cyclosporine concentration in children with severe ulcerative colitis. J Pediatr Gastroenterol Nutr. 1992;15(2):125–9.PubMed
61.
Zurück zum Zitat Gorodischer R, et al. Tissue and erythrocyte distribution of digoxin in infants. Clin Pharmacol Ther. 1976;19(3):256–63.PubMedCrossRef Gorodischer R, et al. Tissue and erythrocyte distribution of digoxin in infants. Clin Pharmacol Ther. 1976;19(3):256–63.PubMedCrossRef
62.
Zurück zum Zitat Tillinger M, et al. WVE-N531 yields 53% mean exon 53 skipping in skeletal muscle of boys with Duchenne muscular dystrophy (DMD) after three biweekly doses. Neuromuscul Disord. 2023;33:S99.CrossRef Tillinger M, et al. WVE-N531 yields 53% mean exon 53 skipping in skeletal muscle of boys with Duchenne muscular dystrophy (DMD) after three biweekly doses. Neuromuscul Disord. 2023;33:S99.CrossRef
63.
Zurück zum Zitat Athanasiou T, et al. Chapter 10—microcirculation during cardiopulmonary bypass. In: Kırali K, Coselli JS, Kalangos A, editors. Cardiopulmonary bypass. Academic Press; 2023. pp. 155–63. Athanasiou T, et al. Chapter 10—microcirculation during cardiopulmonary bypass. In: Kırali K, Coselli JS, Kalangos A, editors. Cardiopulmonary bypass. Academic Press; 2023. pp. 155–63.
64.
Zurück zum Zitat Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.PubMedCrossRef Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.PubMedCrossRef
65.
Zurück zum Zitat Walker WA, et al. Body composition and growth. Nutrition in pediatrics: basic science and clinical applications. 2nd ed. Hamilton: B.C. Decker Inc.; 1996. pp. 122–41. Walker WA, et al. Body composition and growth. Nutrition in pediatrics: basic science and clinical applications. 2nd ed. Hamilton: B.C. Decker Inc.; 1996. pp. 122–41.
67.
Zurück zum Zitat Linderkamp O, et al. Estimation and prediction of blood volume in infants and children. Eur J Pediatr. 1977;125(4):227–34.PubMedCrossRef Linderkamp O, et al. Estimation and prediction of blood volume in infants and children. Eur J Pediatr. 1977;125(4):227–34.PubMedCrossRef
68.
Zurück zum Zitat Chang HP, et al. Age-related changes in pediatric physiology: quantitative analysis of organ weights and blood flows: age-related changes in pediatric physiology. AAPS J. 2021;23(3):50.PubMedCrossRef Chang HP, et al. Age-related changes in pediatric physiology: quantitative analysis of organ weights and blood flows: age-related changes in pediatric physiology. AAPS J. 2021;23(3):50.PubMedCrossRef
69.
Zurück zum Zitat ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3–4):5–265. ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3–4):5–265.
70.
Zurück zum Zitat Mooij MG, et al. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42(8):1268–74.PubMedPubMedCentralCrossRef Mooij MG, et al. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42(8):1268–74.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Cheung KWK, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics, and localization. Clin Pharmacol Ther. 2019;106(5):1083–92.PubMedPubMedCentralCrossRef Cheung KWK, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics, and localization. Clin Pharmacol Ther. 2019;106(5):1083–92.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Cristea S, et al. Estimation of ontogeny functions for renal transporters using a combined population pharmacokinetic and physiology-based pharmacokinetic approach: application to OAT1,3. AAPS J. 2021;23(3):65.PubMedCrossRef Cristea S, et al. Estimation of ontogeny functions for renal transporters using a combined population pharmacokinetic and physiology-based pharmacokinetic approach: application to OAT1,3. AAPS J. 2021;23(3):65.PubMedCrossRef
73.
Zurück zum Zitat Müller M, et al. Comparison of three different experimental methods for the assessment of peripheral compartment pharmacokinetics in humans. Life Sci. 1998;62(15):Pl227–34. Müller M, et al. Comparison of three different experimental methods for the assessment of peripheral compartment pharmacokinetics in humans. Life Sci. 1998;62(15):Pl227–34.
74.
76.
Zurück zum Zitat Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition: Kenneth D. Blackfan Memorial Lecture. Pediatrics. 1961;28(2):169–81.PubMedCrossRef Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition: Kenneth D. Blackfan Memorial Lecture. Pediatrics. 1961;28(2):169–81.PubMedCrossRef
77.
Zurück zum Zitat Pea F. Intracellular pharmacokinetics of antibacterials and their clinical implications. Clin Pharmacokinet. 2018;57(2):177–89.PubMedCrossRef Pea F. Intracellular pharmacokinetics of antibacterials and their clinical implications. Clin Pharmacokinet. 2018;57(2):177–89.PubMedCrossRef
78.
Zurück zum Zitat Marchand S, et al. Microdialysis as a way to measure antibiotics concentration in tissues. Pharmacol Res. 2016;111:201–7.PubMedCrossRef Marchand S, et al. Microdialysis as a way to measure antibiotics concentration in tissues. Pharmacol Res. 2016;111:201–7.PubMedCrossRef
79.
Zurück zum Zitat Zhao M, et al. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016;24(24):6390–400.PubMedCrossRef Zhao M, et al. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016;24(24):6390–400.PubMedCrossRef
80.
Zurück zum Zitat Zhou Q, et al. The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J. 2011;13(1):111–20.PubMedPubMedCentralCrossRef Zhou Q, et al. The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J. 2011;13(1):111–20.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Dalmage MR, et al. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv. 2022;4(1):vdac171. Dalmage MR, et al. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv. 2022;4(1):vdac171.
82.
Zurück zum Zitat Schaeftlein A, et al. Population pharmacokinetics meets microdialysis: benefits, pitfalls and necessities of new analysis approaches for human microdialysis data. Eur J Pharm Sci. 2014;57:68–73.PubMedCrossRef Schaeftlein A, et al. Population pharmacokinetics meets microdialysis: benefits, pitfalls and necessities of new analysis approaches for human microdialysis data. Eur J Pharm Sci. 2014;57:68–73.PubMedCrossRef
83.
Zurück zum Zitat Tunblad K, et al. An integrated model for the analysis of pharmacokinetic data from microdialysis experiments. Pharm Res. 2004;21(9):1698–707.PubMedCrossRef Tunblad K, et al. An integrated model for the analysis of pharmacokinetic data from microdialysis experiments. Pharm Res. 2004;21(9):1698–707.PubMedCrossRef
84.
Zurück zum Zitat De Sutter PJ, et al. Predictive performance of physiologically based pharmacokinetic modelling of beta-lactam antibiotic concentrations in adipose, bone, and muscle tissues. Drug Metab Dispos. 2023;51(4):499–508.PubMedCrossRef De Sutter PJ, et al. Predictive performance of physiologically based pharmacokinetic modelling of beta-lactam antibiotic concentrations in adipose, bone, and muscle tissues. Drug Metab Dispos. 2023;51(4):499–508.PubMedCrossRef
85.
Zurück zum Zitat Mishi RD, et al. Real-time monitoring of antibiotics in the critically ill using biosensors. Antibiotics (Basel). 2023;12(10):1–10. Mishi RD, et al. Real-time monitoring of antibiotics in the critically ill using biosensors. Antibiotics (Basel). 2023;12(10):1–10.
Metadaten
Titel
Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature
verfasst von
Eline Hermans
Jozefien Meersschaut
Isis Van herteryck
Mathias Devreese
Johan Vande Walle
Peter De Paepe
Pieter A. De Cock
Publikationsdatum
29.03.2024
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 4/2024
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-024-01364-5