Skip to main content
Erschienen in: Angiogenesis 2/2018

15.02.2018 | Original Paper

High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation

verfasst von: Fengyan Jin, Nina Hagemann, Li Sun, Jiang Wu, Thorsten R. Doeppner, Yun Dai, Dirk M. Hermann

Erschienen in: Angiogenesis | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1–3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P–S1P3–VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103:341–349CrossRefPubMed Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103:341–349CrossRefPubMed
2.
Zurück zum Zitat Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, Carey AL, Kammoun HL, Delbridge LM, Reddy M, Chen Y-C, Du X-J, Hagemeyer CE, Febbraio MA, Siebel AL, Kingwell BA (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9:eaam6084CrossRefPubMed Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, Carey AL, Kammoun HL, Delbridge LM, Reddy M, Chen Y-C, Du X-J, Hagemeyer CE, Febbraio MA, Siebel AL, Kingwell BA (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9:eaam6084CrossRefPubMed
3.
Zurück zum Zitat Gadkar K, Lu J, Sahasranaman S, Davis J, Mazer NA, Ramanujan S (2016) Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach. J Lipid Res 57:46–55CrossRefPubMedCentralPubMed Gadkar K, Lu J, Sahasranaman S, Davis J, Mazer NA, Ramanujan S (2016) Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach. J Lipid Res 57:46–55CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Gilham D, Wasiak S, Tsujikawa LM, Halliday C, Norek K, Patel RG, Kulikowski E, Johansson J, Sweeney M, Wong NCW (2016) RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 247:48–57CrossRefPubMed Gilham D, Wasiak S, Tsujikawa LM, Halliday C, Norek K, Patel RG, Kulikowski E, Johansson J, Sweeney M, Wong NCW (2016) RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 247:48–57CrossRefPubMed
6.
Zurück zum Zitat Kratzer A, Giral H, Landmesser U (2014) High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 103:350–361CrossRefPubMed Kratzer A, Giral H, Landmesser U (2014) High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 103:350–361CrossRefPubMed
7.
Zurück zum Zitat Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947CrossRefPubMed Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947CrossRefPubMed
8.
Zurück zum Zitat Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, Murakami M, Okajima F (2003) High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol 23:1283–1288CrossRefPubMed Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, Murakami M, Okajima F (2003) High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol 23:1283–1288CrossRefPubMed
9.
Zurück zum Zitat Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49:1015–1026CrossRefPubMed Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49:1015–1026CrossRefPubMed
10.
Zurück zum Zitat Tan JT, Ng MK, Bursill CA (2015) The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 106:184–193CrossRefPubMed Tan JT, Ng MK, Bursill CA (2015) The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 106:184–193CrossRefPubMed
11.
Zurück zum Zitat Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, Ng MKC, Bursill CA (2014) Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res 101:145–154CrossRefPubMed Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, Ng MKC, Bursill CA (2014) Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res 101:145–154CrossRefPubMed
12.
Zurück zum Zitat Jin F, Hagemann N, Brockmeier U, Schafer ST, Zechariah A, Hermann DM (2013) LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome-trans-Golgi network trafficking. Angiogenesis 16:625–637CrossRefPubMed Jin F, Hagemann N, Brockmeier U, Schafer ST, Zechariah A, Hermann DM (2013) LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome-trans-Golgi network trafficking. Angiogenesis 16:625–637CrossRefPubMed
13.
Zurück zum Zitat Jin F, Hagemann N, Schafer ST, Brockmeier U, Zechariah A, Hermann DM (2013) SDF-1 restores angiogenesis synergistically with VEGF upon LDL exposure despite CXCR4 internalization and degradation. Cardiovasc Res 100:481–491CrossRefPubMed Jin F, Hagemann N, Schafer ST, Brockmeier U, Zechariah A, Hermann DM (2013) SDF-1 restores angiogenesis synergistically with VEGF upon LDL exposure despite CXCR4 internalization and degradation. Cardiovasc Res 100:481–491CrossRefPubMed
14.
Zurück zum Zitat Yao G, Zhang Q, Doeppner TR, Niu F, Li Q, Yang Y, Kuckelkorn U, Hagemann N, Li W, Hermann DM, Dai Y, Zhou W, Jin F (2015) LDL suppresses angiogenesis through disruption of the HIF pathway via NF-kappaB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget 6:30251–30262PubMedCentralPubMed Yao G, Zhang Q, Doeppner TR, Niu F, Li Q, Yang Y, Kuckelkorn U, Hagemann N, Li W, Hermann DM, Dai Y, Zhou W, Jin F (2015) LDL suppresses angiogenesis through disruption of the HIF pathway via NF-kappaB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget 6:30251–30262PubMedCentralPubMed
15.
Zurück zum Zitat Zechariah A, ElAli A, Hagemann N, Jin F, Doeppner TR, Helfrich I, Mies G, Hermann DM (2013) Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells. Arterioscler Thromb Vasc Biol 33:1561–1567CrossRefPubMed Zechariah A, ElAli A, Hagemann N, Jin F, Doeppner TR, Helfrich I, Mies G, Hermann DM (2013) Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells. Arterioscler Thromb Vasc Biol 33:1561–1567CrossRefPubMed
16.
Zurück zum Zitat Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407CrossRefPubMed Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407CrossRefPubMed
17.
Zurück zum Zitat Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O (2013) HDL and endothelial protection. Br J Pharmacol 169:493–511CrossRefPubMedCentralPubMed Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O (2013) HDL and endothelial protection. Br J Pharmacol 169:493–511CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831:203–212CrossRefPubMed Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831:203–212CrossRefPubMed
19.
Zurück zum Zitat Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373CrossRefPubMed Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373CrossRefPubMed
20.
Zurück zum Zitat Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001CrossRefPubMed Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001CrossRefPubMed
21.
Zurück zum Zitat Bergelin N, Lof C, Balthasar S, Kalhori V, Tornquist K (2010) S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology 151:2994–3005PubMed Bergelin N, Lof C, Balthasar S, Kalhori V, Tornquist K (2010) S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology 151:2994–3005PubMed
22.
Zurück zum Zitat Cheng Q, Ma S, Lin D, Mei Y, Gong H, Lei L, Chen Y, Zhao Y, Hu B, Wu Y, Yu X, Zhao L, Liu H (2015) The S1P1 receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell Mol Immunol 12:681–691CrossRefPubMed Cheng Q, Ma S, Lin D, Mei Y, Gong H, Lei L, Chen Y, Zhao Y, Hu B, Wu Y, Yu X, Zhao L, Liu H (2015) The S1P1 receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell Mol Immunol 12:681–691CrossRefPubMed
23.
Zurück zum Zitat Gonzalez-Diez M, Rodriguez C, Badimon L, Martinez-Gonzalez J (2008) Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin. Thromb Haemost 100:119–126CrossRefPubMed Gonzalez-Diez M, Rodriguez C, Badimon L, Martinez-Gonzalez J (2008) Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin. Thromb Haemost 100:119–126CrossRefPubMed
24.
Zurück zum Zitat Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371CrossRefPubMed Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371CrossRefPubMed
25.
Zurück zum Zitat Ruiz M, Frej C, Holmer A, Guo LJ, Tran S, Dahlback B (2017) High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler Thromb Vasc Biol 37:118–129CrossRefPubMed Ruiz M, Frej C, Holmer A, Guo LJ, Tran S, Dahlback B (2017) High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler Thromb Vasc Biol 37:118–129CrossRefPubMed
26.
Zurück zum Zitat Narita M, Holtzman DM, Fagan AM, LaDu MJ, Yu L, Han X, Gross RW, Bu G, Schwartz AL (2002) Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J Biochem 132:743–749CrossRefPubMed Narita M, Holtzman DM, Fagan AM, LaDu MJ, Yu L, Han X, Gross RW, Bu G, Schwartz AL (2002) Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J Biochem 132:743–749CrossRefPubMed
27.
Zurück zum Zitat Argraves KM, Argraves WS (2007) HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48:2325–2333CrossRefPubMed Argraves KM, Argraves WS (2007) HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48:2325–2333CrossRefPubMed
28.
Zurück zum Zitat Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171–182CrossRefPubMed Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171–182CrossRefPubMed
29.
Zurück zum Zitat Gomaraschi M, Ossoli A, Vitali C, Calabresi L (2013) HDL and endothelial protection: examining evidence from HDL inherited disorders. Clin Lipidol 8:361–370CrossRef Gomaraschi M, Ossoli A, Vitali C, Calabresi L (2013) HDL and endothelial protection: examining evidence from HDL inherited disorders. Clin Lipidol 8:361–370CrossRef
30.
Zurück zum Zitat Tuteja S, Rader DJ (2014) High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 96:48–56CrossRefPubMed Tuteja S, Rader DJ (2014) High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 96:48–56CrossRefPubMed
31.
Zurück zum Zitat Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263:256–273CrossRefPubMed Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263:256–273CrossRefPubMed
32.
Zurück zum Zitat Poti F, Bot M, Costa S, Bergonzini V, Maines L, Varga G, Freise H, Robenek Simoni M, Nofer JR (2012) Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (LDL-R(-/-)) mice. Thromb Haemost 107:552–561CrossRefPubMed Poti F, Bot M, Costa S, Bergonzini V, Maines L, Varga G, Freise H, Robenek Simoni M, Nofer JR (2012) Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (LDL-R(-/-)) mice. Thromb Haemost 107:552–561CrossRefPubMed
33.
Zurück zum Zitat Ruiz M, Okada H, Dahlback B (2017) HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. Lipids Health Dis 16:36CrossRefPubMedCentralPubMed Ruiz M, Okada H, Dahlback B (2017) HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. Lipids Health Dis 16:36CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Castaing-Berthou A, Malet N, Radojkovic C, Cabou C, Gayral S, Martinez LO, Laffargue M (2017) PI3 Kbeta plays a key role in apolipoprotein A-I-induced endothelial cell proliferation through activation of the Ecto-F1-ATPase/P2Y1 receptors. Cell Physiol Biochem 42:579–593CrossRefPubMed Castaing-Berthou A, Malet N, Radojkovic C, Cabou C, Gayral S, Martinez LO, Laffargue M (2017) PI3 Kbeta plays a key role in apolipoprotein A-I-induced endothelial cell proliferation through activation of the Ecto-F1-ATPase/P2Y1 receptors. Cell Physiol Biochem 42:579–593CrossRefPubMed
35.
Zurück zum Zitat Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RGW, Mendelsohn ME, Hobbs HH, Shau PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7:853–857CrossRefPubMed Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RGW, Mendelsohn ME, Hobbs HH, Shau PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7:853–857CrossRefPubMed
36.
Zurück zum Zitat Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27:813–818CrossRefPubMed Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27:813–818CrossRefPubMed
37.
Zurück zum Zitat Zhang QH, Zu XY, Cao RX, Liu JH, Mo ZC, Zeng Y, Li YB, Xiong SL, Liu X, Liao DF, Yi GH (2012) An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem Biophys Res Commun 420:17–23CrossRefPubMed Zhang QH, Zu XY, Cao RX, Liu JH, Mo ZC, Zeng Y, Li YB, Xiong SL, Liu X, Liao DF, Yi GH (2012) An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem Biophys Res Commun 420:17–23CrossRefPubMed
38.
Zurück zum Zitat Miura S, Fujino M, Matsuo Y, Kawamura A, Tanigawa H, Nishikawa H, Saku K (2003) High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23:802–808CrossRefPubMed Miura S, Fujino M, Matsuo Y, Kawamura A, Tanigawa H, Nishikawa H, Saku K (2003) High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23:802–808CrossRefPubMed
39.
Zurück zum Zitat Tan JT, Prosser HC, Vanags LZ, Monger SA, Ng MK, Bursill CA (2014) High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1alpha. FASEB J 28:206–217CrossRefPubMed Tan JT, Prosser HC, Vanags LZ, Monger SA, Ng MK, Bursill CA (2014) High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1alpha. FASEB J 28:206–217CrossRefPubMed
40.
Zurück zum Zitat Tan JT, Prosser HC, Dunn LL, Vanags LZ, Ridiandries A, Tsatralis T, Leece L, Clayton ZE, Yuen SCG, Robertson S, Lam YT, Celermajer DS, Ng MKC (2016) High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I. Diabetes 65:3091–3103CrossRefPubMed Tan JT, Prosser HC, Dunn LL, Vanags LZ, Ridiandries A, Tsatralis T, Leece L, Clayton ZE, Yuen SCG, Robertson S, Lam YT, Celermajer DS, Ng MKC (2016) High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I. Diabetes 65:3091–3103CrossRefPubMed
41.
Zurück zum Zitat Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMed Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMed
42.
Zurück zum Zitat Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G (2001) Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 276:34480–34485CrossRefPubMed Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G (2001) Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 276:34480–34485CrossRefPubMed
43.
Zurück zum Zitat Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD, Hla T (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 8:79CrossRef Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD, Hla T (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 8:79CrossRef
44.
Zurück zum Zitat Endo A, Nagashima K, Kurose H, Mochizuki S, Matsuda M, Mochizuki N (2002) Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J Biol Chem 277:23747–23754CrossRefPubMed Endo A, Nagashima K, Kurose H, Mochizuki S, Matsuda M, Mochizuki N (2002) Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J Biol Chem 277:23747–23754CrossRefPubMed
45.
Zurück zum Zitat Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276:11830–11837CrossRefPubMed Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276:11830–11837CrossRefPubMed
46.
Zurück zum Zitat Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Gödecke A, Ishii I, Kleuser B, Schäfers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581CrossRefPubMedCentralPubMed Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Gödecke A, Ishii I, Kleuser B, Schäfers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516CrossRefPubMedCentralPubMed Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23:600–610CrossRefPubMedCentralPubMed Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23:600–610CrossRefPubMedCentralPubMed
49.
Zurück zum Zitat Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, Chen LL, Pang M-F, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellström M, Fuxe J, Uhlén P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599CrossRefPubMed Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, Chen LL, Pang M-F, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellström M, Fuxe J, Uhlén P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599CrossRefPubMed
Metadaten
Titel
High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation
verfasst von
Fengyan Jin
Nina Hagemann
Li Sun
Jiang Wu
Thorsten R. Doeppner
Yun Dai
Dirk M. Hermann
Publikationsdatum
15.02.2018
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2018
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-018-9603-z

Weitere Artikel der Ausgabe 2/2018

Angiogenesis 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.