Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 6/2020

20.12.2019 | Original Research

Hierarchical Poincaré analysis for anaesthesia monitoring

verfasst von: Kazuma Hayase, Kazuko Hayashi, Teiji Sawa

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Although the degree of dispersion in Poincaré plots of electroencephalograms (EEG), termed the Poincaré-index, detects the depth of anaesthesia, the Poincaré-index becomes estranged from the bispectral index (BIS) at lighter anaesthesia levels. The present study introduces Poincaré-index20–30 Hz, targeting the 20- to 30-Hz frequency, as the frequency range reported to contain large electromyogram (EMG) portions in frontal EEG. We combined Poincaré-index20–30 Hz with the conventional Poincaré-index0.5–47 Hz using a deep learning technique to adjust to BIS values, and examined whether this layered Poincaré analysis can provide an index of anaesthesia level like BIS. A total of 83,867 datasets of these two Poincaré-indices and BIS-monitor-derived parameters were continuously obtained every 3 s from 30 patients throughout general anaesthesia, and were randomly divided into 75% for a training dataset and 25% for a test dataset. Two Poincaré-indices and two supplemental EEG parameters (EMG70–110 Hz, suppression ratio) in the training dataset were trained in a multi-layer perceptron neural network (MLPNN), with reference to BIS as supervisor. We then evaluated the trained MLPNN model using the test dataset, by comparing the measured BIS (mBIS) with BIS predicted from the model (PredBIS). The relationship between mBIS and PredBIS using the two Poincaré-indices showed a tight linear regression equation: mBIS = 1.00 × PredBIS + 0.15, R = 0.87, p < 0.0001, root mean square error (RMSE) = 7.09, while the relationship between mBIS and PredBIS simply using the original Poincaré-index0.5–47 Hz was weaker (R = 0.82, p < 0.0001, RMSE = 7.32). This suggests the 20- to 30-Hz hierarchical Poincaré analysis has potential to improve on anaesthesia depth monitoring constructed by simple Poincaré analysis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Drongelen W, An introduction to the analysis of physiological signals. Nonlinear techniques. In: Signal processing for neuroscientists, 1st edn. Academic Press, Elsevier, Waltham, 2007;279–295 Drongelen W, An introduction to the analysis of physiological signals. Nonlinear techniques. In: Signal processing for neuroscientists, 1st edn. Academic Press, Elsevier, Waltham, 2007;279–295
3.
Zurück zum Zitat Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992;123:704–10.CrossRef Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992;123:704–10.CrossRef
4.
Zurück zum Zitat Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271:H244–252.PubMed Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271:H244–252.PubMed
5.
Zurück zum Zitat Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond). 1996;91:201–8.CrossRef Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond). 1996;91:201–8.CrossRef
6.
Zurück zum Zitat Brennan M, Palaniswami M, Kamen P. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol. 2002;283:H1873–1886.CrossRef Brennan M, Palaniswami M, Kamen P. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol. 2002;283:H1873–1886.CrossRef
7.
Zurück zum Zitat Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci. 2007;57:63–71.CrossRef Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci. 2007;57:63–71.CrossRef
11.
Zurück zum Zitat Gonzalez C, Jensen EW, Gambus PL, Vallverdu M. Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification methods for apnea detection. PLoS ONE. 2018;13:e0208642.CrossRef Gonzalez C, Jensen EW, Gambus PL, Vallverdu M. Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification methods for apnea detection. PLoS ONE. 2018;13:e0208642.CrossRef
12.
Zurück zum Zitat Angel C, Glovak ZT, Alami W, Mihalko S, Price J, Jiang Y, Baghdoyan HA, Lydic R. Buprenorphine depresses respiratory variability in obese mice with altered leptin signaling. Anesthesiology. 2018;128:984–91.CrossRef Angel C, Glovak ZT, Alami W, Mihalko S, Price J, Jiang Y, Baghdoyan HA, Lydic R. Buprenorphine depresses respiratory variability in obese mice with altered leptin signaling. Anesthesiology. 2018;128:984–91.CrossRef
13.
Zurück zum Zitat Horvath G, Kekesi G, Petrovszki Z, Benedek G. Abnormal motor activity and thermoregulation in a schizophrenia rat model for translational science. PLoS ONE. 2015;10:e0143751.CrossRef Horvath G, Kekesi G, Petrovszki Z, Benedek G. Abnormal motor activity and thermoregulation in a schizophrenia rat model for translational science. PLoS ONE. 2015;10:e0143751.CrossRef
14.
Zurück zum Zitat Zangeneh Soroush M, Maghooli K, Setarehdan SK, Nasrabadi AM. Emotion recognition through EEG phase space dynamics and Dempster Shafer theory. Med Hypotheses. 2019;127:34–45.CrossRef Zangeneh Soroush M, Maghooli K, Setarehdan SK, Nasrabadi AM. Emotion recognition through EEG phase space dynamics and Dempster Shafer theory. Med Hypotheses. 2019;127:34–45.CrossRef
15.
Zurück zum Zitat Brignol A, Al-Ani T, Drouot X. Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: a comparative study using short and standard epoch lengths. Comput Methods Progr Biomed. 2013;109:227–38.CrossRef Brignol A, Al-Ani T, Drouot X. Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: a comparative study using short and standard epoch lengths. Comput Methods Progr Biomed. 2013;109:227–38.CrossRef
16.
Zurück zum Zitat Anier A, Lipping T, Ferenets R, et al. Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. Br J Anaesth. 2012;109:928–34.CrossRef Anier A, Lipping T, Ferenets R, et al. Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. Br J Anaesth. 2012;109:928–34.CrossRef
17.
Zurück zum Zitat Hayashi K, Mukai N, Sawa T. Poincaré analysis of the electroencephalogram during sevoflurane anesthesia. Clin Neurophysiol. 2015;126:404–11.CrossRef Hayashi K, Mukai N, Sawa T. Poincaré analysis of the electroencephalogram during sevoflurane anesthesia. Clin Neurophysiol. 2015;126:404–11.CrossRef
18.
Zurück zum Zitat Hayashi K, Yamada T, Sawa T. Comparative study of Poincaré oincare plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index. Anaesthesia. 2015;70:310–7.CrossRef Hayashi K, Yamada T, Sawa T. Comparative study of Poincaré oincare plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index. Anaesthesia. 2015;70:310–7.CrossRef
20.
Zurück zum Zitat Müller AC, Guido S. Introduction to machine learning with python: A guide for data scientists. 1st ed. California: O'Reilly Media; 2016. Müller AC, Guido S. Introduction to machine learning with python: A guide for data scientists. 1st ed. California: O'Reilly Media; 2016.
21.
Zurück zum Zitat Albon C. Machine learning with python cookbook: Practical solutions from preprocessing to deep learning. 1st ed. California: O'Reilly Media; 2018. Albon C. Machine learning with python cookbook: Practical solutions from preprocessing to deep learning. 1st ed. California: O'Reilly Media; 2018.
22.
Zurück zum Zitat Meng XL, Rosenthal R, Rubin DB. Comparing correlated correlation coefficients. Psychol Bull. 1992;111:172–5.CrossRef Meng XL, Rosenthal R, Rubin DB. Comparing correlated correlation coefficients. Psychol Bull. 1992;111:172–5.CrossRef
23.
Zurück zum Zitat Bruhn J, Bouillon TW, Shafer SL. Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput. 2000;16:593–6.CrossRef Bruhn J, Bouillon TW, Shafer SL. Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput. 2000;16:593–6.CrossRef
24.
Zurück zum Zitat Schuller PJ, Newell S, Strickland PA, Barry JJ. Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth. 2015;115:i95–103.CrossRef Schuller PJ, Newell S, Strickland PA, Barry JJ. Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth. 2015;115:i95–103.CrossRef
25.
Zurück zum Zitat Whitham EM, Pope KJ, Fitzgibbon SP, et al. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol. 2007;118:1877–88.CrossRef Whitham EM, Pope KJ, Fitzgibbon SP, et al. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol. 2007;118:1877–88.CrossRef
26.
Zurück zum Zitat Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol. 2003;114:1580–93.CrossRef Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol. 2003;114:1580–93.CrossRef
27.
Zurück zum Zitat Kamata K, Aho AJ, Hagihira S, Yli-Hankala A, Jantti V. Frequency band of EMG in anaesthesia monitoring. Br J Anaesth. 2011;107:822–3.CrossRef Kamata K, Aho AJ, Hagihira S, Yli-Hankala A, Jantti V. Frequency band of EMG in anaesthesia monitoring. Br J Anaesth. 2011;107:822–3.CrossRef
28.
Zurück zum Zitat Thomas SJ, L'Azou M, Barrett AD, Jackson NA. Fast-track zika vaccine development—is it possible? N Engl J Med. 2016;375:1212–6.CrossRef Thomas SJ, L'Azou M, Barrett AD, Jackson NA. Fast-track zika vaccine development—is it possible? N Engl J Med. 2016;375:1212–6.CrossRef
29.
Zurück zum Zitat Erickson BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K. Toolkits and libraries for deep learning. J Digit Imaging. 2017;30:400–5.CrossRef Erickson BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K. Toolkits and libraries for deep learning. J Digit Imaging. 2017;30:400–5.CrossRef
30.
Zurück zum Zitat Shorten G, Srinivasan KK, Reinertsen I. Machine learning and evidence-based training in technical skills. Br J Anaesth. 2018;121:521–3.CrossRef Shorten G, Srinivasan KK, Reinertsen I. Machine learning and evidence-based training in technical skills. Br J Anaesth. 2018;121:521–3.CrossRef
31.
Zurück zum Zitat Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–9.CrossRef Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–9.CrossRef
32.
Zurück zum Zitat Quax S, van Gerven M. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE. 2018;13:e0205676.CrossRef Quax S, van Gerven M. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE. 2018;13:e0205676.CrossRef
33.
Zurück zum Zitat Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, Rashidi P, Pardalos P, Momcilovic P, Bihorac A. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS ONE. 2016;11:e0155705.CrossRef Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, Rashidi P, Pardalos P, Momcilovic P, Bihorac A. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS ONE. 2016;11:e0155705.CrossRef
34.
Zurück zum Zitat Lee CK, Hofer I, Gabel E, Baldi P, Cannesson M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology. 2018;129:649–62.CrossRef Lee CK, Hofer I, Gabel E, Baldi P, Cannesson M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology. 2018;129:649–62.CrossRef
35.
Zurück zum Zitat Olsen RM, Aasvang EK, Meyhoff CS, Dissing Sorensen HB. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput Biol Med. 2018;101:15–211.CrossRef Olsen RM, Aasvang EK, Meyhoff CS, Dissing Sorensen HB. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput Biol Med. 2018;101:15–211.CrossRef
37.
Zurück zum Zitat Meiring C, Dixit A, Harris S, et al. (2018) Optimal intensive care outcome prediction over time using machine learning. PLoS ONE. 2018;13:e0206862.CrossRef Meiring C, Dixit A, Harris S, et al. (2018) Optimal intensive care outcome prediction over time using machine learning. PLoS ONE. 2018;13:e0206862.CrossRef
38.
Zurück zum Zitat Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663–74.CrossRef Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663–74.CrossRef
39.
Zurück zum Zitat Kendal S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129:675–88.CrossRef Kendal S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129:675–88.CrossRef
40.
Zurück zum Zitat Lee HC, Ryu HG, Chung EJ, Jung CW. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil: a deep learning approach. Anesthesiology. 2018;128:492–501.CrossRef Lee HC, Ryu HG, Chung EJ, Jung CW. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil: a deep learning approach. Anesthesiology. 2018;128:492–501.CrossRef
41.
Zurück zum Zitat Peker M, Sen B, Guruler H. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks. J Med Syst. 2015;39:18.CrossRef Peker M, Sen B, Guruler H. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks. J Med Syst. 2015;39:18.CrossRef
42.
Zurück zum Zitat Nagaraj SB, Biswal S, Boyle EJ, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45:e683–e690690.CrossRef Nagaraj SB, Biswal S, Boyle EJ, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45:e683–e690690.CrossRef
43.
Zurück zum Zitat Shalbaf R, Behnam H, Sleigh JW, Steyn-Ross A, Voss LJ. Monitoring the depth of anesthesia using entropy features and an artificial neural network. J Neurosci Methods. 2013;218:17–24.CrossRef Shalbaf R, Behnam H, Sleigh JW, Steyn-Ross A, Voss LJ. Monitoring the depth of anesthesia using entropy features and an artificial neural network. J Neurosci Methods. 2013;218:17–24.CrossRef
45.
Zurück zum Zitat Ortolani O, Conti A, Di Filippo A, et al. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Br J Anaesth. 2002;88:644–8.CrossRef Ortolani O, Conti A, Di Filippo A, et al. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Br J Anaesth. 2002;88:644–8.CrossRef
47.
Zurück zum Zitat Lee S, Mohr NM, Street WN, Nadkarni P. Machine learning in relation to emergency medicine clinical and operational scenarios: an overview. West J Emerg Med. 2019;20:219–27.CrossRef Lee S, Mohr NM, Street WN, Nadkarni P. Machine learning in relation to emergency medicine clinical and operational scenarios: an overview. West J Emerg Med. 2019;20:219–27.CrossRef
48.
Zurück zum Zitat Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:14.CrossRef Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:14.CrossRef
Metadaten
Titel
Hierarchical Poincaré analysis for anaesthesia monitoring
verfasst von
Kazuma Hayase
Kazuko Hayashi
Teiji Sawa
Publikationsdatum
20.12.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 6/2020
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00447-0

Weitere Artikel der Ausgabe 6/2020

Journal of Clinical Monitoring and Computing 6/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.