Skip to main content
Erschienen in: Hepatology International 6/2017

02.11.2017 | Review Article

Hepatitis B virus: virology, molecular biology, life cycle and intrahepatic spread

verfasst von: P. Karayiannis

Erschienen in: Hepatology International | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Hepatitis B virus is a member of the Hepadnaviridae family and responsible for causing acute and chronic hepatitis in humans. The current estimates of people chronically infected with the virus are put at 250 million worldwide. Immune-mediated liver damage in these individuals may lead to the development of cirrhosis and hepatocellular carcinoma later in life. This review deals with our current understanding of the virology, molecular biology, life cycle and cell-to-cell spread of this very important pathogen, all of which are considered essential for current and future approaches to antiviral treatment.
Literatur
3.
Zurück zum Zitat Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–2128CrossRefPubMed Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–2128CrossRefPubMed
4.
Zurück zum Zitat Krugman S, Giles JP, Hammond J. Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 1967;200:365–373CrossRefPubMed Krugman S, Giles JP, Hammond J. Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 1967;200:365–373CrossRefPubMed
5.
Zurück zum Zitat Giles JP, McCollum RW, Berndtson LW Jr, Krugman S. Relation of Australia-SH antigen to the willowbrook MS-2 strain. N Engl J Med 1969;281:119–122CrossRefPubMed Giles JP, McCollum RW, Berndtson LW Jr, Krugman S. Relation of Australia-SH antigen to the willowbrook MS-2 strain. N Engl J Med 1969;281:119–122CrossRefPubMed
6.
Zurück zum Zitat Blumberg BS, Alter HJ, Visnich S. A “new” antigen in leukemia sera. JAMA 1965;191:541–546CrossRefPubMed Blumberg BS, Alter HJ, Visnich S. A “new” antigen in leukemia sera. JAMA 1965;191:541–546CrossRefPubMed
7.
Zurück zum Zitat Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia. Down’s Syndrome and hepatitis. Nature 1968;218:1057–1059PubMed Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia. Down’s Syndrome and hepatitis. Nature 1968;218:1057–1059PubMed
8.
Zurück zum Zitat Prince AM. Detection of serum hepatitis virus carriers by testing for the SH (Australia) antigen. A review of current methodology. Vox Sang 1970;19:417–424CrossRefPubMed Prince AM. Detection of serum hepatitis virus carriers by testing for the SH (Australia) antigen. A review of current methodology. Vox Sang 1970;19:417–424CrossRefPubMed
9.
Zurück zum Zitat Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970;1:695–698CrossRefPubMed Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970;1:695–698CrossRefPubMed
10.
Zurück zum Zitat Robinson WS. DNA and DNA polymerase in the core of the Dane particle of hepatitis B. Am J Med Sci 1975;270:151–159CrossRefPubMed Robinson WS. DNA and DNA polymerase in the core of the Dane particle of hepatitis B. Am J Med Sci 1975;270:151–159CrossRefPubMed
11.
Zurück zum Zitat Robinson WS, Lutwick LI. The virus of hepatitis, type B (first of two parts). N Engl J Med 1976;295:1168–1175CrossRefPubMed Robinson WS, Lutwick LI. The virus of hepatitis, type B (first of two parts). N Engl J Med 1976;295:1168–1175CrossRefPubMed
12.
Zurück zum Zitat Robinson WS, Lutwick LI. The virus of hepatitis, type B. (Second of two parts). N Engl J Med 1976;295:1232–1236CrossRefPubMed Robinson WS, Lutwick LI. The virus of hepatitis, type B. (Second of two parts). N Engl J Med 1976;295:1232–1236CrossRefPubMed
13.
Zurück zum Zitat Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981;2:1129–1133CrossRefPubMed Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981;2:1129–1133CrossRefPubMed
14.
Zurück zum Zitat Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (Heptavax B): a final report. Hepatology 1981;1:377–385CrossRefPubMed Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (Heptavax B): a final report. Hepatology 1981;1:377–385CrossRefPubMed
15.
16.
Zurück zum Zitat Lok AS, McMahon BJ, Brown RS Jr, Wong JB, Ahmed AT, Farah W et al. Antiviral therapy for chronic hepatitis B viral infection in adults: a systematic review and meta-analysis. Hepatology 2016;63:284–306CrossRefPubMed Lok AS, McMahon BJ, Brown RS Jr, Wong JB, Ahmed AT, Farah W et al. Antiviral therapy for chronic hepatitis B viral infection in adults: a systematic review and meta-analysis. Hepatology 2016;63:284–306CrossRefPubMed
17.
Zurück zum Zitat Zoulim F, Lebossé F, Levrero M. Current treatments for chronic hepatitis B virus infections. Curr Opin Virol 2016;18:109–116CrossRefPubMed Zoulim F, Lebossé F, Levrero M. Current treatments for chronic hepatitis B virus infections. Curr Opin Virol 2016;18:109–116CrossRefPubMed
18.
Zurück zum Zitat Locarnini SA, Roggendorf M. Other hepadnaviridae [Avihepadnaviridae (DHBV) and Orthohepadnaviridae (WHV)]. In: Thomas HC, Lok ASF, Locarnini SA, Zuckerman AJ, editors. Viral Hepatitis. 4th ed. Wiley-Blackwell: Oxford; 2014. p. 96–106 Locarnini SA, Roggendorf M. Other hepadnaviridae [Avihepadnaviridae (DHBV) and Orthohepadnaviridae (WHV)]. In: Thomas HC, Lok ASF, Locarnini SA, Zuckerman AJ, editors. Viral Hepatitis. 4th ed. Wiley-Blackwell: Oxford; 2014. p. 96–106
19.
Zurück zum Zitat Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology 2014;57:141–150CrossRefPubMed Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology 2014;57:141–150CrossRefPubMed
20.
Zurück zum Zitat Tran TT, Trinh TN, Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J Virol 2008;82:5657–5663CrossRefPubMed Tran TT, Trinh TN, Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J Virol 2008;82:5657–5663CrossRefPubMed
21.
Zurück zum Zitat Tatematsu K, Tanaka Y, Kurbanov F, Sugauchi F, Mano S, Maeshiro T et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol 2009;83:10538–10547CrossRefPubMedPubMedCentral Tatematsu K, Tanaka Y, Kurbanov F, Sugauchi F, Mano S, Maeshiro T et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol 2009;83:10538–10547CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Pourkarim MR, Amini-Bavil-Olyaee S, Kurbanov F, Van Ranst M, Tacke F. Molecular identification of hepatitis B virus genotypes/subgenotypes: revised classification hurdles and updated resolutions. World J Gastroenterol 2014;20:7152–7168CrossRefPubMedPubMedCentral Pourkarim MR, Amini-Bavil-Olyaee S, Kurbanov F, Van Ranst M, Tacke F. Molecular identification of hepatitis B virus genotypes/subgenotypes: revised classification hurdles and updated resolutions. World J Gastroenterol 2014;20:7152–7168CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Araujo NM. Hepatitis B virus intergenotypic recombinants worldwide: an overview. Infect Genet Evol 2015;36:500–510CrossRefPubMed Araujo NM. Hepatitis B virus intergenotypic recombinants worldwide: an overview. Infect Genet Evol 2015;36:500–510CrossRefPubMed
24.
Zurück zum Zitat Ganem D, Prince AM. Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med 2004;350:1118–1129CrossRefPubMed Ganem D, Prince AM. Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med 2004;350:1118–1129CrossRefPubMed
25.
Zurück zum Zitat Kaplan PM, Greenman RL, Gerin JL, Purcell RH, Robinson WS. DNA polymerase associated with human hepatitis B antigen. J Virol 1973;12:995–1005PubMedPubMedCentral Kaplan PM, Greenman RL, Gerin JL, Purcell RH, Robinson WS. DNA polymerase associated with human hepatitis B antigen. J Virol 1973;12:995–1005PubMedPubMedCentral
26.
27.
Zurück zum Zitat Summers J, O’Connell A, Millman I. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc Natl Acad Sci USA 1975;72:4597–4601CrossRefPubMedPubMedCentral Summers J, O’Connell A, Millman I. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc Natl Acad Sci USA 1975;72:4597–4601CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Baltayiannis G, Karayiannis P. Treatment options beyond IFNα and NUCs for chronic HBV infection: expectations for tomorrow. J Viral Hepatol 2014;21:753–761CrossRefPubMed Baltayiannis G, Karayiannis P. Treatment options beyond IFNα and NUCs for chronic HBV infection: expectations for tomorrow. J Viral Hepatol 2014;21:753–761CrossRefPubMed
29.
Zurück zum Zitat Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000;4:51–68CrossRef Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000;4:51–68CrossRef
30.
Zurück zum Zitat Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. J Viral Hepatol 2010;17:527–536CrossRefPubMed Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. J Viral Hepatol 2010;17:527–536CrossRefPubMed
31.
Zurück zum Zitat Wang J, Lee AS, Ou JH. Proteolytic conversion of hepatitis B virus e antigen precursor to end product occurs in a postendoplasmic reticulum compartment. J Virol 1991;65:5080–5083PubMedPubMedCentral Wang J, Lee AS, Ou JH. Proteolytic conversion of hepatitis B virus e antigen precursor to end product occurs in a postendoplasmic reticulum compartment. J Virol 1991;65:5080–5083PubMedPubMedCentral
32.
Zurück zum Zitat Messageot F, Salhi S, Eon P, Rossignol JM. Proteolytic processing of the hepatitis B virus e antigen precursor. Cleavage at two furin consensus sequences. J Biol Chem 2003;278:891–895CrossRefPubMed Messageot F, Salhi S, Eon P, Rossignol JM. Proteolytic processing of the hepatitis B virus e antigen precursor. Cleavage at two furin consensus sequences. J Biol Chem 2003;278:891–895CrossRefPubMed
33.
Zurück zum Zitat Ito K, Kim KH, Lok AS, Tong S. Characterization of genotype-specific carboxyl-terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme. J Virol 2009;83:3507–3517CrossRefPubMedPubMedCentral Ito K, Kim KH, Lok AS, Tong S. Characterization of genotype-specific carboxyl-terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme. J Virol 2009;83:3507–3517CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci USA 1990;87:6599–6603CrossRefPubMedPubMedCentral Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci USA 1990;87:6599–6603CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Crowther RA, Kiselev NA, Bottcher B, Berriman JA, Borisova GP, Ose V, Pumpens P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 1994;77:943–950CrossRefPubMed Crowther RA, Kiselev NA, Bottcher B, Berriman JA, Borisova GP, Ose V, Pumpens P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 1994;77:943–950CrossRefPubMed
36.
Zurück zum Zitat Ganem D, Schneider RJ. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology, vol. 2. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2923–2969 Ganem D, Schneider RJ. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology, vol. 2. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2923–2969
37.
Zurück zum Zitat Neurath AR, Kent SB, Strick N, Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 1986;46:429–436CrossRefPubMed Neurath AR, Kent SB, Strick N, Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 1986;46:429–436CrossRefPubMed
38.
Zurück zum Zitat Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 2005;79:1613–1622CrossRefPubMedPubMedCentral Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 2005;79:1613–1622CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 1995;213:292–299CrossRefPubMed Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 1995;213:292–299CrossRefPubMed
40.
Zurück zum Zitat Eble BE, MacRae DR, Lingappa VR, Ganem D. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol Cell Biol 1987;7:3591–35601CrossRefPubMedPubMedCentral Eble BE, MacRae DR, Lingappa VR, Ganem D. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol Cell Biol 1987;7:3591–35601CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016;6:a021402CrossRefPubMed Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016;6:a021402CrossRefPubMed
43.
Zurück zum Zitat Geng M, Xin X, Bi LQ, Zhou LT, Liu XH. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis. World J Gastroenterol 2015;21:10732–10738CrossRefPubMedPubMedCentral Geng M, Xin X, Bi LQ, Zhou LT, Liu XH. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis. World J Gastroenterol 2015;21:10732–10738CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z et al.. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012;1:e00049CrossRefPubMedPubMedCentral Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z et al.. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012;1:e00049CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Blanchet M, Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 2007;81:5841–5849CrossRefPubMedPubMedCentral Blanchet M, Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 2007;81:5841–5849CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007;46:1759–1768CrossRef Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007;46:1759–1768CrossRef
47.
Zurück zum Zitat Verrier ER, Colpitts CC, Bach C, Heydmann L, Weiss A, Renaud M et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology 2016;63:35–48CrossRefPubMed Verrier ER, Colpitts CC, Bach C, Heydmann L, Weiss A, Renaud M et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology 2016;63:35–48CrossRefPubMed
48.
Zurück zum Zitat Huang HC, Chen CC, Chang WC, Tao MH, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 2012;86:9443–9453CrossRefPubMedPubMedCentral Huang HC, Chen CC, Chang WC, Tao MH, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 2012;86:9443–9453CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Rabe B, Delaleau M, Bischof A, Foss M, Sominskaya I, Pumpens P et al. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog 2009;5:e1000563CrossRefPubMedPubMedCentral Rabe B, Delaleau M, Bischof A, Foss M, Sominskaya I, Pumpens P et al. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog 2009;5:e1000563CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Schmitz A, Schwarz A, Foss M, Zhou L, Rabe B, Hoellenriegel J et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog 2010;6:e1000741CrossRefPubMedPubMedCentral Schmitz A, Schwarz A, Foss M, Zhou L, Rabe B, Hoellenriegel J et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog 2010;6:e1000741CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986;47:451–460CrossRefPubMed Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986;47:451–460CrossRefPubMed
52.
Zurück zum Zitat Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, Levrero M. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 2006;130:823–837CrossRefPubMed Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, Levrero M. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 2006;130:823–837CrossRefPubMed
53.
Zurück zum Zitat Belloni L, Pollicino T, Cimino L, Raffa G, Raimondo G, Levrero M. Nuclear HBx binds in vivo on the HBV minichromosome, modifies the epigenetic regulation of ccc-DNA function and potentiates HBV replication. J Hepatol 2008;48:s25CrossRef Belloni L, Pollicino T, Cimino L, Raffa G, Raimondo G, Levrero M. Nuclear HBx binds in vivo on the HBV minichromosome, modifies the epigenetic regulation of ccc-DNA function and potentiates HBV replication. J Hepatol 2008;48:s25CrossRef
55.
Zurück zum Zitat Kramvis A, Kew MC. Structure and function of the encapsidation signal of hepadnaviridae. J Viral Hepat 1998;5:357–367CrossRefPubMed Kramvis A, Kew MC. Structure and function of the encapsidation signal of hepadnaviridae. J Viral Hepat 1998;5:357–367CrossRefPubMed
56.
Zurück zum Zitat Summers J, Mason WS. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982;29:403–415CrossRefPubMed Summers J, Mason WS. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982;29:403–415CrossRefPubMed
57.
Zurück zum Zitat Karayiannis P. Hepatitis B virus: old, new and future approaches to antiviral treatment. J Antimicrob Chemother 2003;51:761–785CrossRefPubMed Karayiannis P. Hepatitis B virus: old, new and future approaches to antiviral treatment. J Antimicrob Chemother 2003;51:761–785CrossRefPubMed
58.
Zurück zum Zitat Jeong JK, Yoon GS, Ryu WS. Evidence that the 5′-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol 2000;74(12):5502–5508CrossRefPubMedPubMedCentral Jeong JK, Yoon GS, Ryu WS. Evidence that the 5′-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol 2000;74(12):5502–5508CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Kim S, Wang H, Ryu WS. Incorporation of eukaryotic translation initiation factor eIF4E into viral nucleocapsids via interaction with hepatitis B virus polymerase. J Virol 2010;84:52–58CrossRefPubMed Kim S, Wang H, Ryu WS. Incorporation of eukaryotic translation initiation factor eIF4E into viral nucleocapsids via interaction with hepatitis B virus polymerase. J Virol 2010;84:52–58CrossRefPubMed
60.
Zurück zum Zitat Hu J, Toft DO, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 1997;16:59–68CrossRefPubMedPubMedCentral Hu J, Toft DO, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 1997;16:59–68CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015;121:82–93CrossRefPubMedPubMedCentral Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015;121:82–93CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol 1996;70:2764–2773PubMedPubMedCentral Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol 1996;70:2764–2773PubMedPubMedCentral
63.
Zurück zum Zitat Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol 1994;68:6–13PubMedPubMedCentral Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol 1994;68:6–13PubMedPubMedCentral
64.
Zurück zum Zitat Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol 1994;68:2994–2999PubMedPubMedCentral Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol 1994;68:2994–2999PubMedPubMedCentral
65.
Zurück zum Zitat Tang H, McLachlan A. A pregenomic RNA sequence adjacent to DR1 and complementary to epsilon influences hepatitis B virus replication efficiency. Virology 2002;303:199–210CrossRefPubMed Tang H, McLachlan A. A pregenomic RNA sequence adjacent to DR1 and complementary to epsilon influences hepatitis B virus replication efficiency. Virology 2002;303:199–210CrossRefPubMed
66.
Zurück zum Zitat Abraham TM, Loeb DD. Base pairing between the 5′ half of epsilon and a cis-acting sequence, phi, makes a contribution to the synthesis of minus-strand DNA for human hepatitis B virus. J Virol 2006;80:4380–4387CrossRefPubMedPubMedCentral Abraham TM, Loeb DD. Base pairing between the 5′ half of epsilon and a cis-acting sequence, phi, makes a contribution to the synthesis of minus-strand DNA for human hepatitis B virus. J Virol 2006;80:4380–4387CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Haines KM, Loeb DD. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis of hepatitis B virus. J Mol Biol 2007;370:471–480CrossRefPubMedPubMedCentral Haines KM, Loeb DD. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis of hepatitis B virus. J Mol Biol 2007;370:471–480CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Lewellyn EB, Loeb DD. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J Virol 2007;81:6207–6215CrossRefPubMedPubMedCentral Lewellyn EB, Loeb DD. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J Virol 2007;81:6207–6215CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Nassal M. Hepatitis B viruses: reverse transcription a different way. Virus Res 2008;134:235–249CrossRefPubMed Nassal M. Hepatitis B viruses: reverse transcription a different way. Virus Res 2008;134:235–249CrossRefPubMed
70.
Zurück zum Zitat Lentz TB, Loeb DD. Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus. J Virol 2011;85:11916–11927CrossRefPubMedPubMedCentral Lentz TB, Loeb DD. Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus. J Virol 2011;85:11916–11927CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Gerelsaikhan T, Tavis JE, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol 1996;70:4269–4272PubMedPubMedCentral Gerelsaikhan T, Tavis JE, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol 1996;70:4269–4272PubMedPubMedCentral
72.
Zurück zum Zitat Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci USA 2007;104:10205–10210CrossRefPubMedPubMedCentral Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci USA 2007;104:10205–10210CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Jilbert AR, Freiman JS, Burrell CJ, Holmes M, Gowans EJ, Rowland R, Hall P, Cossart YE. Virus-liver cell interactions in duck hepatitis B virus infection. A study of virus dissemination within the liver. Gastroenterology 1988;95:1375–1282CrossRefPubMed Jilbert AR, Freiman JS, Burrell CJ, Holmes M, Gowans EJ, Rowland R, Hall P, Cossart YE. Virus-liver cell interactions in duck hepatitis B virus infection. A study of virus dissemination within the liver. Gastroenterology 1988;95:1375–1282CrossRefPubMed
74.
Zurück zum Zitat Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol 2006;87:1439–1449CrossRefPubMed Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol 2006;87:1439–1449CrossRefPubMed
75.
Zurück zum Zitat Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000;191:1269–1280CrossRefPubMedPubMedCentral Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000;191:1269–1280CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003;77:68–76CrossRefPubMedPubMedCentral Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003;77:68–76CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat MacDonald RA. “Lifespan” of liver cells. Arch Intern Med 1960;107:335–343CrossRef MacDonald RA. “Lifespan” of liver cells. Arch Intern Med 1960;107:335–343CrossRef
78.
Zurück zum Zitat Thorgeirsson SS. Hepatic stem cells in liver regeneration. FASEB J 1996;10:1249–1256PubMed Thorgeirsson SS. Hepatic stem cells in liver regeneration. FASEB J 1996;10:1249–1256PubMed
79.
Zurück zum Zitat Lutgehetmann M, Volz T, Köpke A, Broja T, Tigges E, Lohse AW et al. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology 2010;52:16–24CrossRefPubMed Lutgehetmann M, Volz T, Köpke A, Broja T, Tigges E, Lohse AW et al. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology 2010;52:16–24CrossRefPubMed
80.
Zurück zum Zitat Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 2008;6:815–826CrossRefPubMed Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 2008;6:815–826CrossRefPubMed
81.
Zurück zum Zitat Funk A, Hohenberg H, Mhamdi M, Will H, Sirma H. Spread of hepatitis B viruses in vitro requires extracellular progeny and may be codetermined by polarized egress. J Virol 2004;78:3977–3983CrossRefPubMedPubMedCentral Funk A, Hohenberg H, Mhamdi M, Will H, Sirma H. Spread of hepatitis B viruses in vitro requires extracellular progeny and may be codetermined by polarized egress. J Virol 2004;78:3977–3983CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Bhat P, Snooks MJ, Anderson DA. Hepatocytes traffic and export hepatitis B virus basolaterally by polarity-dependent mechanisms. J Virol 2011;85:12474–12481CrossRefPubMedPubMedCentral Bhat P, Snooks MJ, Anderson DA. Hepatocytes traffic and export hepatitis B virus basolaterally by polarity-dependent mechanisms. J Virol 2011;85:12474–12481CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012;21:R125–R134CrossRef Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012;21:R125–R134CrossRef
84.
Zurück zum Zitat Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralising antibodies. Hepatology 2008;47:17–24CrossRefPubMed Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralising antibodies. Hepatology 2008;47:17–24CrossRefPubMed
85.
Zurück zum Zitat Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 2014;10:e1004424CrossRefPubMedPubMedCentral Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 2014;10:e1004424CrossRefPubMedPubMedCentral
Metadaten
Titel
Hepatitis B virus: virology, molecular biology, life cycle and intrahepatic spread
verfasst von
P. Karayiannis
Publikationsdatum
02.11.2017
Verlag
Springer India
Erschienen in
Hepatology International / Ausgabe 6/2017
Print ISSN: 1936-0533
Elektronische ISSN: 1936-0541
DOI
https://doi.org/10.1007/s12072-017-9829-7

Weitere Artikel der Ausgabe 6/2017

Hepatology International 6/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.