Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2015

Open Access 01.12.2015 | Letter to the Editor

Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis

verfasst von: Sophie Bustany, Julie Cahu, Géraldine Descamps, Catherine Pellat-Deceunynck, Brigitte Sola

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Deregulated expression of heat shock proteins (HSPs) encoding genes is frequent in multiple myeloma. HSPs, which are molecular chaperones involved in protein homeostasis pathways, have emerged recently as promising therapeutic targets. Using human myeloma cell lines and primary myeloma cells belonging to various molecular groups, we tested the efficacy of HSP90, HSP70, and heat shock factor 1 (HSF1) inhibitors alone or associated with current antimyeloma drugs. We report here that KNK-437 (an inhibitor of HSF1) and bortezomib have additive effects on apoptosis induction in cells belonging to groups with bad prognosis.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13045-015-0135-3) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SB and BS designed the research; SB, JC, GD, CPD, and BS acquired the data; SB, JC, GD, CPD, and BS analyzed the data; and SB and BS wrote the paper. All authors approved the final version of the paper.
Abkürzungen
Ab
Antibody
BCL2
B-cell lymphoma 2
BMPC
Normal bone marrow plasma cells
CI
Combination index
HMCL
Human myeloma cell line
HSF1
Heat shock transcription factor 1
HSP
Heat shock protein
MCL1
Myeloid cell leukemia 1
MM
Multiple myeloma
PARP
Poly (ADP-ribose) polymerase
VER-155008
5′-O-[(4-Cyanophenyl)methyl]-8-[[(3,4-dichlorophenyl)methyl]amino]-adenosine
17-AAG
17-Allylamino-17-demethoxy-geldanamycin

Findings

Deregulated expression of heat shock proteins (HSPs) and heat shock transcription factor 1 (HSF1) plays a major role in the pathogenesis of multiple myeloma (MM) [1,2]. In turn, several HSP/HSF1 inhibitors are currently undergoing preclinical and/or clinical investigations [3,4].
We used human myeloma cell lines (HMCLs) belonging to several molecular groups [5,6] to analyze HSP expression (Figure 1A). HSP90 and its co-chaperone HSP70 were constitutively expressed in all HMCLs. HSP27 expression was more heterogeneous. Using the Little Rock public database [6], we investigated whether the expression of HSPB1, HSPA4, and HSP90AA1 genes varied according to the MM molecular classification. Compared to normal bone marrow plasma cells, HSP genes were constantly overexpressed (Figure 1B). HSPB1 and HSP90AA1 expressions were higher in the groups with bad prognosis, PR/MS/MF, and HSPA4 expression in the HY/MF/PR groups. The material and methods used in the study are detailed in Additional file 1.
We studied the sensitivity of HMCLs towards 17-AAG that targets HSP90 or KNK-437 (an inhibitor of HSF1 and, in turn, of both HSP70 and HSP27). HMCLs were constantly sensitive to both inhibitors although heterogeneously responding (Figure 1C, Additional files 2 and 3). This suggests that inhibiting HSPs might potentiate drug treatments for MM patients.
HSPs contribute to MM survival by impairing the mitochondria- and endoplasmic reticulum (ER)-mediated apoptotic pathways [7,8]. In L363 cells (MF group), HSP70 expression decreased following KNK-437 treatment while increased after 17-AAG (Figure 1D). As confirmed by the activation of procaspases 9 and 3 and the cleavage of PARP, a mitochondrial-mediated apoptosis was triggered. The expression of anti-apoptotic BCL2 and MCL1 proteins decreased after KNK-437 treatment. Last, both inhibitors induced a decrease of the procaspase 4, thus favoring an ER stress.
We investigated the capacity of HSP90/HSF1 inhibitors to co-operate with common antimyeloma drugs (bortezomib, dexamethasone, or lenalidomide). We calculated the combination index using the method of Chou [9]. Both inhibitors antagonized lenalidomide effects, suggesting that those associations could be harmful (Additional file 4). The combination of KNK-437 with bortezomib or dexamethasone was highly potent in all cell lines tested but not the association 17-AAG/dexamethasone. The activation of procaspases 9/3 and the decrease of MCL1 and BCL2 levels were enhanced by the association KNK-437/bortezomib but not the association 17-AAG/bortezomib (Figure 2A). VER-155008, a strict HSP70 inhibitor, combined with bortezomib was no more potent for inducing apoptosis (Figure 2B).
We tested the response of HMCLs co-cultured with human bone marrow stromal cells (HS-5 cells). The percentage of apoptotic cells was enhanced by the co-treatment KNK-437/bortezomib (Figure 2B). This indicates that KNK-437/bortezomib combined therapy could overcome cell adhesion-mediated drug resistance.
We finally analyzed the response of primary cells isolated from four MM or plasma cell leukemia (PCL) patients (Additional file 5) towards KNK-437 and bortezomib after CD138 staining [10]. For patient #3, the fraction of CD138+ cells decreased in the presence of both drugs, revealing an additive effect in primary cells (Figure 2C). Similar results were obtained for other MM primary samples (Additional file 6).
Our results strongly suggest that HSF1 inhibitors might be promising agents in association with bortezomib-based therapeutic protocols to treat MM patients with adverse prognosis or in relapse.

Acknowledgements

The authors thank A Barbaras and Y Zozulya for the technical assistance with cell cultures, the tumorothèque of IRCNA (CHU and ICO, Nantes, France) for providing us with the purified myeloma cells and the technical platforms of flow cytometry (SFR ICORE, Université de Caen Basse-Normandie, PT Cytocell, SFR Bonamy, Nantes). Celgene Corporation (Summit, NJ) provided the lenalidomide. This work was supported by the Fondation de France (Engt n°201200029144) and Comité de la Manche de la Ligue contre le Cancer (to BS). SB was supported by the Ministère de l’Enseignement Supérieur et de la Recherche and JC by the Conseil Régional de Basse-Normandie.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SB and BS designed the research; SB, JC, GD, CPD, and BS acquired the data; SB, JC, GD, CPD, and BS analyzed the data; and SB and BS wrote the paper. All authors approved the final version of the paper.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110:2641–9.CrossRefPubMed Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110:2641–9.CrossRefPubMed
2.
Zurück zum Zitat Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhac A, et al. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol. 2013;160:465–76.CrossRefPubMed Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhac A, et al. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol. 2013;160:465–76.CrossRefPubMed
3.
Zurück zum Zitat Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson KC. Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol. 2012;9:135–43.CrossRefPubMed Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson KC. Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol. 2012;9:135–43.CrossRefPubMed
4.
Zurück zum Zitat Podar K. Novel targets and derived small molecule inhibitors in multiple myeloma. Curr Cancer Drug Targets. 2012;12:797–813.CrossRefPubMed Podar K. Novel targets and derived small molecule inhibitors in multiple myeloma. Curr Cancer Drug Targets. 2012;12:797–813.CrossRefPubMed
5.
Zurück zum Zitat Moreaux J, Klein B, Bataille R, Descamps G, Maïga S, Hose D, et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica. 2011;96:574–82.CrossRefPubMedCentralPubMed Moreaux J, Klein B, Bataille R, Descamps G, Maïga S, Hose D, et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica. 2011;96:574–82.CrossRefPubMedCentralPubMed
6.
7.
Zurück zum Zitat Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006;107:1092–100.CrossRefPubMedCentralPubMed Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006;107:1092–100.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, et al. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res. 2005;65:10536–44.CrossRefPubMed Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, et al. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res. 2005;65:10536–44.CrossRefPubMed
9.
Zurück zum Zitat Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.CrossRefPubMed Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.CrossRefPubMed
10.
Zurück zum Zitat Surget S, Chiron D, Gomez-Bougie P, Descamps G, Ménoret E, Bataille R, et al. Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells. Cancer Res. 2012;72:4562–73.CrossRefPubMed Surget S, Chiron D, Gomez-Bougie P, Descamps G, Ménoret E, Bataille R, et al. Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells. Cancer Res. 2012;72:4562–73.CrossRefPubMed
Metadaten
Titel
Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis
verfasst von
Sophie Bustany
Julie Cahu
Géraldine Descamps
Catherine Pellat-Deceunynck
Brigitte Sola
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2015
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0135-3

Weitere Artikel der Ausgabe 1/2015

Journal of Hematology & Oncology 1/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.