Skip to main content
Erschienen in: Inflammation 2/2018

22.11.2017 | ORIGINAL ARTICLE

High Glucose Stimulates Expression of MFHAS1 to Mitigate Inflammation via Akt/HO-1 Pathway in Human Umbilical Vein Endothelial Cells

verfasst von: Hui-hui Wang, Peng-fei Sun, Wan-kun Chen, Jing Zhong, Qi-qing Shi, Mei-lin Weng, Duan Ma, Chang-hong Miao

Erschienen in: Inflammation | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Hyperglycemia is a highly dangerous factor to various diseases, even resulting in death of people. Inflammation plays a key role in this process. The aim of this study was to explore the role of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) in high-glucose induced inflammation. Our research showed that high glucose stimulated the expression of MFHAS1, and overexpression of MFHAS1 can attenuate high-glucose induced inflammation in endothelial cells by decreasing the secretion of cytokines interleukin-1β (IL-1β), interleukin-1α (IL-1α), adhesion molecule intercellular adhesion molecule-1 (ICAM), interleukin-6 (IL-6), interleukin-8 (IL-8), and chemokine ligand 1 (CXCL-1). Furthermore, we found that MFHAS1 promoted the phosphorylation of Akt and the expression of heme oxygenase-1 (HO-1). Our results indicated that MFHAS1 deadened high-glucose induced inflammation by activating AKT/HO-1 pathway, suggesting that MFHAS1 may act as a new therapeutic target of diabetes mellitus.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat IDF Diabetes Atlas Sixth Edition, International Diabetes Federation 2013. IDF Diabetes Atlas Sixth Edition, International Diabetes Federation 2013.
2.
Zurück zum Zitat Chang, S.C., and W.V. Yang. 2016. Hyperglycemia, tumorigenesis, and chronic inflammation. Critical Reviews in Oncology/Hematology 108: 146–153.CrossRefPubMed Chang, S.C., and W.V. Yang. 2016. Hyperglycemia, tumorigenesis, and chronic inflammation. Critical Reviews in Oncology/Hematology 108: 146–153.CrossRefPubMed
3.
Zurück zum Zitat Badawi, A., A. Klip, P. Haddad, D.E. Cole, B.G. Bailo, A. El-Sohemy, et al. 2010. Type 2 diabetes mellitus and inflammation: prospects for biomarkers of risk and nutritional intervention. Diabetes, Metabolic Syndrome and Obesity 3: 173–186.CrossRefPubMedPubMedCentral Badawi, A., A. Klip, P. Haddad, D.E. Cole, B.G. Bailo, A. El-Sohemy, et al. 2010. Type 2 diabetes mellitus and inflammation: prospects for biomarkers of risk and nutritional intervention. Diabetes, Metabolic Syndrome and Obesity 3: 173–186.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Jung, U.J., and M.S. Choi. 2014. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences 15: 6184–6223.CrossRefPubMedPubMedCentral Jung, U.J., and M.S. Choi. 2014. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences 15: 6184–6223.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Donath, M.Y., and S.E. Shoelson. 2011. Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology 11: 98–107.CrossRefPubMed Donath, M.Y., and S.E. Shoelson. 2011. Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology 11: 98–107.CrossRefPubMed
6.
Zurück zum Zitat Gothai, S., P. Ganesan, S.Y. Park, S. Fakurazi, D.K. Choi, and P. Arulselvan. 2016. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients 8. Gothai, S., P. Ganesan, S.Y. Park, S. Fakurazi, D.K. Choi, and P. Arulselvan. 2016. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients 8.
7.
Zurück zum Zitat Dihanich, S. 2012. MASL1: a neglected ROCO protein. Biochemical Society Transactions 40: 1090–1094.CrossRefPubMed Dihanich, S. 2012. MASL1: a neglected ROCO protein. Biochemical Society Transactions 40: 1090–1094.CrossRefPubMed
8.
Zurück zum Zitat Ng, A.C., J.M. Eisenberg, R.J. Heath, A. Huett, C.M. Robinson, G.J. Nau, et al. 2011. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proceedings of the National Academy of Sciences of the United States of America 108 (Suppl 1): 4631–4638.CrossRefPubMed Ng, A.C., J.M. Eisenberg, R.J. Heath, A. Huett, C.M. Robinson, G.J. Nau, et al. 2011. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proceedings of the National Academy of Sciences of the United States of America 108 (Suppl 1): 4631–4638.CrossRefPubMed
9.
Zurück zum Zitat Kumkhaek, C., W. Aerbajinai, W. Liu, J. Zhu, N. Uchida, R. Kurlander, et al. 2013. MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway. Blood 121: 3216–3227.CrossRefPubMedPubMedCentral Kumkhaek, C., W. Aerbajinai, W. Liu, J. Zhu, N. Uchida, R. Kurlander, et al. 2013. MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway. Blood 121: 3216–3227.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Xu, G., L. Feng, P. Song, F. Xu, A. Li, Y. Wang, et al. 2016. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-kappaB and ERK pathway. International Immunopharmacology 38: 175–185.CrossRefPubMed Xu, G., L. Feng, P. Song, F. Xu, A. Li, Y. Wang, et al. 2016. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-kappaB and ERK pathway. International Immunopharmacology 38: 175–185.CrossRefPubMed
11.
Zurück zum Zitat Chen, W., Y. Xu, J. Zhong, H. Wang, M. Weng, Q. Cheng, et al. 2016. MFHAS1 promotes colorectal cancer progress by regulating polarization of tumor-associated macrophages via STAT6 signaling pathway. Oncotarget 7: 78726–78735.PubMedPubMedCentral Chen, W., Y. Xu, J. Zhong, H. Wang, M. Weng, Q. Cheng, et al. 2016. MFHAS1 promotes colorectal cancer progress by regulating polarization of tumor-associated macrophages via STAT6 signaling pathway. Oncotarget 7: 78726–78735.PubMedPubMedCentral
12.
Zurück zum Zitat Zhong, J., Q.Q. Shi, M.M. Zhu, J. Shen, H.H. Wang, D. Ma, et al. 2015. MFHAS1 is associated with sepsis and stimulates TLR2/NF-kappaB signaling pathway following negative regulation. PLoS One 10: e0143662.CrossRefPubMedPubMedCentral Zhong, J., Q.Q. Shi, M.M. Zhu, J. Shen, H.H. Wang, D. Ma, et al. 2015. MFHAS1 is associated with sepsis and stimulates TLR2/NF-kappaB signaling pathway following negative regulation. PLoS One 10: e0143662.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Zhong, J., H. Wang, W. Chen, Z. Sun, J. Chen, Y. Xu, et al. 2017. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death & Disease 8: e2763.CrossRef Zhong, J., H. Wang, W. Chen, Z. Sun, J. Chen, Y. Xu, et al. 2017. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death & Disease 8: e2763.CrossRef
14.
Zurück zum Zitat Zhao, X.D., Y.H. Qin, J.X. Ma, W. Dang, M. Wang, X. Zhang, et al. 2013. Influence of intensive insulin therapy on vascular endothelial growth factor in patients with severe trauma. Journal of Huazhong University of Science and Technology. Medical Sciences 33: 107–110.CrossRef Zhao, X.D., Y.H. Qin, J.X. Ma, W. Dang, M. Wang, X. Zhang, et al. 2013. Influence of intensive insulin therapy on vascular endothelial growth factor in patients with severe trauma. Journal of Huazhong University of Science and Technology. Medical Sciences 33: 107–110.CrossRef
15.
Zurück zum Zitat Wong, T.H., H.A. Chen, R.J. Gau, J.H. Yen, and J.L. Suen. 2016. Heme oxygenase-1-expressing dendritic cells promote Foxp3+ regulatory T cell differentiation and induce less severe airway inflammation in murine models. PLoS One 11: e0168919.CrossRefPubMedPubMedCentral Wong, T.H., H.A. Chen, R.J. Gau, J.H. Yen, and J.L. Suen. 2016. Heme oxygenase-1-expressing dendritic cells promote Foxp3+ regulatory T cell differentiation and induce less severe airway inflammation in murine models. PLoS One 11: e0168919.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Mei, X., H.X. Wang, J.S. Li, X.H. Liu, X.F. Lu, Y. Li, et al. 2017. Dusuqing granules (DSQ) suppress inflammation in Klebsiella pneumonia rat via NF-kappaB/MAPK signaling. BMC Complementary and Alternative Medicine 17: 216.CrossRefPubMedPubMedCentral Mei, X., H.X. Wang, J.S. Li, X.H. Liu, X.F. Lu, Y. Li, et al. 2017. Dusuqing granules (DSQ) suppress inflammation in Klebsiella pneumonia rat via NF-kappaB/MAPK signaling. BMC Complementary and Alternative Medicine 17: 216.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Tang, F., Y. Wang, B.A. Hemmings, C. Ruegg, and G. Xue. 2017. PKB/Akt-dependent regulation of inflammation in cancer. Seminars in Cancer Biology. Tang, F., Y. Wang, B.A. Hemmings, C. Ruegg, and G. Xue. 2017. PKB/Akt-dependent regulation of inflammation in cancer. Seminars in Cancer Biology.
18.
Zurück zum Zitat Calle, M.C., and M.L. Fernandez. 2012. Inflammation and type 2 diabetes. Diabetes & Metabolism 38: 183–191.CrossRef Calle, M.C., and M.L. Fernandez. 2012. Inflammation and type 2 diabetes. Diabetes & Metabolism 38: 183–191.CrossRef
19.
Zurück zum Zitat Tagawa, H., S. Karnan, Y. Kasugai, S. Tuzuki, R. Suzuki, Y. Hosokawa, et al. 2004. MASL1, a candidate oncogene found in amplification at 8p23.1, is translocated in immunoblastic B-cell lymphoma cell line OCI-LY8. Oncogene 23: 2576–2581.CrossRefPubMed Tagawa, H., S. Karnan, Y. Kasugai, S. Tuzuki, R. Suzuki, Y. Hosokawa, et al. 2004. MASL1, a candidate oncogene found in amplification at 8p23.1, is translocated in immunoblastic B-cell lymphoma cell line OCI-LY8. Oncogene 23: 2576–2581.CrossRefPubMed
20.
Zurück zum Zitat Zhao, M.X., B. Zhou, L. Ling, X.Q. Xiong, F. Zhang, Q. Chen, et al. 2017. Salusin-beta contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death & Disease 8: e2690.CrossRef Zhao, M.X., B. Zhou, L. Ling, X.Q. Xiong, F. Zhang, Q. Chen, et al. 2017. Salusin-beta contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death & Disease 8: e2690.CrossRef
21.
Zurück zum Zitat Eriksson, L., and T. Nystrom. 2015. Antidiabetic agents and endothelial dysfunction—beyond glucose control. Basic & Clinical Pharmacology & Toxicology 117: 15–25.CrossRef Eriksson, L., and T. Nystrom. 2015. Antidiabetic agents and endothelial dysfunction—beyond glucose control. Basic & Clinical Pharmacology & Toxicology 117: 15–25.CrossRef
22.
Zurück zum Zitat Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Journal of the American Medical Association 286: 327–334.CrossRefPubMed Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Journal of the American Medical Association 286: 327–334.CrossRefPubMed
23.
Zurück zum Zitat Maines, M.D. 1988. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. The FASEB Journal 2: 2557–2568.CrossRefPubMed Maines, M.D. 1988. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. The FASEB Journal 2: 2557–2568.CrossRefPubMed
24.
Zurück zum Zitat Yu, W., X. Zhang, H. Wu, Q. Zhou, Z. Wang, R. Liu, et al. 2017, 2017. HO-1 is essential for tetrahydroxystilbene glucoside mediated mitochondrial biogenesis and anti-inflammation process in LPS-treated RAW264.7 macrophages. Oxidative Medicine and Cellular Longevity: 1818575. Yu, W., X. Zhang, H. Wu, Q. Zhou, Z. Wang, R. Liu, et al. 2017, 2017. HO-1 is essential for tetrahydroxystilbene glucoside mediated mitochondrial biogenesis and anti-inflammation process in LPS-treated RAW264.7 macrophages. Oxidative Medicine and Cellular Longevity: 1818575.
25.
Zurück zum Zitat Ryter, S.W., J. Alam, and A.M. Choi. 2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 86: 583–650.CrossRefPubMed Ryter, S.W., J. Alam, and A.M. Choi. 2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 86: 583–650.CrossRefPubMed
26.
Zurück zum Zitat Steinberg, G.R., and J.D. Schertzer. 2014. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunology and Cell Biology 92: 340–345.CrossRefPubMed Steinberg, G.R., and J.D. Schertzer. 2014. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunology and Cell Biology 92: 340–345.CrossRefPubMed
27.
Zurück zum Zitat Xu, L., J. Zhu, W. Yin, and X. Ding. 2015. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. International Journal of Clinical and Experimental Pathology 8: 6083–6094.PubMedPubMedCentral Xu, L., J. Zhu, W. Yin, and X. Ding. 2015. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. International Journal of Clinical and Experimental Pathology 8: 6083–6094.PubMedPubMedCentral
28.
Zurück zum Zitat Rogers, L.J., A.G. Basnakian, M.S. Orloff, B. Ning, A. Yao-Borengasser, V. Raj, et al. 2016. 2-Amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP) induces gene expression changes in JAK/STAT and MAPK pathways related to inflammation, diabetes and cancer. Nutrition & Metabolism (London) 13: 54.CrossRef Rogers, L.J., A.G. Basnakian, M.S. Orloff, B. Ning, A. Yao-Borengasser, V. Raj, et al. 2016. 2-Amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP) induces gene expression changes in JAK/STAT and MAPK pathways related to inflammation, diabetes and cancer. Nutrition & Metabolism (London) 13: 54.CrossRef
29.
Zurück zum Zitat Ku, H.C., S.Y. Lee, K.C. Yang, Y.H. Kuo, and M.J. Su. 2016. Modification of caffeic acid with pyrrolidine enhances antioxidant ability by activating AKT/HO-1 pathway in heart. PLoS One 11: e0148545.CrossRefPubMedPubMedCentral Ku, H.C., S.Y. Lee, K.C. Yang, Y.H. Kuo, and M.J. Su. 2016. Modification of caffeic acid with pyrrolidine enhances antioxidant ability by activating AKT/HO-1 pathway in heart. PLoS One 11: e0148545.CrossRefPubMedPubMedCentral
Metadaten
Titel
High Glucose Stimulates Expression of MFHAS1 to Mitigate Inflammation via Akt/HO-1 Pathway in Human Umbilical Vein Endothelial Cells
verfasst von
Hui-hui Wang
Peng-fei Sun
Wan-kun Chen
Jing Zhong
Qi-qing Shi
Mei-lin Weng
Duan Ma
Chang-hong Miao
Publikationsdatum
22.11.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0696-0

Weitere Artikel der Ausgabe 2/2018

Inflammation 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.