Skip to main content
Erschienen in: Cardiovascular Toxicology 5/2019

29.03.2019

High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes

verfasst von: Fredrik H. Bækkerud, Simona Salerno, Paola Ceriotti, Cecilie Morland, Jon Storm-Mathisen, Linda H. Bergersen, Morten A. Høydal, Daniele Catalucci, Tomas O. Stølen

Erschienen in: Cardiovascular Toxicology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Both human and animal studies have shown mitochondrial and contractile dysfunction in hearts of type 2 diabetes mellitus (T2DM). Exercise training has shown positive effects on cardiac function, but its effect on the mitochondria have been insufficiently explored. The aim of this study was to assess the effect of exercise training on mitochondrial function in T2DM hearts. We divided T2DM mice (db/db) into a sedentary and an interval training group at 8 weeks of age and used heterozygote db/+ as controls. After 8 weeks of training, we evaluated mitochondrial structure and function, as well as the levels of mRNA and proteins involved in key metabolic processes from the left ventricle. db/db animals showed decreased oxidative phosphorylation capacity and fragmented mitochondria. Mitochondrial respiration showed a blunted response to Ca2+ along with reduced protein levels of the mitochondrial calcium uniporter. Exercise training ameliorated the reduced oxidative phosphorylation in complex (C) I + II, CII and CIV, but not CI or Ca2+ response. Mitochondrial fragmentation was partially restored. mRNA levels of isocitrate, succinate and oxoglutarate dehydrogenase were increased in db/db mice and normalized by exercise training. Exercise training induced an upregulation of two transcripts of peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α1 and PGC1α4) previously linked to endurance training adaptations and strength training adaptations, respectively. The T2DM heart showed mitochondrial dysfunction at multiple levels and exercise training ameliorated some, but not all mitochondrial dysfunctions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Collaborators GBDCoD. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 1151–1210.CrossRef Collaborators GBDCoD. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 1151–1210.CrossRef
2.
Zurück zum Zitat Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222.CrossRef Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222.CrossRef
3.
Zurück zum Zitat Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229–234.CrossRefPubMed Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229–234.CrossRefPubMed
4.
Zurück zum Zitat Donahoe, S. M., Stewart, G. C., McCabe, C. H., Mohanavelu, S., Murphy, S. A., Cannon, C. P., et al. (2007). Diabetes and mortality following acute coronary syndromes. JAMA, 298(7), 765–775.CrossRefPubMed Donahoe, S. M., Stewart, G. C., McCabe, C. H., Mohanavelu, S., Murphy, S. A., Cannon, C. P., et al. (2007). Diabetes and mortality following acute coronary syndromes. JAMA, 298(7), 765–775.CrossRefPubMed
5.
Zurück zum Zitat Jaffe, A. S., Spadaro, J. J., Schechtman, K., Roberts, R., Geltman, E. M., & Sobel, B. E. (1984). Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal, 108(1), 31–37.CrossRefPubMed Jaffe, A. S., Spadaro, J. J., Schechtman, K., Roberts, R., Geltman, E. M., & Sobel, B. E. (1984). Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal, 108(1), 31–37.CrossRefPubMed
6.
Zurück zum Zitat Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology Endocrinology and Metabolism, 279(5), E1104–E1113.CrossRefPubMed Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology Endocrinology and Metabolism, 279(5), E1104–E1113.CrossRefPubMed
7.
Zurück zum Zitat Dabkowski, E. R., Baseler, W. A., Williamson, C. L., Powell, M., Razunguzwa, T. T., Frisbee, J. C., et al. (2010). Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H529–H540.CrossRefPubMedPubMedCentral Dabkowski, E. R., Baseler, W. A., Williamson, C. L., Powell, M., Razunguzwa, T. T., Frisbee, J. C., et al. (2010). Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H529–H540.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J. J., Hu, X. X., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: Direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56(10), 2457–2466.CrossRefPubMed Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J. J., Hu, X. X., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: Direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56(10), 2457–2466.CrossRefPubMed
9.
Zurück zum Zitat Glancy, B., Willis, W. T., Chess, D. J., & Balaban, R. S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry, 52(16), 2793–2809.CrossRefPubMedPubMedCentral Glancy, B., Willis, W. T., Chess, D. J., & Balaban, R. S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry, 52(16), 2793–2809.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Denton, R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta (BBA)Bioenergetics, 1787(11), 1309–1316.CrossRef Denton, R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta (BBA)Bioenergetics, 1787(11), 1309–1316.CrossRef
11.
Zurück zum Zitat Kwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., et al. (2015). The Mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Reports, 12(1), 15–22.CrossRefPubMedPubMedCentral Kwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., et al. (2015). The Mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Reports, 12(1), 15–22.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Rasmussen, T. P., Wu, Y., Joiner, M. L., Koval, O. M., Wilson, N. R., Luczak, E. D., et al. (2015). Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9129–9134.CrossRefPubMedPubMedCentral Rasmussen, T. P., Wu, Y., Joiner, M. L., Koval, O. M., Wilson, N. R., Luczak, E. D., et al. (2015). Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9129–9134.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Diaz-Juarez, J., Suarez, J., Cividini, F., Scott, B. T., Diemer, T., Dai, A., et al. (2016). Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. American Journal of Physiology Cell Physiology, 311(6), C1005–C10c13.CrossRefPubMedPubMedCentral Diaz-Juarez, J., Suarez, J., Cividini, F., Scott, B. T., Diemer, T., Dai, A., et al. (2016). Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. American Journal of Physiology Cell Physiology, 311(6), C1005–C10c13.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Suarez, J., Cividini, F., Scott, B. T., Lehmann, K., Diaz-Juarez, J., Diemer, T., et al. (2018). Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. Journal of Biological Chemistry, 293(21), 8182–8195.CrossRefPubMed Suarez, J., Cividini, F., Scott, B. T., Lehmann, K., Diaz-Juarez, J., Diemer, T., et al. (2018). Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. Journal of Biological Chemistry, 293(21), 8182–8195.CrossRefPubMed
15.
Zurück zum Zitat Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed
16.
Zurück zum Zitat Wisloff, U., Nilsen, T. I., Droyvold, W. B., Morkved, S., Slordahl, S. A., & Vatten, L. J. (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology, 13(5):798–804.CrossRef Wisloff, U., Nilsen, T. I., Droyvold, W. B., Morkved, S., Slordahl, S. A., & Vatten, L. J. (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology, 13(5):798–804.CrossRef
17.
Zurück zum Zitat Manson, J. E., Greenland, P., LaCroix, A. Z., Stefanick, M. L., Mouton, C. P., Oberman, A., et al. (2002). Walking compared with vigorous exercise for the prevention of cardiovascular events in women. The New England Journal of Medicine, 347(10), 716–725.CrossRefPubMed Manson, J. E., Greenland, P., LaCroix, A. Z., Stefanick, M. L., Mouton, C. P., Oberman, A., et al. (2002). Walking compared with vigorous exercise for the prevention of cardiovascular events in women. The New England Journal of Medicine, 347(10), 716–725.CrossRefPubMed
18.
Zurück zum Zitat Swank, A. M., Horton, J., Fleg, J. L., Fonarow, G. C., Keteyian, S., Goldberg, L., et al. (2012). Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: Results from heart failure and a controlled trial to investigate outcomes of exercise training. Circulation Heart Failure, 5(5), 579–585.CrossRefPubMedPubMedCentral Swank, A. M., Horton, J., Fleg, J. L., Fonarow, G. C., Keteyian, S., Goldberg, L., et al. (2012). Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: Results from heart failure and a controlled trial to investigate outcomes of exercise training. Circulation Heart Failure, 5(5), 579–585.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354.CrossRefPubMedPubMedCentral Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., et al. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation, 115(24), 3086–3094.CrossRefPubMed Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., et al. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation, 115(24), 3086–3094.CrossRefPubMed
21.
Zurück zum Zitat Hollekim-Strand, S. M., Bjorgaas, M. R., Albrektsen, G., Tjonna, A. E., Wisloff, U., & Ingul, C. B. (2014). High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: A randomized controlled trial. Journal of the American College of Cardiology, 64(16), 1758–1760.CrossRefPubMed Hollekim-Strand, S. M., Bjorgaas, M. R., Albrektsen, G., Tjonna, A. E., Wisloff, U., & Ingul, C. B. (2014). High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: A randomized controlled trial. Journal of the American College of Cardiology, 64(16), 1758–1760.CrossRefPubMed
22.
Zurück zum Zitat Stølen, T. O., Høydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release Synchronicity in a Mouse Model of Diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed Stølen, T. O., Høydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release Synchronicity in a Mouse Model of Diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed
23.
Zurück zum Zitat Shao, C. H., Wehrens, X. H., Wyatt, T. A., Parbhu, S., Rozanski, G. J., Patel, K. P., et al. (2009). Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. Journal of Applied Physiology, 106(4), 1280–1292.CrossRefPubMedPubMedCentral Shao, C. H., Wehrens, X. H., Wyatt, T. A., Parbhu, S., Rozanski, G. J., Patel, K. P., et al. (2009). Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. Journal of Applied Physiology, 106(4), 1280–1292.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., et al. (2015). Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation. Cellular Physiology and Biochemistry, 35(6), 2159–2168.CrossRefPubMed Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., et al. (2015). Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation. Cellular Physiology and Biochemistry, 35(6), 2159–2168.CrossRefPubMed
25.
Zurück zum Zitat Coleman, D. L., & Hummel, K. P. (1967). Studies with the mutation, diabetes, in the mouse. Diabetologia, 3(2), 238–248.CrossRefPubMed Coleman, D. L., & Hummel, K. P. (1967). Studies with the mutation, diabetes, in the mouse. Diabetologia, 3(2), 238–248.CrossRefPubMed
26.
Zurück zum Zitat Kemi, O. J., Loennechen, J. P., Wisløff, U., & Ellingsen, Ø (2002). Intensity-controlled treadmill running in mice: Cardiac and skeletal muscle hypertrophy. Journal of Applied Physiology, 93(4), 1301–1309.CrossRefPubMed Kemi, O. J., Loennechen, J. P., Wisløff, U., & Ellingsen, Ø (2002). Intensity-controlled treadmill running in mice: Cardiac and skeletal muscle hypertrophy. Journal of Applied Physiology, 93(4), 1301–1309.CrossRefPubMed
27.
Zurück zum Zitat Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331.CrossRefPubMedPubMedCentral Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Veeranki, S., Givvimani, S., Kundu, S., Metreveli, N., Pushpakumar, S., & Tyagi, S. C. (2016). Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. Journal of Molecular and Cellular Cardiology, 92, 163–173.CrossRefPubMedPubMedCentral Veeranki, S., Givvimani, S., Kundu, S., Metreveli, N., Pushpakumar, S., & Tyagi, S. C. (2016). Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. Journal of Molecular and Cellular Cardiology, 92, 163–173.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hinkle, P. C., Kumar, M. A., Resetar, A., & Harris, D. L. (1991). Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry, 30(14), 3576–3582.CrossRefPubMed Hinkle, P. C., Kumar, M. A., Resetar, A., & Harris, D. L. (1991). Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry, 30(14), 3576–3582.CrossRefPubMed
30.
Zurück zum Zitat Brand, M. D., Harper, M. E., & Taylor, H. C. (1993). Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Journal, 291(Pt 3), 739–748.CrossRefPubMedPubMedCentral Brand, M. D., Harper, M. E., & Taylor, H. C. (1993). Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Journal, 291(Pt 3), 739–748.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yu, T., Robotham, J. L., & Yoon, Y. (2006). Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2653–2658.CrossRefPubMedPubMedCentral Yu, T., Robotham, J. L., & Yoon, Y. (2006). Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2653–2658.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Devi, T. S., Somayajulu, M., Kowluru, R. A., & Singh, L. P. (2017). TXNIP regulates mitophagy in retinal Muller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death & Disease, 8(5), e2777.CrossRef Devi, T. S., Somayajulu, M., Kowluru, R. A., & Singh, L. P. (2017). TXNIP regulates mitophagy in retinal Muller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death & Disease, 8(5), e2777.CrossRef
34.
Zurück zum Zitat Stolen, T. O., Hoydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed Stolen, T. O., Hoydal, M. A., Kemi, O. J., Catalucci, D., Ceci, M., Aasum, E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circulation Research, 105(6), 527–536.CrossRefPubMed
35.
Zurück zum Zitat Semeniuk, L. M., Kryski, A. J., & Severson, D. L. (2002). Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. American Journal of Physiology Heart and Circulatory Physiology, 283(3), H976–H982.CrossRefPubMed Semeniuk, L. M., Kryski, A. J., & Severson, D. L. (2002). Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. American Journal of Physiology Heart and Circulatory Physiology, 283(3), H976–H982.CrossRefPubMed
36.
Zurück zum Zitat Venardos, K., De Jong, K. A., Elkamie, M., Connor, T., & McGee, S. L. (2015). The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS ONE, 10(3), e0120934.CrossRefPubMedPubMedCentral Venardos, K., De Jong, K. A., Elkamie, M., Connor, T., & McGee, S. L. (2015). The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS ONE, 10(3), e0120934.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Anderson, E. J., Kypson, A. P., Rodriguez, E., Anderson, C. A., Lehr, E. J., & Neufer, P. D. (2009). Substrate-specific derangements in mitochondrial metabolism and redox balance in atrium of type 2 diabetic human heart. Journal of the American College of Cardiology, 54(20), 1891–1898.CrossRefPubMedPubMedCentral Anderson, E. J., Kypson, A. P., Rodriguez, E., Anderson, C. A., Lehr, E. J., & Neufer, P. D. (2009). Substrate-specific derangements in mitochondrial metabolism and redox balance in atrium of type 2 diabetic human heart. Journal of the American College of Cardiology, 54(20), 1891–1898.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Palmieri, V., Bella, J. N., Arnett, D. K., Liu, J. E., Oberman, A., Schuck, M. Y., et al. (2001). Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation, 103(1), 102–107.CrossRefPubMed Palmieri, V., Bella, J. N., Arnett, D. K., Liu, J. E., Oberman, A., Schuck, M. Y., et al. (2001). Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation, 103(1), 102–107.CrossRefPubMed
Metadaten
Titel
High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes
verfasst von
Fredrik H. Bækkerud
Simona Salerno
Paola Ceriotti
Cecilie Morland
Jon Storm-Mathisen
Linda H. Bergersen
Morten A. Høydal
Daniele Catalucci
Tomas O. Stølen
Publikationsdatum
29.03.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 5/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09514-z

Weitere Artikel der Ausgabe 5/2019

Cardiovascular Toxicology 5/2019 Zur Ausgabe