Skip to main content
Erschienen in: The journal of nutrition, health & aging 3/2018

19.05.2017

High Fructose and High Fat Exert Different Effects on Changes in Trabecular Bone Micro-structure

verfasst von: L. Tian, C. Wang, Y. Xie, S. Wan, K. Zhang, Xijie Yu

Erschienen in: The journal of nutrition, health & aging | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To compare the effects of high-fat diet (HFD) and high-fructose diet (HFrD) on bone metabolism at different time points, dynamically observe the bone histology and femur trabecular micro-architecture, and analyze the underlying mechanisms.

Methods

Sixty–Five male 6- to 7-week-old C57BL/6J mice were given HFD, HFrD, or standard diets (SD) for 8, 16, and 24 weeks. Micro-computed tomography (μCT) and bone histology were used to measure bone mass and trabecular micro-structure. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression of genes related to bone and lipid metabolisms.

Results

Compared to SD mice, femoral trabecular bone mass was significantly increased in both HFrD mice and HFD mice at 8 weeks, it continued to be higher in HFrD mice at 16 and 24 weeks with the highest level at 16 weeks, but it was significantly decreased in HFD mice at 16 and 24 weeks. HFD mice showed more epididymal fat accumulation than HFrD mice. mRNA expression of Runx2 was up-regulated at 8 and 16 weeks, but down-regulated at 24 weeks similarly in both HFrD mice and HFD mice. mRNA expression of MMP9 and CTSK was up-regulated at 8 and 16 weeks in HFD mice, but down-regulated at 24 weeks in both HFrD mice and HFD mice.

Conclusions

Our data indicated that the HFrD and HFD had different modulating effects on bone mass. After short-term feeding, both HFrD and HFD showed positive effects on bone mass; however, after long-term feeding, bone mass was decreased in HFD mice. In contrast, the bone mass was first increased and then decreased in the HFrD mice. On the basis of these findings, we speculated that chronic consumption of fat and fructose would exert detrimental effects on bone mass which might a combination action of body mass, fat mass, and bone formation/bone resorption along with proinflammatory factor and bone marrow environment.
Literatur
1.
Zurück zum Zitat Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 2007. 22(3): p. 465–75.CrossRefPubMed Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 2007. 22(3): p. 465–75.CrossRefPubMed
2.
Zurück zum Zitat Baroncelli, G.I., et al., Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs, 2005. 7(5): p. 295–323.CrossRefPubMed Baroncelli, G.I., et al., Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs, 2005. 7(5): p. 295–323.CrossRefPubMed
4.
Zurück zum Zitat Lorincz, C., et al., High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr, 2010. 103(9): p. 1302–8.CrossRefPubMed Lorincz, C., et al., High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr, 2010. 103(9): p. 1302–8.CrossRefPubMed
5.
Zurück zum Zitat Corwin, R.L., et al., Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr, 2006. 136(1): p. 159–65.CrossRefPubMed Corwin, R.L., et al., Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr, 2006. 136(1): p. 159–65.CrossRefPubMed
8.
9.
Zurück zum Zitat Lecka-Czernik, B., et al., High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol, 2015. 410: p. 35–41.CrossRefPubMed Lecka-Czernik, B., et al., High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol, 2015. 410: p. 35–41.CrossRefPubMed
10.
Zurück zum Zitat Cao, J.J., B.R. Gregoire, and H. Gao, High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone, 2009. 44(6): p. 1097–104.CrossRefPubMed Cao, J.J., B.R. Gregoire, and H. Gao, High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone, 2009. 44(6): p. 1097–104.CrossRefPubMed
11.
Zurück zum Zitat Xiao, Y., et al., Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition, 2011. 27(2): p. 214–220.CrossRefPubMed Xiao, Y., et al., Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition, 2011. 27(2): p. 214–220.CrossRefPubMed
12.
Zurück zum Zitat Doucette, C.R., et al., A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. J Cell Physiol, 2015. 230(9): p. 2032–7.CrossRefPubMedPubMedCentral Doucette, C.R., et al., A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. J Cell Physiol, 2015. 230(9): p. 2032–7.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Guthrie, J.F. and J.F. Morton, Food Sources of Added Sweeteners in the Diets of Americans. Journal of the American Dietetic Association, 2000. 100(1): p. 43–51.CrossRefPubMed Guthrie, J.F. and J.F. Morton, Food Sources of Added Sweeteners in the Diets of Americans. Journal of the American Dietetic Association, 2000. 100(1): p. 43–51.CrossRefPubMed
14.
Zurück zum Zitat McGartland, C., et al., Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res, 2003. 18(9): p. 1563–9.CrossRefPubMed McGartland, C., et al., Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res, 2003. 18(9): p. 1563–9.CrossRefPubMed
15.
Zurück zum Zitat Marriott, B.P., N. Cole, and E. Lee, National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr, 2009. 139(6): p. 1228S–1235S.CrossRefPubMed Marriott, B.P., N. Cole, and E. Lee, National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr, 2009. 139(6): p. 1228S–1235S.CrossRefPubMed
16.
Zurück zum Zitat Bass, E.F., et al., Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res, 2013. 33(12): p. 1063–71.CrossRefPubMed Bass, E.F., et al., Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res, 2013. 33(12): p. 1063–71.CrossRefPubMed
17.
Zurück zum Zitat Jatkar, A., I.J. Kurland, and S. Judex, Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif Tissue Int, 2016. Jatkar, A., I.J. Kurland, and S. Judex, Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif Tissue Int, 2016.
18.
Zurück zum Zitat Ivaturi, R. and C. Kies, Mineral balances in humans as affected by fructose, high fructose corn syrup and sucrose. Plant Foods Hum Nutr, 1992. 42(2): p. 143–51.CrossRefPubMed Ivaturi, R. and C. Kies, Mineral balances in humans as affected by fructose, high fructose corn syrup and sucrose. Plant Foods Hum Nutr, 1992. 42(2): p. 143–51.CrossRefPubMed
19.
Zurück zum Zitat Milne, D.B. and F.H. Nielsen, The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr, 2000. 19(1): p. 31–7.CrossRefPubMed Milne, D.B. and F.H. Nielsen, The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr, 2000. 19(1): p. 31–7.CrossRefPubMed
20.
Zurück zum Zitat Bergstra, A.E., A.G. Lemmens, and A.C. Beynen, Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J Nutr, 1993. 123(7): p. 1320–7.CrossRefPubMed Bergstra, A.E., A.G. Lemmens, and A.C. Beynen, Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J Nutr, 1993. 123(7): p. 1320–7.CrossRefPubMed
21.
Zurück zum Zitat Zhou, M., et al., MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine, 2014. 45(2): p. 302–10.CrossRefPubMed Zhou, M., et al., MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine, 2014. 45(2): p. 302–10.CrossRefPubMed
22.
Zurück zum Zitat Zhang, K., et al., Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-alpha. Endocrine, 2015. 50(1): p. 239–49.CrossRefPubMed Zhang, K., et al., Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-alpha. Endocrine, 2015. 50(1): p. 239–49.CrossRefPubMed
23.
Zurück zum Zitat Malvi, P., et al., High fat diet promotes achievement of peak bone mass in young rats. Biochem Biophys Res Commun, 2014. 455(1-2): p. 133–8.CrossRefPubMed Malvi, P., et al., High fat diet promotes achievement of peak bone mass in young rats. Biochem Biophys Res Commun, 2014. 455(1-2): p. 133–8.CrossRefPubMed
25.
Zurück zum Zitat Rosen, C.J. and M.L. Bouxsein, Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol, 2006. 2(1): p. 35–43.CrossRefPubMed Rosen, C.J. and M.L. Bouxsein, Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol, 2006. 2(1): p. 35–43.CrossRefPubMed
26.
Zurück zum Zitat Nelson, L.R. and S.E. Bulun, Estrogen production and action. J Am Acad Dermatol, 2001. 45(3 Suppl): p. S116–24.CrossRefPubMed Nelson, L.R. and S.E. Bulun, Estrogen production and action. J Am Acad Dermatol, 2001. 45(3 Suppl): p. S116–24.CrossRefPubMed
27.
Zurück zum Zitat Krum, S.A., et al., Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J, 2008. 27(3): p. 535–45.CrossRefPubMedPubMedCentral Krum, S.A., et al., Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J, 2008. 27(3): p. 535–45.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shu, L., et al., High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int, 2015. 96(4): p. 313–23.CrossRefPubMedPubMedCentral Shu, L., et al., High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int, 2015. 96(4): p. 313–23.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Tsanzi, E., H.R. Light, and J.C. Tou, The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone, 2008. 42(5): p. 960–8.CrossRefPubMed Tsanzi, E., H.R. Light, and J.C. Tou, The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone, 2008. 42(5): p. 960–8.CrossRefPubMed
30.
Zurück zum Zitat Felice, J.I., et al., Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism, 2014. 63(2): p. 296–305.CrossRefPubMed Felice, J.I., et al., Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism, 2014. 63(2): p. 296–305.CrossRefPubMed
31.
Zurück zum Zitat Fehrendt, H., et al., Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol, 2014. 2014: p. 318924.PubMedPubMedCentral Fehrendt, H., et al., Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol, 2014. 2014: p. 318924.PubMedPubMedCentral
32.
Zurück zum Zitat Nunez, N.P., et al., Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity (Silver Spring), 2007. 15(8): p. 1980–7.CrossRef Nunez, N.P., et al., Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity (Silver Spring), 2007. 15(8): p. 1980–7.CrossRef
33.
Zurück zum Zitat Atteh, J.O. and S. Leeson, Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci, 1984. 63(11): p. 2252–60.CrossRefPubMed Atteh, J.O. and S. Leeson, Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci, 1984. 63(11): p. 2252–60.CrossRefPubMed
35.
Zurück zum Zitat Yarrow, J.F., et al., Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone, 2016. 85: p. 99–106.CrossRefPubMedPubMedCentral Yarrow, J.F., et al., Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone, 2016. 85: p. 99–106.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Gerbaix, M., et al., Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis, 2012. 11: p. 91.CrossRefPubMedPubMedCentral Gerbaix, M., et al., Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis, 2012. 11: p. 91.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Brahmabhatt, V., et al., The effects of dietary-induced obesity on the biomechanical properties of femora in male rats. Int J Obes Relat Metab Disord, 1998. 22(8): p. 813–8.CrossRefPubMed Brahmabhatt, V., et al., The effects of dietary-induced obesity on the biomechanical properties of femora in male rats. Int J Obes Relat Metab Disord, 1998. 22(8): p. 813–8.CrossRefPubMed
38.
Zurück zum Zitat Ionova-Martin, S.S., et al., Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone, 2010. 46(1): p. 217–25.CrossRefPubMed Ionova-Martin, S.S., et al., Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone, 2010. 46(1): p. 217–25.CrossRefPubMed
39.
Zurück zum Zitat Sawin, E.A., et al., Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLoS One, 2016. 11(10): p. e0163234.CrossRefPubMedPubMedCentral Sawin, E.A., et al., Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLoS One, 2016. 11(10): p. e0163234.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Sage, A.P., et al., Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res, 2011. 26(6): p. 1197–206.CrossRefPubMed Sage, A.P., et al., Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res, 2011. 26(6): p. 1197–206.CrossRefPubMed
42.
Metadaten
Titel
High Fructose and High Fat Exert Different Effects on Changes in Trabecular Bone Micro-structure
verfasst von
L. Tian
C. Wang
Y. Xie
S. Wan
K. Zhang
Xijie Yu
Publikationsdatum
19.05.2017
Verlag
Springer Paris
Erschienen in
The journal of nutrition, health & aging / Ausgabe 3/2018
Print ISSN: 1279-7707
Elektronische ISSN: 1760-4788
DOI
https://doi.org/10.1007/s12603-017-0933-0

Weitere Artikel der Ausgabe 3/2018

The journal of nutrition, health & aging 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.