Skip to main content
Erschienen in: Hereditary Cancer in Clinical Practice 1/2018

Open Access 01.12.2018 | Research

High frequency of pathogenic non-founder germline mutations in BRCA1 and BRCA2 in families with breast and ovarian cancer in a founder population

verfasst von: J. Maksimenko, A. Irmejs, G. Trofimovičs, D. Bērziņa, E. Skuja, G. Purkalne, E. Miklaševičs, J. Gardovskis

Erschienen in: Hereditary Cancer in Clinical Practice | Ausgabe 1/2018

Abstract

Background

Pathogenic BRCA1 founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers. Identifying germline pathogenic gene variants in patients with primary breast and ovarian cancer could significantly impact the medical management of patients. The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population.

Methods

Fifteen female probands and 1 male proband that met National Comprehensive Cancer Network (NCCN) criteria for BRCA1/2 testing were included in the study and underwent 26-gene panel testing. Fourteen probands had breast cancer, one proband had ovarian cancer, and one proband had both breast and ovarian cancer. In a 26-gene panel, the following breast and/or ovarian cancer susceptibility genes were included: ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. All patients previously tested negative for BRCA1 founder mutations.

Results

In 44% (7 out of 16) of tested probands, pathogenic mutations were identified. Six probands carried pathogenic mutations in BRCA1, and one proband carried pathogenic mutations in BRCA2. In patients, a variant of uncertain significance was found in BRCA2, RAD50, MRE11A and CDH1. The Manchester scoring system showed a high accuracy (87.5%), high sensitivity (85.7%) and high specificity (88.9%) for the prediction of pathogenic non-founder BRCA1/2 mutations.

Conclusion

A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.
Abkürzungen
ATM
Ataxia-telangiectasia mutated
BARD1
BRCA1 (Breast Cancer 1) Associated RING Domain 1 gene
BLM
Blooms syndrome gene
BRCA1
Breast cancer susceptibility gene 1
BRCA2
Breast cancer susceptibility gene 2
BRIP1
BRCA1-interacting protein 1 gene
CDH
Cadherin-1 gene
cDNA
Complementary Deoxyribonucleic Acid
CHEK2
Checkpoint kinase 2 gene
DNA
Deoxyribonucleic Acid
EPCAM
epithelial cell adhesion molecule gene
ER
Estrogen receptor
FAM175A
Family with sequence similarity 175A gene
G2
Moderately differentiated
G3
Well differentiated
HER2
Human epidermal growth factor receptor 2
MEN1
multiple endocrine neoplasia type 1
MLH
MutL homolog 1 gene
MRE11A
MRE11 meiotic recombination 11 homolog A gene
MSH6
MutL homolog 6 gene
MUTYH
MutY DNA glycosylase
NA
Not applicable
NBN
Nibrin gene
NCCN
National Comprehensive Cancer Network
PALB2
Partner and localizer of BRCA2 gene
PAT
Pathological
PMS2
postmeiotic segregation increased 2
PR
Progesterone receptor
PTEN
Phosphatase and tensin homolog gene
RAD50
Human homolog of S. cerevisiae RAD50 gene
RAD51
RAD51 paralog D
RAD51C
RAD51 homolog C
STK11
serine/threonine kinase 11 gene
TP53
tumor protein p53 gene
USA
United States of America
VUS
Variant of uncertain significance
XRCC2
X-ray repair cross-complementing protein 2

Background

Hereditary breast cancers account for approximately 10% of all breast cancers, and approximately 23% of all ovarian cancers are considered hereditary [1, 2]. According to Plakhins et al., BRCA1 pathogenic founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers [3]. BRCA1 and BRCA2 pathogenic founder mutation analysis is a relatively straightforward and cost-effective screening strategy to identify mutation carriers [4]. In Latvia, all consecutive breast and ovarian cancer cases are eligible for BRCA1 pathogenic founder mutations (c.181 T > G, c.4035delA, c.5266dupC) screening [5], and the costs of the test are covered by the public health care system. However, according to recent studies, non-founder BRCA1 and BRCA2 pathogenic mutations account for up to 21.6% of all BRCA1 and BRCA2 pathogenic mutations in the Aschkenazi Jewish population [6, 7]. There is little information about pathogenic BRCA1/2 non-founder mutations in Latvia. In a study published by Berzina et al., pathogenic non-founder mutations in BRCA1 and BRCA2 were identified in 4 out of 30 high-risk breast/ovarian cancer families from the Latvian population [8]. In another study published by Tihomirova et al., non-founder pathogenic mutations in BRCA1 and BRCA2 were detected in 9 out of 160 patients with breast and ovarian cancer [5]. These findings suggest that the proportion of pathogenic BRCA1/2 non-founder mutations is small and that family cancer history alone is of limited value to find subgroups of individuals, where expensive complete BRCA1/2 testing is indicated.
The remaining hereditary breast and ovarian cancer cases are associated with mutations in other breast and ovarian cancer susceptibility genes, such as BRCA1/2, TP53, PTEN, CDH1, STK11, MLH1, MSH2, MSH6, PMS2, PALB2, CHEK2, ATM, RAD51C, RAD51D, BRIP1 and other [9]. Patients and their relatives harbouring mutations in hereditary cancer predisposing genes could benefit prevention and screening strategies or novel therapeutic approaches [10, 11]. Advances in next-generation sequencing allowed the implementation of low-cost multi-gene panel testing in clinical practice to detect pathogenic mutations in hereditary cancer predisposing genes [12].
Therefore, knowledge of the frequency and phenotypical features of pathogenic mutations beyond BRCA1 pathogenic founder mutations in breast and ovarian cancer susceptibility genes is essential for determining the role of second-line testing with multi-gene panels in counselling unsolved high-risk breast and ovarian cancer patients.
The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population.

Methods

Patient group

Sixteen sequential patients with primary breast and/or ovarian cancer who met all inclusion criteria were included in the study between October 2016 and August 2017. The inclusion criteria were as follows: 1) fulfil at least one of the National Comprehensive Cancer network (NCCN) BRCA1/2 testing criteria (Table 1) (www.​nccn.​org); 2) previously tested negative for BRCA1 pathogenic founder mutations (c.181 T > G, c.4035delA, c.5266dupC); 3) able to cover the cost of the 26 multi-gene tests.
Table 1
NCCN selection criteria for screening of mutations in BRCA1and BRCA2
At least one of the following criteria has to be met:
1. Personal history of breast cancer diagnosed < age 45 years
2. Personal history of breast cancer diagnosed < age 50 years and at least one case of breast cancer at any age in close blood relative
3. Personal history of triple negative breast cancer diagnosed < age 60 years
4. Personal history of breast cancer diagnosed at any age and at least two cases of breast cancer diagnosed at any age or at least one close blood relative with breast cancer diagnosed ≤50 years or at least one blood relative with ovarian carcinoma or a close male blood relative with breast cancer
5. Personal history of ovarian cancer
6. Personal history of male breast cancer
The following clinical information was obtained: age at testing, personal cancer history, age at cancer diagnosis, breast and/or ovarian cancer pathology, BRCA1/2 testing history, a family cancer history that covers a 3-generation pedigree according to probands information. The median patient age was 45.6 years (33–63 years). Fifteen out of 16 (93.75%) patients were females, and 1 out of 16 (6.25%) patients was male. Thirteen patients had unilateral breast cancer, 1 patient had bilateral breast cancer, 1 patient had ovarian cancer, and in 1 patient had both breast and ovarian cancer. Four out of 16 (25%) breast cancers were luminal-like HER2 negative, 2 out of 16 (12.5%) breast cancers were luminal B HER2 positive, 8 out of 16 (50%) breast cancers were triple-negative, and 1 out of 16 (6.25%) breast cancers was HER2 positive. The patient characteristics are summarized in Table 2.
Table 2
The baseline characteristics of patient group
Nr.
Probands age at diagnosis (years)
Primary cancer site
Morphological subtype
Breast cancersubtype
Tumor grade
Family history
1
54
Breast
Ductal
Luminal
missing
Mother and maternal aunt – breast cancer age 60; daughter - polycytemia vera age15, brother – melanoma age 60
2
40
Breast
Ductal
Triple-negative*
G3
Mother - Breast and ovarian cancer age 40
3
33 and 38
Left Breast/ Right Breast
Ductal/ Ductal
Triple-negative/ Luminal
G3/G3
Paternal grandmother - unknown primary gynecological cancer age 50
4
63
Breast and Ovaries
Ductal
Triple-negative
G2
Mother with breast cancer age 55; sister - ovarian cancer age 59
5
37
Ovaries
NA
NA
NA
Mother - breast cancer age 64
6
58
Breast
Lobular
Luminal
G2
Mother and maternal aunt – breast cancer age > 60
7
43
Breast
Ductal
Triple-negative
G3
No
8
42
Breast
Ductal/Medullary
Triple-negative
G2
Mother - breast cancer age 60
9
50
Breast
Ductal
Triple-negative
G3
Mother - breast cancer age 52
10
35
Breast
Ductal
Triple-negative
G3
Mother - breast cancer age 46
11
52
Breast
Ductal
Luminal B HER2 positive
G2
Mother and maternal aunt – breast cancer age > 50
12
41
Breast
Ductal
HER2 positive
G3
No
13
53
Breast
Ductal
Triple-negative
missing
No
14
36
Breast
Ductal
Luminal
missing
No
15
53
Breast
Ductal
Luminal
missing
Mother and maternal grandmother – breast cancer age > 60 years
16
40
Breast
Ductal
Luminal B HER2 positive
missing
No

DNA testing

Informed consent for genetic testing was obtained for all patients. All patients underwent DNA testing with a 26-gene panel (myBRCA HiRisk Hereditary Breast and Ovarian Cancer screening Test, VeritasGenetics, USA) that is a targeted next-generation sequencing assay for the detection of mutations in 26 breast and ovarian cancer susceptibility genes. The genes included high-penetrance breast-ovarian genes (BRCA1, BRCA2, PTEN, TP53, CDH1, STK11, PALB2), moderate-penetrance breast and/or ovarian genes (CHEK2, BRIP1, ATM), and additional genes (BARD1, BLM, EPCAM, RAD50, RAD51C, RAD51D, MEN1, MRE11A, MUTYH MSH2, MLH1, NBN, MSH6, PMS2, FAM175A, XRCC2). In all patients, the test was performed using saliva. The specificity and sensitivity of the assay are 99.9% for point mutations and small insertions/deletions in the 24 sequenced genes and 99.9% for structural variations in BRCA1 and BRCA2.

Statistical analysis

The specificity, sensitivity and accuracy of the NCCN criteria, Manchester scoring system and Swedish Breast cancer group criteria for the prediction of pathogenic non-founder mutations were evaluated. The Manchester score of 15 points threshold was used to assess the likelihood of BRCA1/2 pathogenic mutation [13]. The specificity, sensitivity and accuracy of different selection criteria for BRCA1/2 testing in our cohort were calculated using MedCalc Statistical Software version 17.9.

Results

In seven out of sixteen (44%) patients included, pathogenic non-founder BRCA1/2 mutations were identified. Six patients carried pathogenic variants of BRCA1 and one of BRCA2. In four patients, variants of uncertain significance of BRCA2, RAD50, MRE11A and CDH1 were found. Detailed results are shown in Table 3. The NCCN criteria showed a high sensitivity (100%) with low specificity (50%) for the prediction of non-founder pathogenic BRCA1/2 mutations. The Swedish Breast cancer group criteria showed a low sensitivity (57.1%) with three false negative results. The Manchester scoring system showed a high accuracy (87.5%) for the prediction of pathogenic non-founder BRCA1/2 mutations with high sensitivity (85.7%) and specificity (88.9%). The sensitivity, specificity and accuracy of different criteria/scoring systems for the detection of probability of BRCA1/2 pathogenic mutations in our cohort are compared in Table 4.
Table 3
Results
Nr.
Mutation
Clinical significance of mutation
NCCN inclusion criteria
Manchester score [13]
Swedish Breast cancer group criteria for screening of mutation in BRCA1 and BRCA2
1
RAD50c.980G > A
VUS
NCCN4
17
One case of male breast cancer
2
BRCA1c.5075-?_5152 +?del
PAT
NCCN2
29
One case of triple-negative breast cancer ≤age 40
3
BRCA1c.1-?_c.134 +?del
PAT
NCCN3
20
One case of breast cancer ≤age 35
4
BRCA2c.6998dupT
PAT
NCCN4
19
Breast cancer and ovarian cancer in one individual.
5
BRCA1c.5117G > A
PAT
NCCN5
15
Do not match
6
RAD50c.251 T > A
VUS
NCCN4
 
MRE11Ac.1715G > A
VUS
6
NA
7
BRCA1c.1961delA
PAT
NCCN3
14
Do not match
8
BRCA2c.280C > T
VUS
NCCN4
14
Do not match
9
BRCA1c.5117G > A
PAT
NCCN4
16
Do not match
10
BRCA1c.4996_4997dupTA
PAT
NCCN4
20
One case of triple-negative breast cancer ≤age 40
11
Negative
Negative
NCCN4
2
Do not match
12
Negative
Negative
NCCN1
2
Do not match
13
Negative
Negative
NCCN3
8
Do not match
14
Negative
Negative
NCCN1
8
Do not match
15
CDH1 c.808 T > G
VUS
NCCN4
8
Do not match
16
Negative
Negative
NCCN1
0
Do not match
PAT, pathological; VUS, variant of uncertain significance; *Triple-negative breast cancer was defined as ER-0%; PR-0%; HER2- negative;
Table 4
Comparison of different selection criteria for BRCA1/2 testing in our cohort
Criteria
Sensitivity
Specificity
Accuracy
NCCN
100%
50%
64%
Manchester scoring system
85.7%
88.9%
87.5%
Swedish Breast cancer group
57.1%
88.9%
75%

Discussion

Our study is the first report on the use of a 26 gene panel in to examine breast and ovarian cancer susceptibility genes in patients in Latvia. We demonstrated a high frequency of pathogenic non-founder germline mutations in BRCA1 and BRCA2 genes. In seven out of sixteen (44%) primary breast and ovarian cancer patients matching the criteria for BRCA1/2 testing pathogenic non-founder BRCA1/2 mutations were identified. All 7 pathogenic mutations, including 2 large deletions, are novel in populations of Latvia [5, 8]. These results may suggest that the present practice of testing only the 3 most frequent BRCA1 pathogenic founder mutations is insufficient and fails to detect a considerable number of pathogenic mutations in BRCA1/2. However, our study comprises a relatively small cohort of selected patients. In a study published by Frank et al., 21.6% of patients with Ashkenazi ancestry pathogenic non-founder BRCA1 and BRCA2 mutations were identified [6]. In contrast, in the Finnish population of high-risk individuals tested negative for 28 BRCA1/2 pathogenic founder mutations, additional pathogenic mutations in BRCA1 and BRCA2 accounted for just 1.2% [12]. Much larger numbers are necessary to assess the real proportion of pathogenic non-founder mutations in the population of Latvia.
Despite the drawbacks of such a small study group, the initial results raised some observations.
Interestingly, probands that carried a pathogenic non-founder mutation had some common features. All six breast cancer patients in our study with proven pathogenic non-founder BRCA1/2 mutations had a triple-negative phenotype. It is well established that approximately 80% of all BRCA1/2– related tumours have a triple-negative phenotype [1418]. The prevalence of pathogenic germline BRCA1/2 mutations in the selected triple-negative breast cancer patients ranged from 9.2 to 34.4% [1922]. Additional analyses of cDNA microarray data from van’t Veer showed that BRCA1-related tumours have a sporadic basal-like breast cancer gene expression profile [23]. Additionally, according to Richardson et al., loss of BRCA1 function could play a role in the development of basal-like breast cancers [24]. Couch et al. identified BRCA1/2 pathogenic mutations in 11.2% of triple-negative breast cancer patients and other breast-ovarian cancer predisposing gene mutations in 3.7% of triple-negative breast cancer patients [25].
In our study we used the NCCN criteria for screening pathogenic mutations in BRCA1 and BRCA2, where triple-negative breast cancer is used as a criterion together with an age limit < 60. Only one out of six breast cancer patients in our study who carried a pathogenic BRCA1/2 non-founder mutation was older than 60 years of age, but in this case, family cancer history was positive in the study published by Couch et al., 3.1% of triple-negative breast cancer patients older than 60 years and only 1.4% with no family history of breast or ovarian cancer were diagnosed with BRCA1/2 pathogenic mutation [25]. Therefore, our study results support the current NCCN guidelines for screening all triple-negative breast cancer patients younger than 60 years of age.
In contrast, the application of the upper age limit for triple-negative breast cancer patients of 40 years (Swedish Breast cancer group criteria for screening for mutations in BRCA1 and BRCA2) would miss several BRCA-positive cases in our cohort [26].
Our small study showed the high accuracy of the Manchester scoring system for the prediction of pathogenic non-founder BRCA1/2 mutations in founder mutation-negative patients. Our finding is supported by several other studies performed on the validation of the Manchester scoring system in populations of UK, Germany and South East Asia [13, 27, 28]. However, larger numbers of cases are needed for comprehensive validation of these criteria in the population of Latvia.
Additionally, three out of eight patients tested negative for 26 breast and ovarian cancer susceptibility genes were HER2 positive. According to a recently published study, only 9% of BRCA1-related breast tumours and 13% of BRCA2-related breast tumours were HER2 positive [29]. HER2 positivity is also included in the Manchester scoring system as a BRCA1/2 probability decreasing factor [13].
Ovarian cancer in a personal or family history was documented in three out of seven patients who carried a pathogenic BRCA1/2 non-founder mutation. Additionally, in one case, unknown gynaecological cancer was reported in a paternal aunt. According to recent studies, the presence of ovarian cancer in personal or family history of pathogenic BRCA1 founder-negative breast cancer patients increases the possibility of carrying previously undetected pathogenic BRCA1/2 non-founder mutations [30, 31]. Recently, in a study published by Couch et al., ovarian cancer in family history was documented only in 1 of 54 pathogenic non-BRCA1/2 mutation carriers with triple-negative breast cancer [25].
In our study, no pathogenic mutations were detected in another 24 genes included in the panel. Some previously published studies demonstrated that the rate of pathogenic mutations in non-BRCA1/2 genes ranged from 2.9 to 9.3% [3235].
Four of the 16 (25%) patients were identified to have a variant of unknown significance (VUS) in BRCA2, RAD50, CDH1 and MRE11. Unfortunately, due to an insufficient sample size in our study, we cannot elaborate upon those results.

Conclusion

A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed among patients with triple-negative familial breast cancer in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.

Funding

This work was supported by State Research Program “Biomedicine for the public health (BIOMEDICINE)” project 5 “Personalised cancer diagnostics and treatment effectiveness evaluation”.

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
The study was approved by a Central Medical Ethics Committee of Latvia. Written consent was obtained.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Oosterwijk JC, de Vries J, Mourits MJ, de Bock GH. Genetic testing and familial implications in breast-ovarian cancer families. Maturitas. 2014;78:252.CrossRefPubMed Oosterwijk JC, de Vries J, Mourits MJ, de Bock GH. Genetic testing and familial implications in breast-ovarian cancer families. Maturitas. 2014;78:252.CrossRefPubMed
2.
Zurück zum Zitat Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A, Norquist B, Pennington KP, Garcia RL, King MC, Swisher EM. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032.CrossRefPubMedCentralPubMed Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A, Norquist B, Pennington KP, Garcia RL, King MC, Swisher EM. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Plakhins G, Irmejs A, Gardovskis A, Subatniece S, Rozite S, Bitina M, Keire G, Purkalne G, Teibe U, Trofimovics G, Miklasevics E, Gardovskis J. Genotype-phenotype correlations among BRCA1 4153delA and 5382insC mutation carriers from Latvia. BMC Med Genet. 2011;12:147.CrossRefPubMedCentralPubMed Plakhins G, Irmejs A, Gardovskis A, Subatniece S, Rozite S, Bitina M, Keire G, Purkalne G, Teibe U, Trofimovics G, Miklasevics E, Gardovskis J. Genotype-phenotype correlations among BRCA1 4153delA and 5382insC mutation carriers from Latvia. BMC Med Genet. 2011;12:147.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Armstrong J, Toscano M, Kotchko N, Friedman S, Schwartz MD, Virgo KS, Lynch K, Andrews JE, Aguado Loi CX, Bauer JE, Casares C, Teten RT, Kondoff MR, Molina AD, Abdollahian M, Brand L, Walker GS, Sutphen R. American BRCA outcomes and utilization of testing (ABOUT) study: a pragmatic research model that incorporates personalized medicine/patient-centered outcomes in a real world setting. J Genet Couns. 2015;24:18–28.CrossRefPubMed Armstrong J, Toscano M, Kotchko N, Friedman S, Schwartz MD, Virgo KS, Lynch K, Andrews JE, Aguado Loi CX, Bauer JE, Casares C, Teten RT, Kondoff MR, Molina AD, Abdollahian M, Brand L, Walker GS, Sutphen R. American BRCA outcomes and utilization of testing (ABOUT) study: a pragmatic research model that incorporates personalized medicine/patient-centered outcomes in a real world setting. J Genet Couns. 2015;24:18–28.CrossRefPubMed
5.
Zurück zum Zitat Tihomirova L, Vaivade I, Fokina O, Peculis R, Mandrika I, Sinicka O, Stengrevics A, Krilova A, Keire G, Petrevics J, Eglitis J, Timofejevs M, Leja M. BRCA1 gene-related hereditary susceptibility to breast and ovarian cancer in Latvia. Adv Med Sci. 2014;59(1):114–9.CrossRefPubMed Tihomirova L, Vaivade I, Fokina O, Peculis R, Mandrika I, Sinicka O, Stengrevics A, Krilova A, Keire G, Petrevics J, Eglitis J, Timofejevs M, Leja M. BRCA1 gene-related hereditary susceptibility to breast and ovarian cancer in Latvia. Adv Med Sci. 2014;59(1):114–9.CrossRefPubMed
6.
Zurück zum Zitat Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter B, Gumpper KL, Scholl T, Tavtigian SV, Pruss DR, Critchfield GC. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 2002;20:1480.CrossRefPubMed Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter B, Gumpper KL, Scholl T, Tavtigian SV, Pruss DR, Critchfield GC. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 2002;20:1480.CrossRefPubMed
8.
Zurück zum Zitat Berzina D, Nakazawa-Miklasevica M, Zestkova J, Aksenoka K, Irmejs A, Gardovskis A, Kalniete D, Gardovskis J, Miklasevics E. BRCA1/2 mutation screening in high-risk breast/ovarian cancer families and sporadic cancer patient surveilling for hidden high-risk families. BMC Med Genet. 2013;14:61.CrossRefPubMedCentralPubMed Berzina D, Nakazawa-Miklasevica M, Zestkova J, Aksenoka K, Irmejs A, Gardovskis A, Kalniete D, Gardovskis J, Miklasevics E. BRCA1/2 mutation screening in high-risk breast/ovarian cancer families and sporadic cancer patient surveilling for hidden high-risk families. BMC Med Genet. 2013;14:61.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Paluch-Shimon S, Cardoso F, Sessa C, Balmana J, Cardoso MJ, Gilbert F, Senkus E. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO clinical practice guidelines for cancer prevention and screening. Ann Oncol. 2016;27(5):103.CrossRef Paluch-Shimon S, Cardoso F, Sessa C, Balmana J, Cardoso MJ, Gilbert F, Senkus E. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO clinical practice guidelines for cancer prevention and screening. Ann Oncol. 2016;27(5):103.CrossRef
11.
Zurück zum Zitat Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, Timms K, Garber JE, Herold C, Ellisen L, Krejdovsky J, DeLeonardis K, Sedgwick K, Soltis K, Roa B, Wenstrup RJ, Hartman AR. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121:25.CrossRefPubMed Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, Timms K, Garber JE, Herold C, Ellisen L, Krejdovsky J, DeLeonardis K, Sedgwick K, Soltis K, Roa B, Wenstrup RJ, Hartman AR. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121:25.CrossRefPubMed
12.
Zurück zum Zitat Kuusisto KM, Bebel A, Vihinen M, Schleutker J, Sallinen SL. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res. 2011;13(1):R20.CrossRefPubMedCentralPubMed Kuusisto KM, Bebel A, Vihinen M, Schleutker J, Sallinen SL. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res. 2011;13(1):R20.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Evans DG, Harkness EF, Plaskocinska I, Wallace AJ, Clancy T, Woodward ER, Howell TA, Tischkowitz M, Lalloo F. Pathology update to the Manchester scoring system based on testing in over 4000 families. J Med Genet. 2017;54(10):674.CrossRefPubMed Evans DG, Harkness EF, Plaskocinska I, Wallace AJ, Clancy T, Woodward ER, Howell TA, Tischkowitz M, Lalloo F. Pathology update to the Manchester scoring system based on testing in over 4000 families. J Med Genet. 2017;54(10):674.CrossRefPubMed
14.
Zurück zum Zitat Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938.CrossRefPubMed Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938.CrossRefPubMed
15.
Zurück zum Zitat Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002;20(9):2310.CrossRefPubMed Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002;20(9):2310.CrossRefPubMed
16.
Zurück zum Zitat Stefansson OA, Jonasson JG, Johannsson OT, Olafsdottir K, Steinarsdottir M, Valgeirsdottir S, Eyfjord JE. Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Res. 2009;11(4):R47.CrossRefPubMedCentralPubMed Stefansson OA, Jonasson JG, Johannsson OT, Olafsdottir K, Steinarsdottir M, Valgeirsdottir S, Eyfjord JE. Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Res. 2009;11(4):R47.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Diaz LK, Cryns VL, Symmans WF, Sneige N. Triple negative breast carcinoma and the basal phenotype: from expression profiling to clinical practice. Adv Anat Pathol. 2007;14(6):419.CrossRefPubMed Diaz LK, Cryns VL, Symmans WF, Sneige N. Triple negative breast carcinoma and the basal phenotype: from expression profiling to clinical practice. Adv Anat Pathol. 2007;14(6):419.CrossRefPubMed
18.
Zurück zum Zitat Palacios J, Honrado E, Osorio A, Cazorla A, Sarrió D, Barroso A, Rodríguez S, Cigudosa JC, Diez O, Alonso C, Lerma E, Dopazo J, Rivas C, Benitez. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat. 2005;90(1):5.CrossRefPubMed Palacios J, Honrado E, Osorio A, Cazorla A, Sarrió D, Barroso A, Rodríguez S, Cigudosa JC, Diez O, Alonso C, Lerma E, Dopazo J, Rivas C, Benitez. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat. 2005;90(1):5.CrossRefPubMed
19.
Zurück zum Zitat Young SR, Pilarski RT, Donenberg T, Shapiro C, Hammond LS, Miller J, Brooks KA, Cohen S, Tenenholz B, Desai D, Zandvakili I, Royer R, Li S, Narod SA. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9:86.CrossRefPubMedCentralPubMed Young SR, Pilarski RT, Donenberg T, Shapiro C, Hammond LS, Miller J, Brooks KA, Cohen S, Tenenholz B, Desai D, Zandvakili I, Royer R, Li S, Narod SA. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9:86.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Comen E, Davids M, Kirchhoff T, Hudis C, Offit K, Robson M. Relative contributions of BRCA1 and BRCA2 mutations to “triple-negative” breast cancer in Ashkenazi women. Breast Cancer Res Treat. 2011;129(1):185.CrossRefPubMedCentralPubMed Comen E, Davids M, Kirchhoff T, Hudis C, Offit K, Robson M. Relative contributions of BRCA1 and BRCA2 mutations to “triple-negative” breast cancer in Ashkenazi women. Breast Cancer Res Treat. 2011;129(1):185.CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat Robertson L, Hanson H, Seal S, Warren-Perry M, Hughes D, Howell I, Turnbull C, Houlston R, Shanley S, Butler S, Evans DG, Ross G, Eccles D, Tutt A, Rahman N, TNT Trial TMG; BCSC (UK). BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer. 2012;106(6):1234–8.CrossRefPubMedCentralPubMed Robertson L, Hanson H, Seal S, Warren-Perry M, Hughes D, Howell I, Turnbull C, Houlston R, Shanley S, Butler S, Evans DG, Ross G, Eccles D, Tutt A, Rahman N, TNT Trial TMG; BCSC (UK). BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer. 2012;106(6):1234–8.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Phuah SY, Looi LM, Hassan N, Rhodes A, Dean S, Taib NA, Yip CH, Teo SH. Triple-negative breast cancer and PTEN (phosphatase and tensin homologue) loss are predictors of BRCA1 germline mutations in women with early-onset and familial breast cancer, but not in women with isolated late-onset breast cancer. Breast Cancer Res. 2012;14(6):R142.CrossRefPubMedCentralPubMed Phuah SY, Looi LM, Hassan N, Rhodes A, Dean S, Taib NA, Yip CH, Teo SH. Triple-negative breast cancer and PTEN (phosphatase and tensin homologue) loss are predictors of BRCA1 germline mutations in women with early-onset and familial breast cancer, but not in women with isolated late-onset breast cancer. Breast Cancer Res. 2012;14(6):R142.CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418.CrossRefPubMedCentralPubMed Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006;9(2):121.CrossRefPubMed Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006;9(2):121.CrossRefPubMed
25.
Zurück zum Zitat Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, Olson JE, Godwin AK, Pankratz VS, Olswold C, Slettedahl S, Hallberg E, Guidugli L, Davila JI, Beckmann MW, Janni W, Rack B, Ekici AB, Slamon DJ, Konstantopoulou I, Fostira F, Vratimos A, Fountzilas G, Pelttari LM, Tapper WJ, Durcan L, Cross SS, Pilarski R, Shapiro CL, Klemp J, Yao S, Garber J, Cox A, Brauch H, Ambrosone C, Nevanlinna H, Yannoukakos D, Slager SL, Vachon CM, Eccles DM, Fasching PA. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304.CrossRefPubMed Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, Olson JE, Godwin AK, Pankratz VS, Olswold C, Slettedahl S, Hallberg E, Guidugli L, Davila JI, Beckmann MW, Janni W, Rack B, Ekici AB, Slamon DJ, Konstantopoulou I, Fostira F, Vratimos A, Fountzilas G, Pelttari LM, Tapper WJ, Durcan L, Cross SS, Pilarski R, Shapiro CL, Klemp J, Yao S, Garber J, Cox A, Brauch H, Ambrosone C, Nevanlinna H, Yannoukakos D, Slager SL, Vachon CM, Eccles DM, Fasching PA. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304.CrossRefPubMed
26.
Zurück zum Zitat Nilsson MP, Winter C, Kristoffersson U, Rehn M, Larsson C, Saal LH, Loman N. Efficacy versus effectiveness of clinical genetic testing criteria for BRCA1 and BRCA2 hereditary mutations in incident breast cancer. Familial Cancer. 2017;16(2):187.CrossRefPubMedCentralPubMed Nilsson MP, Winter C, Kristoffersson U, Rehn M, Larsson C, Saal LH, Loman N. Efficacy versus effectiveness of clinical genetic testing criteria for BRCA1 and BRCA2 hereditary mutations in incident breast cancer. Familial Cancer. 2017;16(2):187.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Kast K, Schmutzler RK, Rhiem K, Kiechle M, Fischer C, Niederacher D, Arnold N, Grimm T, Speiser D, Schlegelberger B, Varga D, Horvath J, Beer M, Briest S, Meindl A, Engel C. Validation of the Manchester scoring system for predicting BRCA1/2 mutations in 9,390 families suspected of having hereditary breast and ovarian cancer. Int J Cancer. 2014;135(10):2352–61.CrossRefPubMed Kast K, Schmutzler RK, Rhiem K, Kiechle M, Fischer C, Niederacher D, Arnold N, Grimm T, Speiser D, Schlegelberger B, Varga D, Horvath J, Beer M, Briest S, Meindl A, Engel C. Validation of the Manchester scoring system for predicting BRCA1/2 mutations in 9,390 families suspected of having hereditary breast and ovarian cancer. Int J Cancer. 2014;135(10):2352–61.CrossRefPubMed
28.
Zurück zum Zitat Chew W, Moorakonda RB, Courtney E, Soh H, Li ST, Chen Y, Shaw T, Allen JC, Evans DGR, Ngeow J. Evaluation of the relative effectiveness of the 2017 updated Manchester scoring system for predicting BRCA1/2 mutations in a southeast Asian country. J Med Genet. 2017;55:344–50. [Epub ahead of print]CrossRefPubMed Chew W, Moorakonda RB, Courtney E, Soh H, Li ST, Chen Y, Shaw T, Allen JC, Evans DGR, Ngeow J. Evaluation of the relative effectiveness of the 2017 updated Manchester scoring system for predicting BRCA1/2 mutations in a southeast Asian country. J Med Genet. 2017;55:344–50. [Epub ahead of print]CrossRefPubMed
29.
Zurück zum Zitat Kuchenbaecker KB, Neuhausen SL, Robson M, Barrowdale D, McGuffog L, Mulligan AM, Andrulis IL, Spurdle AB, Schmidt MK, Schmutzler RK, Engel C, Wappenschmidt B, Nevanlinna H, Thomassen M, Southey M, Radice P, Ramus SJ, Domchek SM, Nathanson KL, Lee A, Healey S, Nussbaum RL, Rebbeck TR, Arun BK, James P, Karlan BY, Lester J, Cass I, Breast Cancer Family Registry, Terry MB, Daly MB, Goldgar DE, Buys SS, Janavicius R, Tihomirova L, Tung N, Dorfling CM, van Rensburg EJ, Steele L, v O Hansen T, Ejlertsen B, Gerdes AM, Nielsen FC, Dennis J, Cunningham J, Hart S, Slager S, Osorio A, Benitez J, Duran M, Weitzel JN, Tafur I, Hander M, Peterlongo P, Manoukian S, Peissel B, Roversi G, Scuvera G, Bonanni B, Mariani P, Volorio S, Dolcetti R, Varesco L, Papi L, Tibiletti MG, Giannini G, Fostira F, Konstantopoulou I, Garber J, Hamann U, Donaldson A, Brewer C, Foo C, Evans DG, Frost D, Eccles D, EMBRACE Study, Douglas F, Brady A, Cook J, Tischkowitz M, Adlard J, Barwell J, Ong KR, Walker L, Izatt L, Side LE, Kennedy MJ, Rogers MT, Porteous ME, Morrison PJ, Platte R, Eeles R, Davidson R, Hodgson S, Ellis S, Godwin AK, Rhiem K, Meindl A, Ditsch N, Arnold N, Plendl H, Niederacher D, Sutter C, Steinemann D, Bogdanova-Markov N, Kast K, Varon-Mateeva R, Wang-Gohrke S, Gehrig A, Markiefka B, Buecher B, Lefol C, Stoppa-Lyonnet D, Rouleau E, Prieur F, Damiola F, GEMO Study Collaborators, Barjhoux L, Faivre L, Longy M, Sevenet N, Sinilnikova OM, Mazoyer S, Bonadona V, Caux-Moncoutier V, Isaacs C, Van Maerken T, Claes K, Piedmonte M, Andrews L, Hays J, Rodriguez GC, Caldes T, de la Hoya M, Khan S, Hogervorst FB, Aalfs CM, de Lange JL, Meijers-Heijboer HE, van der Hout AH, Wijnen JT, van Roozendaal KE, Mensenkamp AR, van den Ouweland AM, van Deurzen CH, van der Luijt RB, HEBON, Olah E, Diez O, Lazaro C, Blanco I, Teulé A, Menendez M, Jakubowska A, Lubinski J, Cybulski C, Gronwald J, Jaworska-Bieniek K, Durda K, Arason A, Maugard C, Soucy P, Montagna M, Agata S, Teixeira MR, KConFab Investigators, Olswold C, Lindor N, Pankratz VS, Hallberg E, Wang X, Szabo CI, Vijai J, Jacobs L, Corines M, Lincoln A, Berger A, Fink-Retter A, Singer CF, Rappaport C, Kaulich DG, Pfeiler G, Tea MK, Phelan CM, Mai PL, Greene MH, Rennert G, Imyanitov EN, Glendon G, Toland AE, Bojesen A, Pedersen IS, Jensen UB, Caligo MA, Friedman E, Berger R, Laitman Y, Rantala J, Arver B, Loman N, Borg A, Ehrencrona H, Olopade OI, Simard J, Easton DF, Chenevix-Trench G, Offit K, Couch FJ, Antoniou AC. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2014;16(6):3416.CrossRefPubMedCentralPubMed Kuchenbaecker KB, Neuhausen SL, Robson M, Barrowdale D, McGuffog L, Mulligan AM, Andrulis IL, Spurdle AB, Schmidt MK, Schmutzler RK, Engel C, Wappenschmidt B, Nevanlinna H, Thomassen M, Southey M, Radice P, Ramus SJ, Domchek SM, Nathanson KL, Lee A, Healey S, Nussbaum RL, Rebbeck TR, Arun BK, James P, Karlan BY, Lester J, Cass I, Breast Cancer Family Registry, Terry MB, Daly MB, Goldgar DE, Buys SS, Janavicius R, Tihomirova L, Tung N, Dorfling CM, van Rensburg EJ, Steele L, v O Hansen T, Ejlertsen B, Gerdes AM, Nielsen FC, Dennis J, Cunningham J, Hart S, Slager S, Osorio A, Benitez J, Duran M, Weitzel JN, Tafur I, Hander M, Peterlongo P, Manoukian S, Peissel B, Roversi G, Scuvera G, Bonanni B, Mariani P, Volorio S, Dolcetti R, Varesco L, Papi L, Tibiletti MG, Giannini G, Fostira F, Konstantopoulou I, Garber J, Hamann U, Donaldson A, Brewer C, Foo C, Evans DG, Frost D, Eccles D, EMBRACE Study, Douglas F, Brady A, Cook J, Tischkowitz M, Adlard J, Barwell J, Ong KR, Walker L, Izatt L, Side LE, Kennedy MJ, Rogers MT, Porteous ME, Morrison PJ, Platte R, Eeles R, Davidson R, Hodgson S, Ellis S, Godwin AK, Rhiem K, Meindl A, Ditsch N, Arnold N, Plendl H, Niederacher D, Sutter C, Steinemann D, Bogdanova-Markov N, Kast K, Varon-Mateeva R, Wang-Gohrke S, Gehrig A, Markiefka B, Buecher B, Lefol C, Stoppa-Lyonnet D, Rouleau E, Prieur F, Damiola F, GEMO Study Collaborators, Barjhoux L, Faivre L, Longy M, Sevenet N, Sinilnikova OM, Mazoyer S, Bonadona V, Caux-Moncoutier V, Isaacs C, Van Maerken T, Claes K, Piedmonte M, Andrews L, Hays J, Rodriguez GC, Caldes T, de la Hoya M, Khan S, Hogervorst FB, Aalfs CM, de Lange JL, Meijers-Heijboer HE, van der Hout AH, Wijnen JT, van Roozendaal KE, Mensenkamp AR, van den Ouweland AM, van Deurzen CH, van der Luijt RB, HEBON, Olah E, Diez O, Lazaro C, Blanco I, Teulé A, Menendez M, Jakubowska A, Lubinski J, Cybulski C, Gronwald J, Jaworska-Bieniek K, Durda K, Arason A, Maugard C, Soucy P, Montagna M, Agata S, Teixeira MR, KConFab Investigators, Olswold C, Lindor N, Pankratz VS, Hallberg E, Wang X, Szabo CI, Vijai J, Jacobs L, Corines M, Lincoln A, Berger A, Fink-Retter A, Singer CF, Rappaport C, Kaulich DG, Pfeiler G, Tea MK, Phelan CM, Mai PL, Greene MH, Rennert G, Imyanitov EN, Glendon G, Toland AE, Bojesen A, Pedersen IS, Jensen UB, Caligo MA, Friedman E, Berger R, Laitman Y, Rantala J, Arver B, Loman N, Borg A, Ehrencrona H, Olopade OI, Simard J, Easton DF, Chenevix-Trench G, Offit K, Couch FJ, Antoniou AC. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2014;16(6):3416.CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Azzollini J, Scuvera G, Bruno E, Pasanisi P, Zaffaroni D, Calvello M, Pasini B, Ripamonti CB, Colombo M, Pensotti V, Radice P, Peissel B, Manoukian S. Mutation detection rates associated with specific selection criteria for BRCA1/2 testing in 1854 high-risk families: a monocentric Italian study. Eur J Intern Med. 2016;32:65–71.CrossRefPubMed Azzollini J, Scuvera G, Bruno E, Pasanisi P, Zaffaroni D, Calvello M, Pasini B, Ripamonti CB, Colombo M, Pensotti V, Radice P, Peissel B, Manoukian S. Mutation detection rates associated with specific selection criteria for BRCA1/2 testing in 1854 high-risk families: a monocentric Italian study. Eur J Intern Med. 2016;32:65–71.CrossRefPubMed
31.
Zurück zum Zitat Lee JS, John EM. McGuire Breast and Ovarian cancer in relatives of cancer patients, with and without BRCA mutations. Cancer Epidemiol Biomarkers Prev. 2006;15:359.CrossRefPubMed Lee JS, John EM. McGuire Breast and Ovarian cancer in relatives of cancer patients, with and without BRCA mutations. Cancer Epidemiol Biomarkers Prev. 2006;15:359.CrossRefPubMed
32.
Zurück zum Zitat Susswein LR, Marshall ML, Nusbaum R, Postula KJV, Weissman SM, Yackowski L, Vaccari EM, Bissonnette J, Booker JK, Laura Cremona M, Gibellini F, Murphy PD, Pineda-Alvarez DE, Pollevick GD, Zhixiong X, Richard G, Bale S, Klein RT, Hruska KS, Chung WK. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 2016;18(8):823.CrossRefPubMed Susswein LR, Marshall ML, Nusbaum R, Postula KJV, Weissman SM, Yackowski L, Vaccari EM, Bissonnette J, Booker JK, Laura Cremona M, Gibellini F, Murphy PD, Pineda-Alvarez DE, Pollevick GD, Zhixiong X, Richard G, Bale S, Klein RT, Hruska KS, Chung WK. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 2016;18(8):823.CrossRefPubMed
33.
Zurück zum Zitat Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, Horick N, Yang S, Shannon KM, Tung N, Ford JM, Lincoln SE, Ellisen LW. Clinical Actionability of multigene panel testing for hereditary breast and ovarian Cancer risk assessment. JAMA Oncol. 2015;1(7):943.CrossRefPubMed Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, Horick N, Yang S, Shannon KM, Tung N, Ford JM, Lincoln SE, Ellisen LW. Clinical Actionability of multigene panel testing for hereditary breast and ovarian Cancer risk assessment. JAMA Oncol. 2015;1(7):943.CrossRefPubMed
34.
Zurück zum Zitat Thompson ER, Rowley SM, Li N, McInerny S, Devereux L, Wong-Brown MW, Trainer AH, Mitchell G, Scott RJ, James PA, Campbell IG. Panel testing for familial breast Cancer: calibrating the tension between research and clinical care. J Clin Oncol. 2016;34(13):1455.CrossRefPubMed Thompson ER, Rowley SM, Li N, McInerny S, Devereux L, Wong-Brown MW, Trainer AH, Mitchell G, Scott RJ, James PA, Campbell IG. Panel testing for familial breast Cancer: calibrating the tension between research and clinical care. J Clin Oncol. 2016;34(13):1455.CrossRefPubMed
35.
Zurück zum Zitat Schroeder C, Faust U, Sturm M, Hackmann K, Grundmann K, Harmuth F, Bosse K, Kehrer M, Benkert T, Klink B, Mackenroth L, Betcheva-Krajcir E, Wimberger P, Kast K, Heilig M, Nguyen HP, Riess O, Schröck E, Bauer P, Rump A. HBOC multi-gene panel testing: comparison of two sequencing centers. Breast Cancer Res Treat. 2015;152(1):129.CrossRefPubMed Schroeder C, Faust U, Sturm M, Hackmann K, Grundmann K, Harmuth F, Bosse K, Kehrer M, Benkert T, Klink B, Mackenroth L, Betcheva-Krajcir E, Wimberger P, Kast K, Heilig M, Nguyen HP, Riess O, Schröck E, Bauer P, Rump A. HBOC multi-gene panel testing: comparison of two sequencing centers. Breast Cancer Res Treat. 2015;152(1):129.CrossRefPubMed
Metadaten
Titel
High frequency of pathogenic non-founder germline mutations in BRCA1 and BRCA2 in families with breast and ovarian cancer in a founder population
verfasst von
J. Maksimenko
A. Irmejs
G. Trofimovičs
D. Bērziņa
E. Skuja
G. Purkalne
E. Miklaševičs
J. Gardovskis
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Hereditary Cancer in Clinical Practice / Ausgabe 1/2018
Elektronische ISSN: 1897-4287
DOI
https://doi.org/10.1186/s13053-018-0094-0

Weitere Artikel der Ausgabe 1/2018

Hereditary Cancer in Clinical Practice 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.