Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01.12.2017 | Letter to the Editor

Hemodialysis in MNGIE transiently reduces serum and urine levels of thymidine and deoxyuridine, but not CSF levels and neurological function

verfasst von: Benjamin Röeben, Justus Marquetand, Benjamin Bender, Heiko Billing, Tobias B. Haack, Iciar Sanchez-Albisua, Ludger Schöls, Henk J. Blom, Matthis Synofzik

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2017

Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare, autosomal-recessive mitochondrial disorder caused by TYMP mutations presenting with a multisystemic, often lethal syndrome of progressive leukoencephalopathy, ophthalmoparesis, demyelinating neuropathy, cachexia and gastrointestinal dysmotility. Hemodialysis (HMD) has been suggested as a treatment to reduce accumulation of thymidine and deoxyuridine. However, all studies so far have failed to measure the toxic metabolites in cerebrospinal fluid (CSF), which is the crucial compartment for CNS damage.
Our study is the first prospective, longitudinal investigation, exploiting detailed serial testing of predefined clinical and molecular outcome parameters (including serial CSF assessments) in a 29-year-old MNGIE patient undergoing 1 year of extensive HMD. We demonstrate that HMD only transiently restores increased serum and urine levels of thymidine and deoxyuridine, but fails to reduce CSF levels of the toxic metabolites and is ineffective to influence neurological function. These findings have direct important implications for clinical practice: They prevent a burdensome, long-term invasive, but ultimately probably ineffective procedure in future MNGIE patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13023-017-0687-0) contains supplementary material, which is available to authorized users.
Abkürzungen
CNS
Central nervous system
CSF
Cerebrospinal fluid
HMD
Hemodialysis
MNGIE
Mitochondrial neurogastrointestinal encephalomyopathy
MoCA
Montréal Cognitive Assessment
MRI
Magnetic resonance imaging
mtDNA
mitochondrial DNA
SARA
Scale for the assessment of ataxia

Introduction

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare, autosomal-recessive mitochondrial disorder caused by mutations in TYMP encoding for the thymidine phosphorylase [1, 2]. Clinically, MNGIE comprises a multisystemic syndrome of progressive leukoencephalopathy, ophthalmoparesis, demyelinating peripheral neuropathy, cachexia and gastrointestinal dysmotility [1, 2]. Biallelic carriers of TYMP mutations show reduced thymidine phosphorylase enzyme activity resulting in elevation of thymidine and deoxyuridine. Accumulation of these toxic metabolites leads to unbalanced intramitochondrial deoxynucleotide pools, which in turn cause site-specific mitochondrial DNA (mtDNA) depletion, multiple deletions and point mutations [1, 3, 4]. Several recent studies have demonstrated that it is indeed this nucleoside accumulation, rather than the deficiency of thymidine phosphorylase per se, that accounts for the molecular and phenotypic alterations in MNGIE [4].
Based on this pathophysiologic rationale, nucleoside reduction by dialysis has been proposed as a promising therapy in MNGIE patients [5, 6]. However, all studies so far did not measure these metabolites in cerebrospinal fluid (CSF), which is, however, the crucial compartment for CNS damage in MNGIE. Nor has any treatment study been conducted prospectively or with predefined quantitative outcome measures so far.
We here report a prospective, longitudinal case study with serial testing of predefined clinical and nucleoside outcome parameters (including serial CSF assessments) of a male MNGIE patient undergoing 1 year of extensive hemodialysis (HMD).

Case report

A 29-year-old male of Turkish decent presented with progressive gait ataxia, external ophthalmoplegia, ptosis, sensorineural hearing loss (meanwhile supplied with cochlear implants), cachexia (body weight/height/BMI before HMD: 55 kg/1.55 m/22.9 kg/m2; after HMD: 50 kg/1.55 m/20.8 kg/m2), advanced leukencephalopathy (Fig. 1g) and recurrent, diarrhea since age 18 years. Clinical examination showed short stature (149 cm), dysmorphic auricles, congenital Pes cavus and severe demyelinating sensorimotor polyneuropathy. Serum lactate (2.8–3.1 mmol/l; reference range: 0.5–2.2 mmol/l) and CSF lactate (3.5–4.6 mmol/l; reference range: 0–2.2 mmol/l) were elevated. Whole-exome sequencing (WES) revealed a homozygous TYMP stop mutation (c.112G > T, p.Glu38Stop) confirming the diagnosis of MNGIE (for WES methods and family pedigree, see Additional file 1).
Effectiveness of HMD was determined by the following predefined outcome measures: 25-m walking-time and -steps, vibratory sensation, nerve conduction studies and levels of thymidine and deoxyuridine in serum, urine and CSF. HMD was delivered for 12 months with an initial frequency of 3 times weekly, escalated to 4 times weekly after 6 months (for details of clinical and molecular outcome assessments and HMD parameters, see Additional file 1).
After 12-month of HMD, all clinical outcome parameters indicated progression of disease, demonstrated by worsening of SARA score (Scale for the assessment of Ataxia; 11 to 13 points), decline in MoCA score (Montréal Cognitive Assessment; 27/30 to 24/30 points) and nerve conduction measures (Fig. 1a-c). Corresponding to these these clinical observations of progressive worsening, also the subject himself did not perceive any deceleration of disease progression within the 12 months of HMD compared to the pre-HMD disease progression.
Serial testing of serum and urine levels of thymidine and deoxyuridine showed transient decreases each time after dialysis, demonstrating a reproducible immediate effect of HMD. However, they returned to baseline levels within 24 h and did not decrease after 6 and 12 months (Fig. 1d, e). CSF levels changed neither short-term (within 24 h) nor long term (at months 6 and 12) (Fig. 1f).

Discussion

We present the first prospective investigation on the effectiveness of HMD in MNGIE, capturing multiple predefined outcome measures. Our results demonstrate that HMD only transiently reduces increased serum and urine levels of thymidine and deoxyuridine and is ineffective to influence clinical disease progression.
At the same time, these results provide some preliminary insights into the HMD-associated kinetics of these two metabolites in three different body fluid compartments: urine, serum and CSF. HMD was able to transiently decrease both metabolites in urine by about 50% directly after dialysis at each of the four assessment time points, showing a reproducible relative share of urinary metabolite clearance even after repeated dialysis over 12 months. However, neither the basal levels nor the maximum levels reduced over time. This urinary clearance was paralleled by a reduction of serum levels by 20–50% directly after dialysis at each of the four assessment time points (see Fig. 1d). This suggests that the kinetics of the metabolites in both compartments runs largely in parallel. Our 6-months follow-up long-term data do not provide any clear evidence for a (e.g. compensatory) increase in synthesis of metabolites in any of the two compartments (see Fig. 1d, e). Importantly, we show for the first time that HMD fails to achieve a sustained reduction of these metabolites also in the CSF compartment, which might explain the missing neurological benefit.
Our findings thus question the alleged efficacy of dialysis, which has been based so far only on retrospective case studies of peritoneal dialysis, lacking predetermined quantitative outcome measures and long-term measurement of metabolites [5, 6]. Also alternative therapeutic options in MNGIE, including liver [7] and stem cell transplantation [3], need to be critically tested by prospective studies with predefined outcome measures.
Our report has thus direct important implications for clinical practice: it prevents a burdensome, long-term invasive, but finally probably ineffective procedure in MNGIE patients.

Acknowledgments

We thank the participants for participating in this study. We like to acknowledge excellent analytical support of S. Behringer.

Funding

This research was supported by the Else Kröner-Fresenius-Stiftung (award to MS)). TBH work was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (grant #FKZ 01ZX1405C).

Availability of data and materials

Please contact author for data requests.
The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All individuals gave written informed consent prior to their inclusion in the present study.
Consent for publication was obtained from every patient/legal guardian.

Competing interests

B. R. received travel funding from Actelion Pharmaceuticals, unrelated to the current project and manuscript. B. B. received travel funding by Bayer Vital, unrelated to the current project and manuscript. M. S. received speaker’s honoraria and research support from Actelion Pharmaceuticals, unrelated to the current project and manuscript. J. M., H. B., T. B. H., I. S-A., L. S. and H. J. B. have nothing to disclose.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, Bonilla E, Hays AP, Lovelace RE, Butler I, Bertorini TE, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology. 1994;44(4):721–7.CrossRefPubMed Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, Bonilla E, Hays AP, Lovelace RE, Butler I, Bertorini TE, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology. 1994;44(4):721–7.CrossRefPubMed
2.
Zurück zum Zitat Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283(5402):689–92.CrossRefPubMed Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283(5402):689–92.CrossRefPubMed
3.
Zurück zum Zitat Halter JP, Michael W, Schupbach M, Mandel H, Casali C, Orchard K, Collin M, Valcarcel D, Rovelli A, Filosto M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2015;138(Pt 10):2847–58.CrossRefPubMedPubMedCentral Halter JP, Michael W, Schupbach M, Mandel H, Casali C, Orchard K, Collin M, Valcarcel D, Rovelli A, Filosto M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2015;138(Pt 10):2847–58.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP and de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front. Cell. Neurosci. 2017;11:31. doi:10.3389/fncel.2017.00031. Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP and de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front. Cell. Neurosci. 2017;11:31. doi:10.​3389/​fncel.​2017.​00031.
5.
Zurück zum Zitat Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, Vissing J. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007;64(3):435–8.CrossRefPubMed Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, Vissing J. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007;64(3):435–8.CrossRefPubMed
6.
Zurück zum Zitat Sivadasan A, Muthusamy K, Patil AK, Mathew V, Alexander M. Pearls & Oy-Sters: mitochondrial neurogastrointestinal encephalomyopathy: diagnosis and response to peritoneal dialysis. Neurology. 2016;86(14):e147–50.CrossRefPubMed Sivadasan A, Muthusamy K, Patil AK, Mathew V, Alexander M. Pearls & Oy-Sters: mitochondrial neurogastrointestinal encephalomyopathy: diagnosis and response to peritoneal dialysis. Neurology. 2016;86(14):e147–50.CrossRefPubMed
7.
Zurück zum Zitat De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, Casali C, Cenacchi G, Contin M, D'Angelo R, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol. 2016;80(3):448–55.CrossRefPubMed De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, Casali C, Cenacchi G, Contin M, D'Angelo R, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol. 2016;80(3):448–55.CrossRefPubMed
Metadaten
Titel
Hemodialysis in MNGIE transiently reduces serum and urine levels of thymidine and deoxyuridine, but not CSF levels and neurological function
verfasst von
Benjamin Röeben
Justus Marquetand
Benjamin Bender
Heiko Billing
Tobias B. Haack
Iciar Sanchez-Albisua
Ludger Schöls
Henk J. Blom
Matthis Synofzik
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2017
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0687-0

Weitere Artikel der Ausgabe 1/2017

Orphanet Journal of Rare Diseases 1/2017 Zur Ausgabe