Skip to main content
Erschienen in: Brain Structure and Function 7/2021

07.06.2021 | Review

Hearing loss and brain plasticity: the hyperactivity phenomenon

verfasst von: Björn Herrmann, Blake E. Butler

Erschienen in: Brain Structure and Function | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Abstract

Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing—including spectral, temporal, spatial hearing—and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Literatur
Zurück zum Zitat Abel SM, Giguere C, Consoli A, Papsin BC (2000) The effect of aging on horizontal plane sound localization. J Acoust Soc Am 108:743–752PubMedCrossRef Abel SM, Giguere C, Consoli A, Papsin BC (2000) The effect of aging on horizontal plane sound localization. J Acoust Soc Am 108:743–752PubMedCrossRef
Zurück zum Zitat Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21:977–990PubMedCrossRef Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21:977–990PubMedCrossRef
Zurück zum Zitat Aizenberg M, Mwilambwe-Tshilobo L, Briguglio JJ, Natan RG, Geffen MN (2015) Bidirectional regulation of innate and learned behaviors that rely on frequency discrimination by cortical inhibitory neurons. PLoS Biol 13:e1002308PubMedPubMedCentralCrossRef Aizenberg M, Mwilambwe-Tshilobo L, Briguglio JJ, Natan RG, Geffen MN (2015) Bidirectional regulation of innate and learned behaviors that rely on frequency discrimination by cortical inhibitory neurons. PLoS Biol 13:e1002308PubMedPubMedCentralCrossRef
Zurück zum Zitat Alain C, McDonald K, Van Roon P (2012) Effects of age and background noise on processing a mistuned harmonic in an otherwise periodic complex sound. Hear Res 283:126–135PubMedCrossRef Alain C, McDonald K, Van Roon P (2012) Effects of age and background noise on processing a mistuned harmonic in an otherwise periodic complex sound. Hear Res 283:126–135PubMedCrossRef
Zurück zum Zitat Allen PD, Burkard RF, Ison JR, Walton JP (2003) Impaired gap encoding in aged mouse inferior colliculus at moderate but not high stimulus levels. Hear Res 186:17–29PubMedCrossRef Allen PD, Burkard RF, Ison JR, Walton JP (2003) Impaired gap encoding in aged mouse inferior colliculus at moderate but not high stimulus levels. Hear Res 186:17–29PubMedCrossRef
Zurück zum Zitat Allman B, Keniston LP, Meredith MA (2009) Adult deafness induces somatosensory conversion of ferret auditory cortex. Proc Natl Acad Sci 106:5925–5930PubMedPubMedCentralCrossRef Allman B, Keniston LP, Meredith MA (2009) Adult deafness induces somatosensory conversion of ferret auditory cortex. Proc Natl Acad Sci 106:5925–5930PubMedPubMedCentralCrossRef
Zurück zum Zitat Amenedo E, Díaz F (1999) Ageing-related changes in the processing of attended and unattended standard stimuli. NeuroReport 10:2383–2388PubMedCrossRef Amenedo E, Díaz F (1999) Ageing-related changes in the processing of attended and unattended standard stimuli. NeuroReport 10:2383–2388PubMedCrossRef
Zurück zum Zitat Anari M, Axelsson A, Eliasson A, Magnusson L (1999) Hypersensitivity to sound: questionnaire data, audiometry and classification. Scand Audiol 28:219–230PubMedCrossRef Anari M, Axelsson A, Eliasson A, Magnusson L (1999) Hypersensitivity to sound: questionnaire data, audiometry and classification. Scand Audiol 28:219–230PubMedCrossRef
Zurück zum Zitat Anderer P, Semlitsch HV, Saletu B (1996) Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr Clin Neurophysiol 99:458–472PubMedCrossRef Anderer P, Semlitsch HV, Saletu B (1996) Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr Clin Neurophysiol 99:458–472PubMedCrossRef
Zurück zum Zitat Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408PubMedCrossRef Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408PubMedCrossRef
Zurück zum Zitat Asokan MM, Williamson RS, Hancock KE, Polley DB (2018) Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nat Commun 9:2468PubMedPubMedCentralCrossRef Asokan MM, Williamson RS, Hancock KE, Polley DB (2018) Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nat Commun 9:2468PubMedPubMedCentralCrossRef
Zurück zum Zitat Bäckman L, Dixon RA (1992) Psychological compensation: a theoretical framework. Psychol Bull 112:259–283PubMedCrossRef Bäckman L, Dixon RA (1992) Psychological compensation: a theoretical framework. Psychol Bull 112:259–283PubMedCrossRef
Zurück zum Zitat Backoff PM, Palombi PS, Caspary DM (1999) γ-Aminobutyric acidergic and glycinergic inputs shape coding of amplitude modulation in the chinchilla cochlear nucleus. Hear Res 134:77–88PubMedCrossRef Backoff PM, Palombi PS, Caspary DM (1999) γ-Aminobutyric acidergic and glycinergic inputs shape coding of amplitude modulation in the chinchilla cochlear nucleus. Hear Res 134:77–88PubMedCrossRef
Zurück zum Zitat Bacon SP, Gleitman RM (1992) Modulation detection in subjects with relatively flat hearing losses. J Speech Hear Res 35:642–653PubMedCrossRef Bacon SP, Gleitman RM (1992) Modulation detection in subjects with relatively flat hearing losses. J Speech Hear Res 35:642–653PubMedCrossRef
Zurück zum Zitat Balaram P, Hackett TA, Polley DB (2019) Synergistic transcriptional changes in AMPA and GABAA receptor genes support compensatory plasticity following unilateral hearing loss. Neuroscience 407:108–119PubMedCrossRef Balaram P, Hackett TA, Polley DB (2019) Synergistic transcriptional changes in AMPA and GABAA receptor genes support compensatory plasticity following unilateral hearing loss. Neuroscience 407:108–119PubMedCrossRef
Zurück zum Zitat Bao J, Ohlemiller KK (2010) Age-related loss of spiral ganglion neurons. Hear Res 264:93–97PubMedCrossRef Bao J, Ohlemiller KK (2010) Age-related loss of spiral ganglion neurons. Hear Res 264:93–97PubMedCrossRef
Zurück zum Zitat Barsz K, Wilson WW, Walton JP (2007) Reorganization of receptive fields following hearing loss in inferior colliculus neurons. Neuroscience 147:532–545PubMedCrossRef Barsz K, Wilson WW, Walton JP (2007) Reorganization of receptive fields following hearing loss in inferior colliculus neurons. Neuroscience 147:532–545PubMedCrossRef
Zurück zum Zitat Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578PubMedPubMedCentralCrossRef Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578PubMedPubMedCentralCrossRef
Zurück zum Zitat Bidelman GM, Villafuerte JW, Moreno S, Alain C (2014) Age-related changes in the subcorticalecortical encoding and categorical perception of speech. Neurobiol Aging 35:2526–2540PubMedCrossRef Bidelman GM, Villafuerte JW, Moreno S, Alain C (2014) Age-related changes in the subcorticalecortical encoding and categorical perception of speech. Neurobiol Aging 35:2526–2540PubMedCrossRef
Zurück zum Zitat Blackwell JM, Geffen MN (2017) Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 8:2165PubMedPubMedCentralCrossRef Blackwell JM, Geffen MN (2017) Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 8:2165PubMedPubMedCentralCrossRef
Zurück zum Zitat Brotherton H, Plack CJ, Schaette R, Munro KJ (2016) Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hear Res 341:210–219PubMedCrossRef Brotherton H, Plack CJ, Schaette R, Munro KJ (2016) Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hear Res 341:210–219PubMedCrossRef
Zurück zum Zitat Brotherton H, Plack CJ, Schaette R, Munro KJ (2017) Using acoustic reflex threshold, auditory brainstem response and loudness judgments to investigate changes in neural gain following acute unilateral deprivation in normal hearing adults. Hear Res 345:88–95PubMedCrossRef Brotherton H, Plack CJ, Schaette R, Munro KJ (2017) Using acoustic reflex threshold, auditory brainstem response and loudness judgments to investigate changes in neural gain following acute unilateral deprivation in normal hearing adults. Hear Res 345:88–95PubMedCrossRef
Zurück zum Zitat Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R (2019) Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 407:192–199PubMedCrossRef Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R (2019) Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 407:192–199PubMedCrossRef
Zurück zum Zitat Bu J, Sathyendra V, Nagykery N, Geula C (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182:220–231PubMedCrossRef Bu J, Sathyendra V, Nagykery N, Geula C (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182:220–231PubMedCrossRef
Zurück zum Zitat Butler BE, Chabot NA, Lomber SG (2016) Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 524:3042–3063PubMedCrossRef Butler BE, Chabot NA, Lomber SG (2016) Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 524:3042–3063PubMedCrossRef
Zurück zum Zitat Butler BE, de la Rua A, Ward-Able T, Lomber SG (2018) Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct Funct 223:819–835PubMedCrossRef Butler BE, de la Rua A, Ward-Able T, Lomber SG (2018) Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct Funct 223:819–835PubMedCrossRef
Zurück zum Zitat Canlon B, Borg E, Flock A (1988) Protection against noise trauma by pre-exposure to a low-level acoustic stimulus. Hear Res 34:197–200PubMedCrossRef Canlon B, Borg E, Flock A (1988) Protection against noise trauma by pre-exposure to a low-level acoustic stimulus. Hear Res 34:197–200PubMedCrossRef
Zurück zum Zitat Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures: a law of denervation. The Macmillan Company, New York Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures: a law of denervation. The Macmillan Company, New York
Zurück zum Zitat Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959PubMedPubMedCentralCrossRef Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959PubMedPubMedCentralCrossRef
Zurück zum Zitat Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791PubMedCrossRef Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791PubMedCrossRef
Zurück zum Zitat Chabot NA, Butler BE, Lomber SG (2015) Differential modification of cortical and thalamic projections to cat primary auditory cortex following early-and late-onset deafness. J Comp Neurol 529:2297–2232CrossRef Chabot NA, Butler BE, Lomber SG (2015) Differential modification of cortical and thalamic projections to cat primary auditory cortex following early-and late-onset deafness. J Comp Neurol 529:2297–2232CrossRef
Zurück zum Zitat Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016b) Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89:867–879PubMedPubMedCentralCrossRef Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016b) Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89:867–879PubMedPubMedCentralCrossRef
Zurück zum Zitat Cisneros-Franco JM, de Villers-Sidani É (2019) Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proc Natl Acad Sci 116:26329–26331PubMedCentralCrossRef Cisneros-Franco JM, de Villers-Sidani É (2019) Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proc Natl Acad Sci 116:26329–26331PubMedCentralCrossRef
Zurück zum Zitat Cisneros-Franco JM, Ouellet L, Kamal B, de Villers-Sidani E (2018) A brain without brakes: reduced inhibition is associated with enhanced but dysregulated plasticity in the aged rat auditory cortex. eNeuro 5:0051CrossRef Cisneros-Franco JM, Ouellet L, Kamal B, de Villers-Sidani E (2018) A brain without brakes: reduced inhibition is associated with enhanced but dysregulated plasticity in the aged rat auditory cortex. eNeuro 5:0051CrossRef
Zurück zum Zitat Clinard CG, Tremblay KL (2013) Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24:590–599PubMedCrossRef Clinard CG, Tremblay KL (2013) Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24:590–599PubMedCrossRef
Zurück zum Zitat Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264:48–55PubMedCrossRef Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264:48–55PubMedCrossRef
Zurück zum Zitat Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN (2014) Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur J Neurosci 40:2427–2441PubMedPubMedCentralCrossRef Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN (2014) Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur J Neurosci 40:2427–2441PubMedPubMedCentralCrossRef
Zurück zum Zitat Cruickshanks KJ, Wiley TL, Tweed TS, Klein BEK, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. Am J Epidemiol 148:879–886PubMedCrossRef Cruickshanks KJ, Wiley TL, Tweed TS, Klein BEK, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. Am J Epidemiol 148:879–886PubMedCrossRef
Zurück zum Zitat Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s Gyrus. J Neurosci 31:14067–14075PubMedPubMedCentralCrossRef Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s Gyrus. J Neurosci 31:14067–14075PubMedPubMedCentralCrossRef
Zurück zum Zitat Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G, Hounsell J, Platt-Hepworth S, Reeve R, Sambrook PN, Smith J (1989) Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. Br J Clin Pharmacol 28:695–702PubMedPubMedCentralCrossRef Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G, Hounsell J, Platt-Hepworth S, Reeve R, Sambrook PN, Smith J (1989) Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. Br J Clin Pharmacol 28:695–702PubMedPubMedCentralCrossRef
Zurück zum Zitat de Villers-Sidani E, Alzghoul L, Zhou X, Simpson KL, Lin RCS, Merzenich MM (2010) Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci 107:13900–13905PubMedPubMedCentralCrossRef de Villers-Sidani E, Alzghoul L, Zhou X, Simpson KL, Lin RCS, Merzenich MM (2010) Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci 107:13900–13905PubMedPubMedCentralCrossRef
Zurück zum Zitat Dobri SGJ, Ross B (2021) Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage 225:117474PubMedCrossRef Dobri SGJ, Ross B (2021) Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage 225:117474PubMedCrossRef
Zurück zum Zitat Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoustical Soc Am 97:585–592CrossRef Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoustical Soc Am 97:585–592CrossRef
Zurück zum Zitat Dubno JR, Eckert MA, Lee F-S, Matthews LJ, Schmiedt RA (2013) Classifying human audiometric phenotypes of age-related hearing loss from animal models. J Assoc Res Otolaryngol 14:687–701PubMedPubMedCentralCrossRef Dubno JR, Eckert MA, Lee F-S, Matthews LJ, Schmiedt RA (2013) Classifying human audiometric phenotypes of age-related hearing loss from animal models. J Assoc Res Otolaryngol 14:687–701PubMedPubMedCentralCrossRef
Zurück zum Zitat Edwards E, Chang EF (2013) Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing. Hear Res 305:113–134PubMedCrossRef Edwards E, Chang EF (2013) Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing. Hear Res 305:113–134PubMedCrossRef
Zurück zum Zitat Eggermont JJ (2012) The neural synchrony model of tinnitus. In: Eggermont JJ (ed) The neuroscience of tinnitus. Oxford University Press, UK, pp 154–173CrossRef Eggermont JJ (2012) The neural synchrony model of tinnitus. In: Eggermont JJ (ed) The neuroscience of tinnitus. Oxford University Press, UK, pp 154–173CrossRef
Zurück zum Zitat Ernst SM, Moore BCJ (2012) The role of time and place cues in the detection of frequency modulation by hearing impaired listeners. J Acoustical Soc Am 131:4722–4731CrossRef Ernst SM, Moore BCJ (2012) The role of time and place cues in the detection of frequency modulation by hearing impaired listeners. J Acoustical Soc Am 131:4722–4731CrossRef
Zurück zum Zitat Feder K, Michaud D, Ramage-Morin P, McNamee J, Beauregard Y (2015) Prevalence of hearing loss among Canadians aged 20 to 79: Audiometric results from the 2012/2013 Canadian Health Measures Survey. Health Rep 26:18–25PubMed Feder K, Michaud D, Ramage-Morin P, McNamee J, Beauregard Y (2015) Prevalence of hearing loss among Canadians aged 20 to 79: Audiometric results from the 2012/2013 Canadian Health Measures Survey. Health Rep 26:18–25PubMed
Zurück zum Zitat Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189PubMed Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189PubMed
Zurück zum Zitat Fitzgibbons PJ, Gordon-Salant S (2010) Behavioral studies with aging humans: hearing sensitivity and psychoacoustics. In: Gordon-Salant S, Frisina RD, Popper AN, Fay RR (eds) The aging auditory system. Springer-Verlag, New York, USA, pp 111–134CrossRef Fitzgibbons PJ, Gordon-Salant S (2010) Behavioral studies with aging humans: hearing sensitivity and psychoacoustics. In: Gordon-Salant S, Frisina RD, Popper AN, Fay RR (eds) The aging auditory system. Springer-Verlag, New York, USA, pp 111–134CrossRef
Zurück zum Zitat Fournier P, Schönwiesner M, Hébert S (2014) Loudness modulation after transient and permanent hearing loss: implications for tinnitus and hyperacusis. Neuroscience 283:64–77PubMedCrossRef Fournier P, Schönwiesner M, Hébert S (2014) Loudness modulation after transient and permanent hearing loss: implications for tinnitus and hyperacusis. Neuroscience 283:64–77PubMedCrossRef
Zurück zum Zitat Frisina DR, Frisina RD, Snell KB, Burkard R, Walton JP, Ison JR (2001) Auditory temporal processing during Aging. In: Hof PR, Mobbs CV (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 565–579CrossRef Frisina DR, Frisina RD, Snell KB, Burkard R, Walton JP, Ison JR (2001) Auditory temporal processing during Aging. In: Hof PR, Mobbs CV (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 565–579CrossRef
Zurück zum Zitat Fromby C, Sherlock LP, Gold SL, Hawley ML (2007) Adaptive recalibration of chronic auditory gain. Semin Hear 28:295–302CrossRef Fromby C, Sherlock LP, Gold SL, Hawley ML (2007) Adaptive recalibration of chronic auditory gain. Semin Hear 28:295–302CrossRef
Zurück zum Zitat Fukushima N, White P, Harrison RV (1990) Influence of acoustic deprivation on recovery of hair cells after acoustic trauma. Hear Res 50:107–118PubMedCrossRef Fukushima N, White P, Harrison RV (1990) Influence of acoustic deprivation on recovery of hair cells after acoustic trauma. Hear Res 50:107–118PubMedCrossRef
Zurück zum Zitat Füllgrabe C, Meyer B, Lorenzi C (2003) Effect of cochlear damage on the detection of complex temporal envelopes. Hear Res 178:35–43PubMedCrossRef Füllgrabe C, Meyer B, Lorenzi C (2003) Effect of cochlear damage on the detection of complex temporal envelopes. Hear Res 178:35–43PubMedCrossRef
Zurück zum Zitat Gao F, Wang G, Ma W, Ren F, Li M, Dong Y, Liu C, Liu B, Bai X, Zhao B, Edden RAE (2015) Decreased auditory GABA+concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. Neuroimage 106:311–316PubMedCrossRef Gao F, Wang G, Ma W, Ren F, Li M, Dong Y, Liu C, Liu B, Bai X, Zhao B, Edden RAE (2015) Decreased auditory GABA+concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. Neuroimage 106:311–316PubMedCrossRef
Zurück zum Zitat Gerken GM (1979) Central denervation hypersensitivity in the auditory system of the cat. J Acoustical Soc Am 66:721–727CrossRef Gerken GM (1979) Central denervation hypersensitivity in the auditory system of the cat. J Acoustical Soc Am 66:721–727CrossRef
Zurück zum Zitat Giraud A-L, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15(4):511–517PubMedPubMedCentralCrossRef Giraud A-L, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15(4):511–517PubMedPubMedCentralCrossRef
Zurück zum Zitat Glasberg BR, Moore BC, Bacon SP (1987) Gap detection and masking in hearing-impaired and normal-hearing subjects. J Acoust Soc Am 81:1546–1556PubMedCrossRef Glasberg BR, Moore BC, Bacon SP (1987) Gap detection and masking in hearing-impaired and normal-hearing subjects. J Acoust Soc Am 81:1546–1556PubMedCrossRef
Zurück zum Zitat Goossens T, Vercammen C, Wouters J, van Wieringen A (2016) Aging affects neural synchronization to speech-related acoustic modulations. Front Aging Neurosci 8:133PubMedPubMedCentralCrossRef Goossens T, Vercammen C, Wouters J, van Wieringen A (2016) Aging affects neural synchronization to speech-related acoustic modulations. Front Aging Neurosci 8:133PubMedPubMedCentralCrossRef
Zurück zum Zitat Goossens T, Vercammen C, Wouters J, Van Wieringen A (2018) Neural envelope encoding predicts speech perception performance for normal-hearing and hearing-impaired adults. Hear Res 370:189–200PubMedCrossRef Goossens T, Vercammen C, Wouters J, Van Wieringen A (2018) Neural envelope encoding predicts speech perception performance for normal-hearing and hearing-impaired adults. Hear Res 370:189–200PubMedCrossRef
Zurück zum Zitat Goossens T, Vercammen C, Wouters J, Van Wieringen A (2019) The association between hearing impairment and neural envelope encoding at different ages. Neurobiol Aging 74:202–212PubMedCrossRef Goossens T, Vercammen C, Wouters J, Van Wieringen A (2019) The association between hearing impairment and neural envelope encoding at different ages. Neurobiol Aging 74:202–212PubMedCrossRef
Zurück zum Zitat Gordon-Salant S, Fitzgibbons PJ (1993) Temporal factors and speech recognition performance in young and elderly listeners. J Speech Lang Hear Res 36:1276–1285CrossRef Gordon-Salant S, Fitzgibbons PJ (1993) Temporal factors and speech recognition performance in young and elderly listeners. J Speech Lang Hear Res 36:1276–1285CrossRef
Zurück zum Zitat Gordon-Salant S, Fitzgibbons PJ (1999) Profile of auditory temporal processing in older listeners. Journal of Speech, Language, and Hearing Research : JSLHR 42:300–311PubMedCrossRef Gordon-Salant S, Fitzgibbons PJ (1999) Profile of auditory temporal processing in older listeners. Journal of Speech, Language, and Hearing Research : JSLHR 42:300–311PubMedCrossRef
Zurück zum Zitat Gratton MA, Vázquez AE (2003) Age-related hearing loss: current research. Curr Opin Otolaryngol Head Neck Surg 11:367–371PubMedCrossRef Gratton MA, Vázquez AE (2003) Age-related hearing loss: current research. Curr Opin Otolaryngol Head Neck Surg 11:367–371PubMedCrossRef
Zurück zum Zitat Harkrider AW, Plyler PN, Hedrick MS (2005) Effects of age and spectral shaping on perception and neural representation of stop consonant stimuli. Clin Neurophysiol 116:2153–2164PubMedCrossRef Harkrider AW, Plyler PN, Hedrick MS (2005) Effects of age and spectral shaping on perception and neural representation of stop consonant stimuli. Clin Neurophysiol 116:2153–2164PubMedCrossRef
Zurück zum Zitat Harris KC, Wilson S, Eckert MA, Dubno JR (2012) Human evoked cortical activity to silent gaps in noise: effects of age, attention, and cortical processing speed. Ear Hear 33:330–339PubMedPubMedCentralCrossRef Harris KC, Wilson S, Eckert MA, Dubno JR (2012) Human evoked cortical activity to silent gaps in noise: effects of age, attention, and cortical processing speed. Ear Hear 33:330–339PubMedPubMedCentralCrossRef
Zurück zum Zitat Hattori R, Kuchibhotla KV, Froemke RC, Komiyama T (2017) Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 20:1199–1208PubMedPubMedCentralCrossRef Hattori R, Kuchibhotla KV, Froemke RC, Komiyama T (2017) Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 20:1199–1208PubMedPubMedCentralCrossRef
Zurück zum Zitat Hayes SH, Schormans AL, Sigela G, Beha K, Herrmann B, Allman BL (2021) Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation. Prog Neurobiol 196:101893PubMedCrossRef Hayes SH, Schormans AL, Sigela G, Beha K, Herrmann B, Allman BL (2021) Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation. Prog Neurobiol 196:101893PubMedCrossRef
Zurück zum Zitat Helfer KS, Merchant GR, Wasiuk PA (2017) Age-related changes in objective and subjective speech perception in complex listening environments. J Speech Lang Hear Res 60:3009–3018PubMedPubMedCentralCrossRef Helfer KS, Merchant GR, Wasiuk PA (2017) Age-related changes in objective and subjective speech perception in complex listening environments. J Speech Lang Hear Res 60:3009–3018PubMedPubMedCentralCrossRef
Zurück zum Zitat Henry JA, Schechter MA, Zaugg TL, Griest S, Jastreboff PJ, Vernon JA, Kaelin C, Meikle MB, Lyons KS, Stewart BJ (2006) Clinical trial to compare tinnitus masking and tinnitus retraining therapy. Acta Otolaryngol Suppl 556:64–69CrossRef Henry JA, Schechter MA, Zaugg TL, Griest S, Jastreboff PJ, Vernon JA, Kaelin C, Meikle MB, Lyons KS, Stewart BJ (2006) Clinical trial to compare tinnitus masking and tinnitus retraining therapy. Acta Otolaryngol Suppl 556:64–69CrossRef
Zurück zum Zitat Henry MJ, Herrmann B, Obleser J (2014) Entrained neural oscillations in multiple frequency bands co-modulate behavior. Proc Natl Acad Sci 111:14935–14940PubMedPubMedCentralCrossRef Henry MJ, Herrmann B, Obleser J (2014) Entrained neural oscillations in multiple frequency bands co-modulate behavior. Proc Natl Acad Sci 111:14935–14940PubMedPubMedCentralCrossRef
Zurück zum Zitat Henry MJ, Herrmann B, Kunke D, Obleser J (2017) Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nat Commun 8:15801PubMedPubMedCentralCrossRef Henry MJ, Herrmann B, Kunke D, Obleser J (2017) Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nat Commun 8:15801PubMedPubMedCentralCrossRef
Zurück zum Zitat Herrmann B, Maess B, Hahne A, Schröger E, Friederici AD (2011) Syntactic and auditory spatial processing in the human temporal cortex: an MEG study. Neuroimage 57:624–633PubMedCrossRef Herrmann B, Maess B, Hahne A, Schröger E, Friederici AD (2011) Syntactic and auditory spatial processing in the human temporal cortex: an MEG study. Neuroimage 57:624–633PubMedCrossRef
Zurück zum Zitat Herrmann B, Henry MJ, Scharinger M, Obleser J (2013a) Auditory filter width affects response magnitude but not frequency specificity in auditory cortex. Hear Res 304:128–136PubMedCrossRef Herrmann B, Henry MJ, Scharinger M, Obleser J (2013a) Auditory filter width affects response magnitude but not frequency specificity in auditory cortex. Hear Res 304:128–136PubMedCrossRef
Zurück zum Zitat Herrmann B, Henry MJ, Grigutsch M, Obleser J (2013b) Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time. J Neurosci 33:15799–15809PubMedPubMedCentralCrossRef Herrmann B, Henry MJ, Grigutsch M, Obleser J (2013b) Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time. J Neurosci 33:15799–15809PubMedPubMedCentralCrossRef
Zurück zum Zitat Herrmann B, Henry MJ, Johnsrude IS, Obleser J (2016) Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiol Aging 45:10–22PubMedCrossRef Herrmann B, Henry MJ, Johnsrude IS, Obleser J (2016) Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiol Aging 45:10–22PubMedCrossRef
Zurück zum Zitat Herrmann B, Parthasarathy A, Bartlett EL (2017) Aging affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. Eur J Neurosci 45:299–311PubMedCrossRef Herrmann B, Parthasarathy A, Bartlett EL (2017) Aging affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. Eur J Neurosci 45:299–311PubMedCrossRef
Zurück zum Zitat Herrmann B, Buckland C, Johnsrude IS (2019) Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiol Aging 83:73–85PubMedCrossRef Herrmann B, Buckland C, Johnsrude IS (2019) Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiol Aging 83:73–85PubMedCrossRef
Zurück zum Zitat Holmes E, Griffiths TD (2019) ‘Normal’ hearing thresholds and fundamental auditory grouping processes predict difficulties with speech-in-noise perception. Sci Rep 9:16771PubMedPubMedCentralCrossRef Holmes E, Griffiths TD (2019) ‘Normal’ hearing thresholds and fundamental auditory grouping processes predict difficulties with speech-in-noise perception. Sci Rep 9:16771PubMedPubMedCentralCrossRef
Zurück zum Zitat Hopkins J (1994) Orchestrating an indoor city: ambient noise inside a mega-mall. Environ Behav 26:785–812CrossRef Hopkins J (1994) Orchestrating an indoor city: ambient noise inside a mega-mall. Environ Behav 26:785–812CrossRef
Zurück zum Zitat Hughes LF, Turner JG, Parrish JL, Caspary DM (2010) Processing of broadband stimuli across A1 layers in young and aged rats. Hear Res 264:79–85PubMedCrossRef Hughes LF, Turner JG, Parrish JL, Caspary DM (2010) Processing of broadband stimuli across A1 layers in young and aged rats. Hear Res 264:79–85PubMedCrossRef
Zurück zum Zitat Humes LE, Busey TA, Craig JC, Kewley-Port D (2009) The effects of age on sensory thresholds and temporal gap detection in hearing, vision, and touch. Atten Percept Psychophys 71:860–871PubMedPubMedCentralCrossRef Humes LE, Busey TA, Craig JC, Kewley-Port D (2009) The effects of age on sensory thresholds and temporal gap detection in hearing, vision, and touch. Atten Percept Psychophys 71:860–871PubMedPubMedCentralCrossRef
Zurück zum Zitat Huotilainen M, Winkler I, Alho K, Escera C, Virtanen J, Ilmoniemi RJ, Jääskeläinen IP, Pekkonen E, Näätänen R (1998) Combined mapping of human auditory EEG and MEG responses. Electroencephalogr Clin Neurophysiol 108:370–379PubMedCrossRef Huotilainen M, Winkler I, Alho K, Escera C, Virtanen J, Ilmoniemi RJ, Jääskeläinen IP, Pekkonen E, Näätänen R (1998) Combined mapping of human auditory EEG and MEG responses. Electroencephalogr Clin Neurophysiol 108:370–379PubMedCrossRef
Zurück zum Zitat Ibrahim BA, Llano DA (2019) Aging and central auditory disinhibition: is it a reflection of homeostatic downregulation or metabolic vulnerability? Brain Sci 9:351PubMedCentralCrossRef Ibrahim BA, Llano DA (2019) Aging and central auditory disinhibition: is it a reflection of homeostatic downregulation or metabolic vulnerability? Brain Sci 9:351PubMedCentralCrossRef
Zurück zum Zitat Imam L, Hannan SA (2017) Noise-induced hearing loss: a modern epidemic? Br J Hosp Med 78:286–290CrossRef Imam L, Hannan SA (2017) Noise-induced hearing loss: a modern epidemic? Br J Hosp Med 78:286–290CrossRef
Zurück zum Zitat Ivansic D, Guntinas-Lichius O, Müller B, Volk GF, Schneider G, Dobel C (2017) Impairments of speech comprehension in patients with Tinnitus-a review. Front Aging Neurosci 9:224PubMedPubMedCentralCrossRef Ivansic D, Guntinas-Lichius O, Müller B, Volk GF, Schneider G, Dobel C (2017) Impairments of speech comprehension in patients with Tinnitus-a review. Front Aging Neurosci 9:224PubMedPubMedCentralCrossRef
Zurück zum Zitat Izquierdo MA, Gutiérrez-Conde PM, Merchán MA, Malmierca MS (2008) Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss. Neuroscience 154:355–369PubMedCrossRef Izquierdo MA, Gutiérrez-Conde PM, Merchán MA, Malmierca MS (2008) Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss. Neuroscience 154:355–369PubMedCrossRef
Zurück zum Zitat Juarez-Salinas DL, Engle JR, Navarro XO, Recanzone GH (2010) Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging. J Neurosci 30:14795–14804PubMedPubMedCentralCrossRef Juarez-Salinas DL, Engle JR, Navarro XO, Recanzone GH (2010) Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging. J Neurosci 30:14795–14804PubMedPubMedCentralCrossRef
Zurück zum Zitat Kalappa BI, Brozoski TJ, Turner JG, Caspary DM (2014) Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol 592:5065–5078PubMedPubMedCentralCrossRef Kalappa BI, Brozoski TJ, Turner JG, Caspary DM (2014) Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol 592:5065–5078PubMedPubMedCentralCrossRef
Zurück zum Zitat Kaltenbach JA, Rachel JD, Mathog TA, Zhang J, Falzarano PR, Lewandowski M (2002) Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophysiol 88:699–714PubMedCrossRef Kaltenbach JA, Rachel JD, Mathog TA, Zhang J, Falzarano PR, Lewandowski M (2002) Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophysiol 88:699–714PubMedCrossRef
Zurück zum Zitat Kamal B, Holman C, de Villers-Sidani E (2013) Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments. Front Syst Neurosci 7:52PubMedPubMedCentralCrossRef Kamal B, Holman C, de Villers-Sidani E (2013) Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments. Front Syst Neurosci 7:52PubMedPubMedCentralCrossRef
Zurück zum Zitat Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. J Neurophysiol 91:2551–2567PubMedCrossRef Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. J Neurophysiol 91:2551–2567PubMedCrossRef
Zurück zum Zitat Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, Gerstner W, Haydon PG, Hübener M, Lee H-K, Lisman JE, Rose T, Sengpiel F, Stellwagen D, Stryker MP, Turrigiano GG, van Rossum MC (2017) Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc B 372:20160158CrossRef Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, Gerstner W, Haydon PG, Hübener M, Lee H-K, Lisman JE, Rose T, Sengpiel F, Stellwagen D, Stryker MP, Turrigiano GG, van Rossum MC (2017) Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc B 372:20160158CrossRef
Zurück zum Zitat Kerlin JR, Shahin AJ, Miller LM (2010) Attentional gain control of ongoing cortical speech representations in a “Cocktail Party.” J Neurosci 30:620–628PubMedPubMedCentralCrossRef Kerlin JR, Shahin AJ, Miller LM (2010) Attentional gain control of ongoing cortical speech representations in a “Cocktail Party.” J Neurosci 30:620–628PubMedPubMedCentralCrossRef
Zurück zum Zitat King AJ, Bajo VM, Bizley JK, Campbell RAA, Nodal FR, Schulz AL, Schnupp JWH (2007) Physiological and behavioral studies of spatial coding in the auditory cortex. Hear Res 229:106–115PubMedPubMedCentralCrossRef King AJ, Bajo VM, Bizley JK, Campbell RAA, Nodal FR, Schulz AL, Schnupp JWH (2007) Physiological and behavioral studies of spatial coding in the auditory cortex. Hear Res 229:106–115PubMedPubMedCentralCrossRef
Zurück zum Zitat Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33PubMedCrossRef Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33PubMedCrossRef
Zurück zum Zitat Knipper M, van Dijk P, Schulze H, Mazurek B, Krauss P, Scheper V, Warnecke A, Schlee W, Schwabe K, Singer W, Braun C, Delano PH, Fallgatter AJ, Ehlis A-C, Searchfield GD, Munk MHJ, Baguley DM, Rüttiger L (2020) The neural bases of tinnitus: lessons from deafness and cochlear implants. J Neurosci 40:7190–7202PubMedPubMedCentralCrossRef Knipper M, van Dijk P, Schulze H, Mazurek B, Krauss P, Scheper V, Warnecke A, Schlee W, Schwabe K, Singer W, Braun C, Delano PH, Fallgatter AJ, Ehlis A-C, Searchfield GD, Munk MHJ, Baguley DM, Rüttiger L (2020) The neural bases of tinnitus: lessons from deafness and cochlear implants. J Neurosci 40:7190–7202PubMedPubMedCentralCrossRef
Zurück zum Zitat Koehnke J, Besing JM (2001) The effects of aging on binaural and spatial hearing. Semin Hear 22:241–254CrossRef Koehnke J, Besing JM (2001) The effects of aging on binaural and spatial hearing. Semin Hear 22:241–254CrossRef
Zurück zum Zitat Koops EA, Renken RJ, Lanting CP, van Dijk P (2020) Cortical tonotopic map changes in humans are larger in hearing loss than in additional tinnitus. J Neurosci 40:3178–3185PubMedPubMedCentralCrossRef Koops EA, Renken RJ, Lanting CP, van Dijk P (2020) Cortical tonotopic map changes in humans are larger in hearing loss than in additional tinnitus. J Neurosci 40:3178–3185PubMedPubMedCentralCrossRef
Zurück zum Zitat Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH (2005) Hearing loss raises excitability in the auditory cortex. J Neurosci 25:3908–3918PubMedPubMedCentralCrossRef Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH (2005) Hearing loss raises excitability in the auditory cortex. J Neurosci 25:3908–3918PubMedPubMedCentralCrossRef
Zurück zum Zitat Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085PubMedPubMedCentralCrossRef Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085PubMedPubMedCentralCrossRef
Zurück zum Zitat Laffont F, Bruneau N, Roux S, Agar N, Minz M, Cathala HP (1989) Effects of age on auditory evoked responses (AER) and augmenting-reducing. Clin Neurophysiol 19:15–23CrossRef Laffont F, Bruneau N, Roux S, Agar N, Minz M, Cathala HP (1989) Effects of age on auditory evoked responses (AER) and augmenting-reducing. Clin Neurophysiol 19:15–23CrossRef
Zurück zum Zitat Leong UC, Barsz K, Allen PD, Walton JP (2011) Neural correlates of age-related declines in frequency selectivity in the auditory midbrain. Neurobiol Aging 32:168–178PubMedCrossRef Leong UC, Barsz K, Allen PD, Walton JP (2011) Neural correlates of age-related declines in frequency selectivity in the auditory midbrain. Neurobiol Aging 32:168–178PubMedCrossRef
Zurück zum Zitat Li S, Choi V, Tzounopoulos T (2013) Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci USA 110:9980–9985PubMedPubMedCentralCrossRef Li S, Choi V, Tzounopoulos T (2013) Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci USA 110:9980–9985PubMedPubMedCentralCrossRef
Zurück zum Zitat Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147PubMedPubMedCentralCrossRef Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147PubMedPubMedCentralCrossRef
Zurück zum Zitat Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11:e0162726PubMedPubMedCentralCrossRef Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11:e0162726PubMedPubMedCentralCrossRef
Zurück zum Zitat Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120PubMedCrossRef Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120PubMedCrossRef
Zurück zum Zitat Lorenzi C, Gilbert G, Héloise C, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci 103:18866–18869PubMedPubMedCentralCrossRef Lorenzi C, Gilbert G, Héloise C, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci 103:18866–18869PubMedPubMedCentralCrossRef
Zurück zum Zitat Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571PubMedCrossRef Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571PubMedCrossRef
Zurück zum Zitat Manunta Y, Edeline J-M (1997) Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur J Neurosci 9:833–847PubMedCrossRef Manunta Y, Edeline J-M (1997) Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur J Neurosci 9:833–847PubMedCrossRef
Zurück zum Zitat Manzoor NF, Licari FG, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA (2012) Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol 108:976–988PubMedPubMedCentralCrossRef Manzoor NF, Licari FG, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA (2012) Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol 108:976–988PubMedPubMedCentralCrossRef
Zurück zum Zitat Martin del Campo HN, Measor KR, Razak KA (2012) Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hear Res 294:31–39PubMedCrossRef Martin del Campo HN, Measor KR, Razak KA (2012) Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hear Res 294:31–39PubMedCrossRef
Zurück zum Zitat McCormack A, Edmondson-Jones M, Somerset S, Hall DA (2016) A systematic review of the reporting of tinnitus prevalence and severity. Hear Res 337:70–79PubMedCrossRef McCormack A, Edmondson-Jones M, Somerset S, Hall DA (2016) A systematic review of the reporting of tinnitus prevalence and severity. Hear Res 337:70–79PubMedCrossRef
Zurück zum Zitat Mepani AM, Kirk SA, Hancock KE, Bennett K, de Gruttola V, Liberman MC, Maison SF (2020) Middle ear muscle reflex and word recognition in “normal-hearing” adults: evidence for cochlear synaptopathy? Ear Hear 41:25–38PubMedPubMedCentralCrossRef Mepani AM, Kirk SA, Hancock KE, Bennett K, de Gruttola V, Liberman MC, Maison SF (2020) Middle ear muscle reflex and word recognition in “normal-hearing” adults: evidence for cochlear synaptopathy? Ear Hear 41:25–38PubMedPubMedCentralCrossRef
Zurück zum Zitat Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516–527PubMedCrossRef Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516–527PubMedCrossRef
Zurück zum Zitat Millman RE, Mattys SL, Gouws AD, Prendergast G (2017) Magnified neural envelope coding predicts deficits in speech perception in noise. J Neurosci 37:7727–7736PubMedPubMedCentralCrossRef Millman RE, Mattys SL, Gouws AD, Prendergast G (2017) Magnified neural envelope coding predicts deficits in speech perception in noise. J Neurosci 37:7727–7736PubMedPubMedCentralCrossRef
Zurück zum Zitat Mishra J, de Villers-Sidani E, Merzenich MM, Gazzaley A (2014) Adaptive training diminishes distractibility in aging across species. Neuron 84:1091–1103PubMedPubMedCentralCrossRef Mishra J, de Villers-Sidani E, Merzenich MM, Gazzaley A (2014) Adaptive training diminishes distractibility in aging across species. Neuron 84:1091–1103PubMedPubMedCentralCrossRef
Zurück zum Zitat Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184PubMedCrossRef Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184PubMedCrossRef
Zurück zum Zitat Moore BCJ (2007) Cochlear hearing loss: physiological, psychological and technical issues. John Wiley & Sons Ltd, West Sussex, EnglandCrossRef Moore BCJ (2007) Cochlear hearing loss: physiological, psychological and technical issues. John Wiley & Sons Ltd, West Sussex, EnglandCrossRef
Zurück zum Zitat Moore BCJ (2014) Auditory processing of temporal fine structure: effects of age and hearing loss. World Scientific, SingaporeCrossRef Moore BCJ (2014) Auditory processing of temporal fine structure: effects of age and hearing loss. World Scientific, SingaporeCrossRef
Zurück zum Zitat Moore BC, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83:1093–1101PubMedCrossRef Moore BC, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83:1093–1101PubMedCrossRef
Zurück zum Zitat Moore BCJ, Skrodzka E (2002) Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation. J Acoustical Soc Am 111:327–335CrossRef Moore BCJ, Skrodzka E (2002) Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation. J Acoustical Soc Am 111:327–335CrossRef
Zurück zum Zitat Moore BCJ, Peters RW, Glasberg BR (1992) Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoustical Soc Am 92:1923–1932CrossRef Moore BCJ, Peters RW, Glasberg BR (1992) Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoustical Soc Am 92:1923–1932CrossRef
Zurück zum Zitat Moore BCJ, Wojtczak M, Vickers D (1996) Effect of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100:481–489CrossRef Moore BCJ, Wojtczak M, Vickers D (1996) Effect of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100:481–489CrossRef
Zurück zum Zitat Moore BCJ, Mariathasan S, Sęk AP (2019) Effects of age and hearing loss on the discrimination of amplitude and frequency modulation for 2- and 10-Hz rates. Trends Hear 23:2331216519853963PubMedPubMedCentral Moore BCJ, Mariathasan S, Sęk AP (2019) Effects of age and hearing loss on the discrimination of amplitude and frequency modulation for 2- and 10-Hz rates. Trends Hear 23:2331216519853963PubMedPubMedCentral
Zurück zum Zitat Moser T, Starr A (2016) Auditory neuropathy—neural and synaptic mechanisms. Nat Rev Neurol 12:135–149PubMedCrossRef Moser T, Starr A (2016) Auditory neuropathy—neural and synaptic mechanisms. Nat Rev Neurol 12:135–149PubMedCrossRef
Zurück zum Zitat Mulders WHAM, Robertson D (2013) Development of hyperactivity after acoustic trauma in the guinea pig inferior colliculus. Hear Res 298:104–108PubMedCrossRef Mulders WHAM, Robertson D (2013) Development of hyperactivity after acoustic trauma in the guinea pig inferior colliculus. Hear Res 298:104–108PubMedCrossRef
Zurück zum Zitat Munguia R, Pienkowski M, Eggermont JJ (2013) Spontaneous firing rate changes in cat primary auditory cortex following long-term exposure to non-traumatic noise: tinnitus without hearing loss? Neurosci Lett 546:46–50PubMedCrossRef Munguia R, Pienkowski M, Eggermont JJ (2013) Spontaneous firing rate changes in cat primary auditory cortex following long-term exposure to non-traumatic noise: tinnitus without hearing loss? Neurosci Lett 546:46–50PubMedCrossRef
Zurück zum Zitat Munro KJ, Turtle C, Schaette R (2014) Plasticity and modified loudness following short-term unilateral deprivation: evidence of multiple gain mechanisms within the auditory system. J Acoustical Soc Am 135:315–322CrossRef Munro KJ, Turtle C, Schaette R (2014) Plasticity and modified loudness following short-term unilateral deprivation: evidence of multiple gain mechanisms within the auditory system. J Acoustical Soc Am 135:315–322CrossRef
Zurück zum Zitat Näätänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425PubMedCrossRef Näätänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425PubMedCrossRef
Zurück zum Zitat Nahmani M, Turrigiano GG (2014) Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience 283:4–16PubMedCrossRef Nahmani M, Turrigiano GG (2014) Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience 283:4–16PubMedCrossRef
Zurück zum Zitat Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN (2015) Complementary control of sensory adaptation by two types of cortical interneurons. Elife 4:e09868PubMedPubMedCentralCrossRef Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN (2015) Complementary control of sensory adaptation by two types of cortical interneurons. Elife 4:e09868PubMedPubMedCentralCrossRef
Zurück zum Zitat Nelson DA, Freyman RL (1986) Psychometric functions for frequency discrimination from listeners with sensorineural hearing loss. J Acoustical Soc Am 79:799–805CrossRef Nelson DA, Freyman RL (1986) Psychometric functions for frequency discrimination from listeners with sensorineural hearing loss. J Acoustical Soc Am 79:799–805CrossRef
Zurück zum Zitat Ng C-W, Recanzone GH (2018) Age-related changes in temporal processing of rapidly-presented sound sequences in the macaque auditory cortex. Cereb Cortex 28:3775–3796PubMedCrossRef Ng C-W, Recanzone GH (2018) Age-related changes in temporal processing of rapidly-presented sound sequences in the macaque auditory cortex. Cereb Cortex 28:3775–3796PubMedCrossRef
Zurück zum Zitat Niu X, Tahera Y, Canlon B (2004) Protection against acoustic trauma by forward and backward sound conditioning. Audiol Neurootol 9:265–273PubMedCrossRef Niu X, Tahera Y, Canlon B (2004) Protection against acoustic trauma by forward and backward sound conditioning. Audiol Neurootol 9:265–273PubMedCrossRef
Zurück zum Zitat Niu X, Tahera Y, Canlon B (2007) Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 92:34–39PubMedCrossRef Niu X, Tahera Y, Canlon B (2007) Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 92:34–39PubMedCrossRef
Zurück zum Zitat Noelle O’Connell M, Barczak A, Schroeder CE, Lakatos P (2014) Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex. J Neurosci 34:16496–16508CrossRef Noelle O’Connell M, Barczak A, Schroeder CE, Lakatos P (2014) Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex. J Neurosci 34:16496–16508CrossRef
Zurück zum Zitat Norena AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. NeuroReport 18:1251–1255PubMedCrossRef Norena AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. NeuroReport 18:1251–1255PubMedCrossRef
Zurück zum Zitat Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport 17:559–563PubMedCrossRef Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport 17:559–563PubMedCrossRef
Zurück zum Zitat Norena AJ, Tomita M, Eggermont JJ (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–2401PubMedCrossRef Norena AJ, Tomita M, Eggermont JJ (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–2401PubMedCrossRef
Zurück zum Zitat Noreña AJ, Gourévitch B, Aizawa N, Eggermont JJ (2006) Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci 7:932–939CrossRef Noreña AJ, Gourévitch B, Aizawa N, Eggermont JJ (2006) Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci 7:932–939CrossRef
Zurück zum Zitat Oliver DL, Izquierdo MA, Malmierca MS (2011) Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience 184:75–87PubMedCrossRef Oliver DL, Izquierdo MA, Malmierca MS (2011) Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience 184:75–87PubMedCrossRef
Zurück zum Zitat Olsen WO (1998) Average speech levels and spectra in various speaking/listening conditions: a summary of the Pearson, Bennett, & Fidell (1977) report. Am J Audiol 7:21–25PubMedCrossRef Olsen WO (1998) Average speech levels and spectra in various speaking/listening conditions: a summary of the Pearson, Bennett, & Fidell (1977) report. Am J Audiol 7:21–25PubMedCrossRef
Zurück zum Zitat Ouda L, Profant O, Syka J (2015) Age-related changes in the central auditory system. Cell Tissue Res 361:337–358PubMedCrossRef Ouda L, Profant O, Syka J (2015) Age-related changes in the central auditory system. Cell Tissue Res 361:337–358PubMedCrossRef
Zurück zum Zitat Ouellet L, de Villers-Sidani E (2014) Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanatomy 8:40CrossRef Ouellet L, de Villers-Sidani E (2014) Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanatomy 8:40CrossRef
Zurück zum Zitat Overton JA, Recanzone GH (2016) Effects of aging on the response of single neurons to amplitude-modulated noise in primary auditory cortex of rhesus macaque. J Neurophysiol 115:2911–2923PubMedPubMedCentralCrossRef Overton JA, Recanzone GH (2016) Effects of aging on the response of single neurons to amplitude-modulated noise in primary auditory cortex of rhesus macaque. J Neurophysiol 115:2911–2923PubMedPubMedCentralCrossRef
Zurück zum Zitat Palombi PS, Backoff PM, Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hear Res 153:174–180CrossRef Palombi PS, Backoff PM, Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hear Res 153:174–180CrossRef
Zurück zum Zitat Parmentier FBR, Andrés P (2010) The involuntary capture of attention by sound novelty and postnovelty distraction in young and older adults. Exp Psychol 57:68–76PubMedCrossRef Parmentier FBR, Andrés P (2010) The involuntary capture of attention by sound novelty and postnovelty distraction in young and older adults. Exp Psychol 57:68–76PubMedCrossRef
Zurück zum Zitat Parry LV, Maslin MRD, Schaette R, Moore DR, Munro KJ (2019) Increased auditory cortex neural response amplitude in adults with chronic unilateral conductive hearing impairment. Hear Res 372:10–16PubMedCrossRef Parry LV, Maslin MRD, Schaette R, Moore DR, Munro KJ (2019) Increased auditory cortex neural response amplitude in adults with chronic unilateral conductive hearing impairment. Hear Res 372:10–16PubMedCrossRef
Zurück zum Zitat Parthasarathy A, Herrmann B, Bartlett EL (2019) Aging alters envelope representations of speech-like sounds in the inferior colliculus. Neurobiol Aging 73:30–40PubMedCrossRef Parthasarathy A, Herrmann B, Bartlett EL (2019) Aging alters envelope representations of speech-like sounds in the inferior colliculus. Neurobiol Aging 73:30–40PubMedCrossRef
Zurück zum Zitat Parthasarathy A, Hancock KE, Bennett K, DeGruttola V, Polley DB (2020) Bottom-up and top-down neural signatures of disordered multi-talker speech perception in adults with normal hearing. Elife 9:e51419PubMedPubMedCentralCrossRef Parthasarathy A, Hancock KE, Bennett K, DeGruttola V, Polley DB (2020) Bottom-up and top-down neural signatures of disordered multi-talker speech perception in adults with normal hearing. Elife 9:e51419PubMedPubMedCentralCrossRef
Zurück zum Zitat Peelle JE, Davis MH (2013) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320 Peelle JE, Davis MH (2013) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320
Zurück zum Zitat Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076PubMedPubMedCentralCrossRef Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076PubMedPubMedCentralCrossRef
Zurück zum Zitat Pichora-Fuller MK (2003) Processing speed and timing in aging adults: psychoacoustics, speech perception, and comprehension. Int J Audiol 42:S59–S67CrossRef Pichora-Fuller MK (2003) Processing speed and timing in aging adults: psychoacoustics, speech perception, and comprehension. Int J Audiol 42:S59–S67CrossRef
Zurück zum Zitat Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BWY, Humes LE, Lemke U, Lunner T, Matthen M, Mackersie CL, Naylor G, Phillips NA, Richter M, Rudner M, Sommers MS, Tremblay KL, Wingfield A (2016) Hearing impairment and cognitive energy: the framework for understanding effortful listening (FUEL). Ear Hear 37(Suppl 1):5S-27SPubMedCrossRef Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BWY, Humes LE, Lemke U, Lunner T, Matthen M, Mackersie CL, Naylor G, Phillips NA, Richter M, Rudner M, Sommers MS, Tremblay KL, Wingfield A (2016) Hearing impairment and cognitive energy: the framework for understanding effortful listening (FUEL). Ear Hear 37(Suppl 1):5S-27SPubMedCrossRef
Zurück zum Zitat Picton TW, John SM, Dimitrijevic A, Purcell DW (2003) Human auditory steady-state responses. Int J Audiol 42:177–219PubMedCrossRef Picton TW, John SM, Dimitrijevic A, Purcell DW (2003) Human auditory steady-state responses. Int J Audiol 42:177–219PubMedCrossRef
Zurück zum Zitat Plack CJ (2014) The sense of hearing. Psychology Press, New York, USA Plack CJ (2014) The sense of hearing. Psychology Press, New York, USA
Zurück zum Zitat Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of “hidden” hearing loss. Trends Hearing 18:1–11CrossRef Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of “hidden” hearing loss. Trends Hearing 18:1–11CrossRef
Zurück zum Zitat Popelár J, Syka J, Berndt H (1987) Effect of noise on auditory evoked responses in awake guinea pigs. Hear Res 26:239–247PubMedCrossRef Popelár J, Syka J, Berndt H (1987) Effect of noise on auditory evoked responses in awake guinea pigs. Hear Res 26:239–247PubMedCrossRef
Zurück zum Zitat Prendergast G, Guest H, Munro KJ, Kluk K, Leger A, Hall AD, Heinz MG, Plack CJ (2017a) Effects of noise exposure on young adults with normal audiograms I: electrophysiology. Hear Res 344:68–81PubMedPubMedCentralCrossRef Prendergast G, Guest H, Munro KJ, Kluk K, Leger A, Hall AD, Heinz MG, Plack CJ (2017a) Effects of noise exposure on young adults with normal audiograms I: electrophysiology. Hear Res 344:68–81PubMedPubMedCentralCrossRef
Zurück zum Zitat Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ (2017b) Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res 356:74–86PubMedPubMedCentralCrossRef Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ (2017b) Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res 356:74–86PubMedPubMedCentralCrossRef
Zurück zum Zitat Presacco A, Simon JZ, Anderson S (2016a) Evidence of degraded representation of speech in noise, in the aging midbrain and cortex. J Neurophysiol 116:2346–2355PubMedPubMedCentralCrossRef Presacco A, Simon JZ, Anderson S (2016a) Evidence of degraded representation of speech in noise, in the aging midbrain and cortex. J Neurophysiol 116:2346–2355PubMedPubMedCentralCrossRef
Zurück zum Zitat Presacco A, Simon JZ, Anderson S (2016b) Effect of informational content of noise on speech representation in the aging midbrain and cortex. J Neurophysiol 116:2356–2367PubMedPubMedCentralCrossRef Presacco A, Simon JZ, Anderson S (2016b) Effect of informational content of noise on speech representation in the aging midbrain and cortex. J Neurophysiol 116:2356–2367PubMedPubMedCentralCrossRef
Zurück zum Zitat Presacco A, Simon JZ, Anderson S (2019) Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS ONE 14:e0213899PubMedPubMedCentralCrossRef Presacco A, Simon JZ, Anderson S (2019) Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS ONE 14:e0213899PubMedPubMedCentralCrossRef
Zurück zum Zitat Purcell DW, John SM, Schneider BA, Picton TW (2004) Human temporal auditory acuity as assessed by envelope following responses. J Acoustical Soc Am 116:3581–3593CrossRef Purcell DW, John SM, Schneider BA, Picton TW (2004) Human temporal auditory acuity as assessed by envelope following responses. J Acoustical Soc Am 116:3581–3593CrossRef
Zurück zum Zitat Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res 139:153–171PubMedCrossRef Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res 139:153–171PubMedCrossRef
Zurück zum Zitat Rabang CF, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. Front Neural Circuits 6:77PubMedPubMedCentralCrossRef Rabang CF, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. Front Neural Circuits 6:77PubMedPubMedCentralCrossRef
Zurück zum Zitat Rachel JD, Kaltenbach JA, Janisse J (2002) Increases in spontaneous neural activity in the hamster dorsal cochlear nucleus following cisplatin treatment: a possible basis for cisplatin-induced tinnitus. Hear Res 164:206–214PubMedCrossRef Rachel JD, Kaltenbach JA, Janisse J (2002) Increases in spontaneous neural activity in the hamster dorsal cochlear nucleus following cisplatin treatment: a possible basis for cisplatin-induced tinnitus. Hear Res 164:206–214PubMedCrossRef
Zurück zum Zitat Radziwon K, Hayes SH, Sheppard AM, Ding D, Salvi R (2016) Drug-induced tinnitus. In: Baguley DM, Fagelson M (eds) Tinnitus: clinical and research perspectives. Plural Publishing, pp 89–109 Radziwon K, Hayes SH, Sheppard AM, Ding D, Salvi R (2016) Drug-induced tinnitus. In: Baguley DM, Fagelson M (eds) Tinnitus: clinical and research perspectives. Plural Publishing, pp 89–109
Zurück zum Zitat Radziwon KE, Holfoth D, Lindner J, Kaier-Green Z, Bowler R, Urban M, Salvi R (2017) Salicylate-induced hyperacusis in rats: dose- and frequency-dependent effects. Hear Res 350:133–138PubMedPubMedCentralCrossRef Radziwon KE, Holfoth D, Lindner J, Kaier-Green Z, Bowler R, Urban M, Salvi R (2017) Salicylate-induced hyperacusis in rats: dose- and frequency-dependent effects. Hear Res 350:133–138PubMedPubMedCentralCrossRef
Zurück zum Zitat Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. J Neurophysiol 82:152–163PubMedCrossRef Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. J Neurophysiol 82:152–163PubMedCrossRef
Zurück zum Zitat Rauschecker JP (2011) An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hear Res 271:16–25PubMedCrossRef Rauschecker JP (2011) An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hear Res 271:16–25PubMedCrossRef
Zurück zum Zitat Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedPubMedCentralCrossRef Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedPubMedCentralCrossRef
Zurück zum Zitat Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci 97:11800–11806PubMedPubMedCentralCrossRef Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci 97:11800–11806PubMedPubMedCentralCrossRef
Zurück zum Zitat Resnik J, Polley DB (2017) Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. Elife 6:e21452PubMedPubMedCentralCrossRef Resnik J, Polley DB (2017) Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. Elife 6:e21452PubMedPubMedCentralCrossRef
Zurück zum Zitat Resnik J, Polley DB (2021) Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 109:984–996PubMedCrossRefPubMedCentral Resnik J, Polley DB (2021) Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 109:984–996PubMedCrossRefPubMedCentral
Zurück zum Zitat Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans Biol Sci 336:367–373CrossRef Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans Biol Sci 336:367–373CrossRef
Zurück zum Zitat Rosen MJ, Sarro EC, Kelly JB, Sanes DH (2012) Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss. PLoS ONE 7:e41514PubMedPubMedCentralCrossRef Rosen MJ, Sarro EC, Kelly JB, Sanes DH (2012) Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss. PLoS ONE 7:e41514PubMedPubMedCentralCrossRef
Zurück zum Zitat Ross B, Tremblay KL (2009) Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hear Res 248:48–59PubMedCrossRef Ross B, Tremblay KL (2009) Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hear Res 248:48–59PubMedCrossRef
Zurück zum Zitat Ross B, Schneider B, Snyder JS, Alain C (2010) Biological markers of auditory gap detection in young, middle-aged, and older adults. PLoS ONE 5:10101CrossRef Ross B, Schneider B, Snyder JS, Alain C (2010) Biological markers of auditory gap detection in young, middle-aged, and older adults. PLoS ONE 5:10101CrossRef
Zurück zum Zitat Salthouse TA (1995) Refining the concept of psychological compensation. In: Dixon RA, Backman L (eds) Compensating for psychological deficits and declines: Managing losses and promoting gains. Lawrence Erlbaum Associates Inc, pp 21–34 Salthouse TA (1995) Refining the concept of psychological compensation. In: Dixon RA, Backman L (eds) Compensating for psychological deficits and declines: Managing losses and promoting gains. Lawrence Erlbaum Associates Inc, pp 21–34
Zurück zum Zitat Salvi R, Sun W, Ding D, Chen G-D, Lobarinas E, Wang J, Radziwon K, Auerbach BD (2017) Inner hair cell loss disrupts hearing and cochlear function leading to sensory deprivation and enhanced central auditory gain. Front Neurosci 10:621PubMedPubMedCentralCrossRef Salvi R, Sun W, Ding D, Chen G-D, Lobarinas E, Wang J, Radziwon K, Auerbach BD (2017) Inner hair cell loss disrupts hearing and cochlear function leading to sensory deprivation and enhanced central auditory gain. Front Neurosci 10:621PubMedPubMedCentralCrossRef
Zurück zum Zitat Salvi RJ, Auerbach BD, Lau C, Chen Y-C, Manohar S, Liu X, Ding D, Chen G-D (2020) Functional neuroanatomy of salicylate- and noise-induced tinnitus and hyperacusis. In: Geyer MA, Ellenbroek BA, Marsden CA, Barnes TRE, Andersen SL, Paulus MP (eds) Current topics in behavioral neurosciences. Springer, Berlin, Heidelberg Salvi RJ, Auerbach BD, Lau C, Chen Y-C, Manohar S, Liu X, Ding D, Chen G-D (2020) Functional neuroanatomy of salicylate- and noise-induced tinnitus and hyperacusis. In: Geyer MA, Ellenbroek BA, Marsden CA, Barnes TRE, Andersen SL, Paulus MP (eds) Current topics in behavioral neurosciences. Springer, Berlin, Heidelberg
Zurück zum Zitat Sanes DH, Sarro EC, Takesian AE, Aoki C, Kotak VC (2010) Regulation of inhibitory synapse function in the developing auditory CNS. In: Pallas SL (ed) Developmental plasticity of inhibitory circuitry. Springer, US, Boston, MA, pp 43–69CrossRef Sanes DH, Sarro EC, Takesian AE, Aoki C, Kotak VC (2010) Regulation of inhibitory synapse function in the developing auditory CNS. In: Pallas SL (ed) Developmental plasticity of inhibitory circuitry. Springer, US, Boston, MA, pp 43–69CrossRef
Zurück zum Zitat Saunders JC, Dear SP, Schneider ME (1985) The anatomical consequences of acoustic injury: a review and tutorial. J Acoustical Soc Am 78:833–860CrossRef Saunders JC, Dear SP, Schneider ME (1985) The anatomical consequences of acoustic injury: a review and tutorial. J Acoustical Soc Am 78:833–860CrossRef
Zurück zum Zitat Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457PubMedPubMedCentralCrossRef Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457PubMedPubMedCentralCrossRef
Zurück zum Zitat Schaette R, Turtle C, Munro KJ (2012) Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS ONE 7:e35238PubMedPubMedCentralCrossRef Schaette R, Turtle C, Munro KJ (2012) Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS ONE 7:e35238PubMedPubMedCentralCrossRef
Zurück zum Zitat Schatteman TA, Hughes LF, Caspary DM (2008) Age-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience 154:329–337PubMedCrossRef Schatteman TA, Hughes LF, Caspary DM (2008) Age-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience 154:329–337PubMedCrossRef
Zurück zum Zitat Schlittenlacher J, Moore BCJ (2016) Discrimination of amplitude-modulation depth by subjects with normal and impaired hearing. J Acoust Soc Am 140:3487–3495PubMedCrossRef Schlittenlacher J, Moore BCJ (2016) Discrimination of amplitude-modulation depth by subjects with normal and impaired hearing. J Acoust Soc Am 140:3487–3495PubMedCrossRef
Zurück zum Zitat Schmiedt RA (2010) The physiology of cochlear Presbycusis. In: Gordon-Salant S, Frisina R, Popper A, Fay R (eds) The aging auditory system. Springer handbook of auditory research. Springer, New York, USA, pp 9–38CrossRef Schmiedt RA (2010) The physiology of cochlear Presbycusis. In: Gordon-Salant S, Frisina R, Popper A, Fay R (eds) The aging auditory system. Springer handbook of auditory research. Springer, New York, USA, pp 9–38CrossRef
Zurück zum Zitat Schneider BA, Pichora-Fuller MK, Kowalchuk D, Lamb M (1994) Gap detection and the precedence effect in young and old adults. J Acoust Soc Am 95:980–991PubMedCrossRef Schneider BA, Pichora-Fuller MK, Kowalchuk D, Lamb M (1994) Gap detection and the precedence effect in young and old adults. J Acoust Soc Am 95:980–991PubMedCrossRef
Zurück zum Zitat Schneider B, Speranza F, Pichora-Fuller MK (1998) Age-related changes in temporal resolution: envelope and intensity effects. Canad J Exp Psychol 52:184–191CrossRef Schneider B, Speranza F, Pichora-Fuller MK (1998) Age-related changes in temporal resolution: envelope and intensity effects. Canad J Exp Psychol 52:184–191CrossRef
Zurück zum Zitat Schormans AL, Typlt M, Allman B (2019) Adult-onset hearing impairment induces layer-specific cortical reorganization: evidence of crossmodal plasticity and central gain enhancement. Cereb Cortex 29:1875–1888PubMedCrossRef Schormans AL, Typlt M, Allman B (2019) Adult-onset hearing impairment induces layer-specific cortical reorganization: evidence of crossmodal plasticity and central gain enhancement. Cereb Cortex 29:1875–1888PubMedCrossRef
Zurück zum Zitat Schreiner CE, Froemke RC, Atencio CA (2011) Spectral processing in auditory cortex. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, USA, pp 275–308CrossRef Schreiner CE, Froemke RC, Atencio CA (2011) Spectral processing in auditory cortex. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, USA, pp 275–308CrossRef
Zurück zum Zitat Sedley W, Friston KJ, Gander PE, Kumar S, Griffiths TD (2016) An integrative tinnitus model based on sensory precision. Trends Neurosci 39(12):799–810PubMedPubMedCentralCrossRef Sedley W, Friston KJ, Gander PE, Kumar S, Griffiths TD (2016) An integrative tinnitus model based on sensory precision. Trends Neurosci 39(12):799–810PubMedPubMedCentralCrossRef
Zurück zum Zitat Sek A, Baer T, Crinnion W, Springgay A, Moore BCJ (2015) Modulation masking within and across carriers for subjects with normal and impaired hearing. J Acoustical Soc Am 138:1143–1153CrossRef Sek A, Baer T, Crinnion W, Springgay A, Moore BCJ (2015) Modulation masking within and across carriers for subjects with normal and impaired hearing. J Acoustical Soc Am 138:1143–1153CrossRef
Zurück zum Zitat Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38PubMedCrossRef Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38PubMedCrossRef
Zurück zum Zitat Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H (2017) Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 117:1379–1384PubMedPubMedCentralCrossRef Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H (2017) Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 117:1379–1384PubMedPubMedCentralCrossRef
Zurück zum Zitat Shaheen LA, Liberman MC (2018) Cochlear synaptopathy changes sound-evoked activity without changing spontaneous discharge in the mouse inferior colliculus. Front Syst Neurosci 12:59PubMedPubMedCentralCrossRef Shaheen LA, Liberman MC (2018) Cochlear synaptopathy changes sound-evoked activity without changing spontaneous discharge in the mouse inferior colliculus. Front Syst Neurosci 12:59PubMedPubMedCentralCrossRef
Zurück zum Zitat Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoustical Soc Am 133:2818–2833CrossRef Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoustical Soc Am 133:2818–2833CrossRef
Zurück zum Zitat Sheppard AM, Liu X, Ding D, Salvi RJ (2018) Auditory central gain compensates for changes in cochlear output afterprolonged low-level noise exposure. Neurosci Lett 687:183–188PubMedPubMedCentralCrossRef Sheppard AM, Liu X, Ding D, Salvi RJ (2018) Auditory central gain compensates for changes in cochlear output afterprolonged low-level noise exposure. Neurosci Lett 687:183–188PubMedPubMedCentralCrossRef
Zurück zum Zitat Sheppard A, Stocking C, Ralli M, Salvi RJ (2020) A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis. Int J Audiol 59:5–15PubMedCrossRef Sheppard A, Stocking C, Ralli M, Salvi RJ (2020) A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis. Int J Audiol 59:5–15PubMedCrossRef
Zurück zum Zitat Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100PubMedCrossRef Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100PubMedCrossRef
Zurück zum Zitat Slepecky N (1986) Overview of mechanical damage to the inner ear: noise as a tool to probe cochlear function. Hear Res 22:307–321PubMedCrossRef Slepecky N (1986) Overview of mechanical damage to the inner ear: noise as a tool to probe cochlear function. Hear Res 22:307–321PubMedCrossRef
Zurück zum Zitat Snell KB (1997) Age-related changes in temporal gap detection. J Acoust Soc Am 101:2214–2220PubMedCrossRef Snell KB (1997) Age-related changes in temporal gap detection. J Acoust Soc Am 101:2214–2220PubMedCrossRef
Zurück zum Zitat Snell KB, Frisina DR (2000) Relationships among age-related differences in gap detection and word recognition. J Acoust Soc Am 107:1615–1626PubMedCrossRef Snell KB, Frisina DR (2000) Relationships among age-related differences in gap detection and word recognition. J Acoust Soc Am 107:1615–1626PubMedCrossRef
Zurück zum Zitat Sörös P, Treismann IK, Manemann E, Lütkenhöner B (2009) Auditory temporal processing in healthy aging: a magnetoencephalographic study. BMC Neurosci 10:34PubMedPubMedCentralCrossRef Sörös P, Treismann IK, Manemann E, Lütkenhöner B (2009) Auditory temporal processing in healthy aging: a magnetoencephalographic study. BMC Neurosci 10:34PubMedPubMedCentralCrossRef
Zurück zum Zitat Stolzberg D, Chrostowski M, Salvi RJ, Allman B (2012) Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat. J Neurophysiol 108:200–214PubMedPubMedCentralCrossRef Stolzberg D, Chrostowski M, Salvi RJ, Allman B (2012) Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat. J Neurophysiol 108:200–214PubMedPubMedCentralCrossRef
Zurück zum Zitat Stolzberg D, Hayes SH, Kashanian N, Radziwon K, Salvi RJ, Allman BL (2013) A novel behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous recording of oscillatory neural activity. J Neurosci Methods 219:224–232PubMedPubMedCentralCrossRef Stolzberg D, Hayes SH, Kashanian N, Radziwon K, Salvi RJ, Allman BL (2013) A novel behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous recording of oscillatory neural activity. J Neurosci Methods 219:224–232PubMedPubMedCentralCrossRef
Zurück zum Zitat Stothart G, Kazanina N (2016) Auditory perception in the aging brain: the role of inhibition and facilitation in early processing. Neurobiol Aging 47:23–24PubMedPubMedCentralCrossRef Stothart G, Kazanina N (2016) Auditory perception in the aging brain: the role of inhibition and facilitation in early processing. Neurobiol Aging 47:23–24PubMedPubMedCentralCrossRef
Zurück zum Zitat Sturm JJ, Zhang-Hooks YX, Roos H, Nguyen T, Kandler K (2017) Noise trauma-induced behavioral gap detection deficits correlate with reorganization of excitatory and inhibitory local circuits in the inferior colliculus and are prevented by acoustic enrichment. J Neurosci 37:6314–6330PubMedPubMedCentralCrossRef Sturm JJ, Zhang-Hooks YX, Roos H, Nguyen T, Kandler K (2017) Noise trauma-induced behavioral gap detection deficits correlate with reorganization of excitatory and inhibitory local circuits in the inferior colliculus and are prevented by acoustic enrichment. J Neurosci 37:6314–6330PubMedPubMedCentralCrossRef
Zurück zum Zitat Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334PubMedCrossRef Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334PubMedCrossRef
Zurück zum Zitat Sun W, Deng A, Jayaram A, Gibson B (2012) Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res 1485:108–116PubMedCrossRef Sun W, Deng A, Jayaram A, Gibson B (2012) Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res 1485:108–116PubMedCrossRef
Zurück zum Zitat Syka J, Rybalko N, Popelár J (1994) Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear Res 78:158–168PubMedCrossRef Syka J, Rybalko N, Popelár J (1994) Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear Res 78:158–168PubMedCrossRef
Zurück zum Zitat Takesian AE, Kotak VC, Sanes DH (2009) Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. Future Neurol 4:331–349PubMedPubMedCentralCrossRef Takesian AE, Kotak VC, Sanes DH (2009) Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. Future Neurol 4:331–349PubMedPubMedCentralCrossRef
Zurück zum Zitat Takesian AE, Kotak VC, Sanes DH (2012) Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol 107:937–947PubMedCrossRef Takesian AE, Kotak VC, Sanes DH (2012) Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol 107:937–947PubMedCrossRef
Zurück zum Zitat Teichert M, Liebmann L, Hübner CA, Bolz J (2017) Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex. Sci Rep 7:17423PubMedPubMedCentralCrossRef Teichert M, Liebmann L, Hübner CA, Bolz J (2017) Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex. Sci Rep 7:17423PubMedPubMedCentralCrossRef
Zurück zum Zitat Thomas ME, Guercio GD, Drudik KM, de Villers-Sidani É (2019a) Evidence of hyperacusis in adult rats following non-traumatic sound exposure. Front Syst Neurosci 13:55PubMedPubMedCentralCrossRef Thomas ME, Guercio GD, Drudik KM, de Villers-Sidani É (2019a) Evidence of hyperacusis in adult rats following non-traumatic sound exposure. Front Syst Neurosci 13:55PubMedPubMedCentralCrossRef
Zurück zum Zitat Thomas ME, Friedman NHM, Cisneros-Franco JM, Ouellet L, de Villers-Sidani E (2019b) The prolonged masking of temporal acoustic inputs with noise drives plasticity in the adult rat auditory cortex. Cereb Cortex 29:1032–1046PubMedCrossRef Thomas ME, Friedman NHM, Cisneros-Franco JM, Ouellet L, de Villers-Sidani E (2019b) The prolonged masking of temporal acoustic inputs with noise drives plasticity in the adult rat auditory cortex. Cereb Cortex 29:1032–1046PubMedCrossRef
Zurück zum Zitat Tremblay KL, Piskosz M, Souza P (2003) Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysiol 114:1332–1343PubMedCrossRef Tremblay KL, Piskosz M, Souza P (2003) Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysiol 114:1332–1343PubMedCrossRef
Zurück zum Zitat Tsai K-T, Lin M-D, Chen Y-H (2009) Noise mapping in urban environments: a Taiwan study. Appl Acoust 70:964–972CrossRef Tsai K-T, Lin M-D, Chen Y-H (2009) Noise mapping in urban environments: a Taiwan study. Appl Acoust 70:964–972CrossRef
Zurück zum Zitat Turner CW, Nelson DA (1982) Frequency discrimination in regions of normal and impaired sensitivity. J Speech Hear Res 25:34–41PubMedCrossRef Turner CW, Nelson DA (1982) Frequency discrimination in regions of normal and impaired sensitivity. J Speech Hear Res 25:34–41PubMedCrossRef
Zurück zum Zitat Turner JG, Hughes LF, Caspary DM (2005) Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. J Neurophysiol 94:2738–2747PubMedCrossRef Turner JG, Hughes LF, Caspary DM (2005) Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. J Neurophysiol 94:2738–2747PubMedCrossRef
Zurück zum Zitat Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195PubMedCrossRef Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195PubMedCrossRef
Zurück zum Zitat Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227PubMedCrossRef Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227PubMedCrossRef
Zurück zum Zitat Turrigiano GG (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives Biology 4:a005736CrossRef Turrigiano GG (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives Biology 4:a005736CrossRef
Zurück zum Zitat Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364PubMedCrossRef Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364PubMedCrossRef
Zurück zum Zitat Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Coelho CB, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BCJ (2014) A review of hyperacusis and future directions: Part I. Definitions and manifestations. Am J Audiol 23:402–419PubMedCrossRef Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Coelho CB, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BCJ (2014) A review of hyperacusis and future directions: Part I. Definitions and manifestations. Am J Audiol 23:402–419PubMedCrossRef
Zurück zum Zitat Walton JP, Frisina RD, O’Neill WE (1998) Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci 18:2764–2776PubMedPubMedCentralCrossRef Walton JP, Frisina RD, O’Neill WE (1998) Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci 18:2764–2776PubMedPubMedCentralCrossRef
Zurück zum Zitat Walton JP, Simon H, Frisina RD (2002) Age-related alterations in the neural coding of envelope periodicities. J Neurophysiol 88:565–578PubMedCrossRef Walton JP, Simon H, Frisina RD (2002) Age-related alterations in the neural coding of envelope periodicities. J Neurophysiol 88:565–578PubMedCrossRef
Zurück zum Zitat Wang J, McFadden SL, Caspary DM, Salvi RJ (2002) Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Res Interactive 944:219–231CrossRef Wang J, McFadden SL, Caspary DM, Salvi RJ (2002) Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Res Interactive 944:219–231CrossRef
Zurück zum Zitat Wang F, Zuo L, Hong B, Han D, Range EM, Zhao L, Sui Y, Guo W, Liu L (2013) Tonotopic reorganization and spontaneous firing in inferior colliculus during both short and long recovery periods after noise overexposure. J Biomed Sci 20:91PubMedPubMedCentralCrossRef Wang F, Zuo L, Hong B, Han D, Range EM, Zhao L, Sui Y, Guo W, Liu L (2013) Tonotopic reorganization and spontaneous firing in inferior colliculus during both short and long recovery periods after noise overexposure. J Biomed Sci 20:91PubMedPubMedCentralCrossRef
Zurück zum Zitat Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446PubMedCrossRef Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446PubMedCrossRef
Zurück zum Zitat Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PloS Med 2:e153PubMedPubMedCentralCrossRef Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PloS Med 2:e153PubMedPubMedCentralCrossRef
Zurück zum Zitat Wieczerzak KB, Patel SV, MacNeil H, Scott KE, Schormans AL, Hayes SH, Herrmann B, Allman BL (2021) Differential plasticity in auditory and prefrontal cortices, and cognitive-behavioral deficits following noise-induced hearing loss. Neuroscience 455:1–18PubMedCrossRef Wieczerzak KB, Patel SV, MacNeil H, Scott KE, Schormans AL, Hayes SH, Herrmann B, Allman BL (2021) Differential plasticity in auditory and prefrontal cortices, and cognitive-behavioral deficits following noise-induced hearing loss. Neuroscience 455:1–18PubMedCrossRef
Zurück zum Zitat Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408PubMedCrossRef Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408PubMedCrossRef
Zurück zum Zitat Willott JF, Parham K, Hunter KP (1988a) Response properties of inferior colliculus neurons in middle-aged C57BL/6J mice with presbycusis. Hear Res 37:15–27PubMedCrossRef Willott JF, Parham K, Hunter KP (1988a) Response properties of inferior colliculus neurons in middle-aged C57BL/6J mice with presbycusis. Hear Res 37:15–27PubMedCrossRef
Zurück zum Zitat Willott JF, Parham K, Hunter KP (1988b) Response properties of inferior colliculus neurons in young and very old CBA/J mice. Hear Res 37:1–14PubMedCrossRef Willott JF, Parham K, Hunter KP (1988b) Response properties of inferior colliculus neurons in young and very old CBA/J mice. Hear Res 37:1–14PubMedCrossRef
Zurück zum Zitat Wolak T, Ciesla K, Lorens A, Kochanek K, Lewandowska M, Rusiniak M, Pluta A, Wojcik J, Skarzynski H (2017) Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hear Res 355:81–96PubMedCrossRef Wolak T, Ciesla K, Lorens A, Kochanek K, Lewandowska M, Rusiniak M, Pluta A, Wojcik J, Skarzynski H (2017) Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hear Res 355:81–96PubMedCrossRef
Zurück zum Zitat Woods DL, Alain C (2009) Functional imaging of human auditory cortex. Curr Opin Otolaryngol Head Neck Surg 17:407–411PubMedCrossRef Woods DL, Alain C (2009) Functional imaging of human auditory cortex. Curr Opin Otolaryngol Head Neck Surg 17:407–411PubMedCrossRef
Zurück zum Zitat Woods TM, Lopez SE, Long JH, Rahman JE, Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96:3323–3337PubMedCrossRef Woods TM, Lopez SE, Long JH, Rahman JE, Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96:3323–3337PubMedCrossRef
Zurück zum Zitat Wu P-z, O’Malley JT, de Gruttola V, Liberman MC (2020) Age-related hearing loss is dominated by damage to inner ear sensory cells, not the cellular battery that powers them. J Neurosci 40:6357–6366PubMedPubMedCentralCrossRef Wu P-z, O’Malley JT, de Gruttola V, Liberman MC (2020) Age-related hearing loss is dominated by damage to inner ear sensory cells, not the cellular battery that powers them. J Neurosci 40:6357–6366PubMedPubMedCentralCrossRef
Zurück zum Zitat Yang L, Pollak GD (1997) Differential response properties to amplitude modulated signals in the dorsal nucleus of the lateral lemniscus of the mustache bat and the roles of GABAergic inhibition. J Neurophysiol 77:324–340PubMedCrossRef Yang L, Pollak GD (1997) Differential response properties to amplitude modulated signals in the dorsal nucleus of the lateral lemniscus of the mustache bat and the roles of GABAergic inhibition. J Neurophysiol 77:324–340PubMedCrossRef
Zurück zum Zitat Yang G, Lobarinas E, Zhang L, Turnerc J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neuralactivity in auditory cortex of awake rats. Hear Res 226:244–253PubMedCrossRef Yang G, Lobarinas E, Zhang L, Turnerc J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neuralactivity in auditory cortex of awake rats. Hear Res 226:244–253PubMedCrossRef
Zurück zum Zitat Yang S, Weiner BD, Zhang LS, Cho S-J, Bao S (2011) Homeostatic plasticity drives tinnitus perceptionin an animal model. Proc Natl Acad Sci 108:14974–14979PubMedPubMedCentralCrossRef Yang S, Weiner BD, Zhang LS, Cho S-J, Bao S (2011) Homeostatic plasticity drives tinnitus perceptionin an animal model. Proc Natl Acad Sci 108:14974–14979PubMedPubMedCentralCrossRef
Zurück zum Zitat Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219PubMedCrossRef Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219PubMedCrossRef
Zurück zum Zitat Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge AS (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15:31–43PubMedCrossRef Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge AS (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15:31–43PubMedCrossRef
Zurück zum Zitat Zeng F-G (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179PubMedCrossRef Zeng F-G (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179PubMedCrossRef
Zurück zum Zitat Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200PubMedCrossRef Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200PubMedCrossRef
Zurück zum Zitat Zhao Y, Song Q, Li X, Li C (2016) Neural hyperactivity of the central auditory system in response to peripheral damage. Neural Plast 2016:2162105PubMedPubMedCentralCrossRef Zhao Y, Song Q, Li X, Li C (2016) Neural hyperactivity of the central auditory system in response to peripheral damage. Neural Plast 2016:2162105PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhou X, Merzenich MM (2012) Environmental noise exposure degrades normal listening processes. Nat Commun 3:843PubMedCrossRef Zhou X, Merzenich MM (2012) Environmental noise exposure degrades normal listening processes. Nat Commun 3:843PubMedCrossRef
Metadaten
Titel
Hearing loss and brain plasticity: the hyperactivity phenomenon
verfasst von
Björn Herrmann
Blake E. Butler
Publikationsdatum
07.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02313-9

Weitere Artikel der Ausgabe 7/2021

Brain Structure and Function 7/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.