Skip to main content
Erschienen in:

04.06.2024 | Original Article

High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7

verfasst von: Menghan Dai, Jie Li, Xiangwen Hao, Na Li, Mingfang Zheng, Miao He, Yu Gu

Erschienen in: Neuroscience Bulletin | Ausgabe 9/2024

Einloggen, um Zugang zu erhalten

Abstract

Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Maconachie GD, Gottlob I. The challenges of amblyopia treatment. Biomed J 2015, 38: 510–516.PubMedCrossRef Maconachie GD, Gottlob I. The challenges of amblyopia treatment. Biomed J 2015, 38: 510–516.PubMedCrossRef
4.
Zurück zum Zitat Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005, 6: 877–888.PubMedCrossRef Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005, 6: 877–888.PubMedCrossRef
5.
Zurück zum Zitat Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. Critical periods of brain development. Handb Clin Neurol 2020, 173: 75–88.PubMedCrossRef Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. Critical periods of brain development. Handb Clin Neurol 2020, 173: 75–88.PubMedCrossRef
7.
Zurück zum Zitat Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 1970, 206: 419–436.PubMedPubMedCentralCrossRef Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 1970, 206: 419–436.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Morishita H, Hensch TK. Critical period revisited: Impact on vision. Curr Opin Neurobiol 2008, 18: 101–107.PubMedCrossRef Morishita H, Hensch TK. Critical period revisited: Impact on vision. Curr Opin Neurobiol 2008, 18: 101–107.PubMedCrossRef
9.
Zurück zum Zitat Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 1996, 16: 3274–3286.PubMedPubMedCentralCrossRef Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 1996, 16: 3274–3286.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science 2010, 327: 1145–1148.PubMedPubMedCentralCrossRef Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science 2010, 327: 1145–1148.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest Suppl 1996, 224: 211–234.PubMedCrossRef Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest Suppl 1996, 224: 211–234.PubMedCrossRef
13.
Zurück zum Zitat Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309: 261–263.PubMedCrossRef Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309: 261–263.PubMedCrossRef
14.
Zurück zum Zitat Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984, 307: 462–465.PubMedCrossRef Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984, 307: 462–465.PubMedCrossRef
15.
Zurück zum Zitat Slutsky I, Sadeghpour S, Li B, Liu G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 2004, 44: 835–849.PubMedCrossRef Slutsky I, Sadeghpour S, Li B, Liu G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 2004, 44: 835–849.PubMedCrossRef
16.
Zurück zum Zitat Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65: 165–177.PubMedCrossRef Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65: 165–177.PubMedCrossRef
17.
Zurück zum Zitat Zhou X, Huang Z, Zhang J, Chen JL, Yao PW, Mai CL, et al. Chronic oral administration of magnesium-L-threonate prevents oxaliplatin-induced memory and emotional deficits by normalization of TNF-α/NF-κB signaling in rats. Neurosci Bull 2021, 37: 55–69.PubMedCrossRef Zhou X, Huang Z, Zhang J, Chen JL, Yao PW, Mai CL, et al. Chronic oral administration of magnesium-L-threonate prevents oxaliplatin-induced memory and emotional deficits by normalization of TNF-α/NF-κB signaling in rats. Neurosci Bull 2021, 37: 55–69.PubMedCrossRef
18.
Zurück zum Zitat Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain 2015, 8: 49.PubMedPubMedCentralCrossRef Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain 2015, 8: 49.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Cang J, Kalatsky VA, Löwel S, Stryker MP. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci 2005, 22: 685–691.PubMedPubMedCentralCrossRef Cang J, Kalatsky VA, Löwel S, Stryker MP. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci 2005, 22: 685–691.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Baroncelli L, Braschi C, Maffei L. Visual depth perception in normal and deprived rats: Effects of environmental enrichment. Neuroscience 2013, 236: 313–319.PubMedCrossRef Baroncelli L, Braschi C, Maffei L. Visual depth perception in normal and deprived rats: Effects of environmental enrichment. Neuroscience 2013, 236: 313–319.PubMedCrossRef
21.
Zurück zum Zitat Wang BS, Sarnaik R, Cang J. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 2010, 65: 246–256.PubMedPubMedCentralCrossRef Wang BS, Sarnaik R, Cang J. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 2010, 65: 246–256.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Levine JN, Chen H, Gu Y, Cang J. Environmental enrichment rescues binocular matching of orientation preference in the mouse visual cortex. J Neurosci 2017, 37: 5822–5833.PubMedPubMedCentralCrossRef Levine JN, Chen H, Gu Y, Cang J. Environmental enrichment rescues binocular matching of orientation preference in the mouse visual cortex. J Neurosci 2017, 37: 5822–5833.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, et al. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018, 11: 63.PubMedPubMedCentralCrossRef Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, et al. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018, 11: 63.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Felgerolle C, Hébert B, Ardourel M, Meyer-Dilhet G, Menuet A, Pinto-Morais K, et al. Visual behavior impairments as an aberrant sensory processing in the mouse model of fragile X syndrome. Front Behav Neurosci 2019, 13: 228.PubMedPubMedCentralCrossRef Felgerolle C, Hébert B, Ardourel M, Meyer-Dilhet G, Menuet A, Pinto-Morais K, et al. Visual behavior impairments as an aberrant sensory processing in the mouse model of fragile X syndrome. Front Behav Neurosci 2019, 13: 228.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, et al. Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron 2021, 109: 502-515.e7.PubMedCrossRef Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, et al. Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron 2021, 109: 502-515.e7.PubMedCrossRef
26.
Zurück zum Zitat Han KS, Cooke SF, Xu W. Experience-dependent equilibration of AMPAR-mediated synaptic transmission during the critical period. Cell Rep 2017, 18: 892–904.PubMedCrossRef Han KS, Cooke SF, Xu W. Experience-dependent equilibration of AMPAR-mediated synaptic transmission during the critical period. Cell Rep 2017, 18: 892–904.PubMedCrossRef
27.
Zurück zum Zitat Chan J, Hao X, Liu Q, Cang J, Gu Y. Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex. Front Cell Neurosci 2021, 15: 749265.PubMedPubMedCentralCrossRef Chan J, Hao X, Liu Q, Cang J, Gu Y. Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex. Front Cell Neurosci 2021, 15: 749265.PubMedPubMedCentralCrossRef
28.
29.
Zurück zum Zitat Mazziotti R, Baroncelli L, Ceglia N, Chelini G, Sala GD, Magnan C, et al. MiR-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nat Commun 2017, 8: 15488.PubMedPubMedCentralCrossRef Mazziotti R, Baroncelli L, Ceglia N, Chelini G, Sala GD, Magnan C, et al. MiR-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nat Commun 2017, 8: 15488.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962, 160: 106–154.PubMedPubMedCentralCrossRef Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962, 160: 106–154.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 2004, 92: 600–608.PubMedCrossRef Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 2004, 92: 600–608.PubMedCrossRef
32.
33.
Zurück zum Zitat Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 2007, 55: 131–141.PubMedCrossRef Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 2007, 55: 131–141.PubMedCrossRef
34.
Zurück zum Zitat Gur M, Snodderly DM. High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 2006, 16: 888–895.PubMedCrossRef Gur M, Snodderly DM. High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 2006, 16: 888–895.PubMedCrossRef
35.
36.
Zurück zum Zitat Ghanbari A, Lee CM, Read HL, Stevenson IH. Modeling stimulus-dependent variability improves decoding of population neural responses. J Neural Eng 2019, 16: 066018.PubMedCrossRef Ghanbari A, Lee CM, Read HL, Stevenson IH. Modeling stimulus-dependent variability improves decoding of population neural responses. J Neural Eng 2019, 16: 066018.PubMedCrossRef
37.
Zurück zum Zitat Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 2012, 15: 1498–1505.PubMedPubMedCentralCrossRef Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 2012, 15: 1498–1505.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Rikhye RV, Sur M. Spatial correlations in natural scenes modulate response reliability in mouse visual cortex. J Neurosci 2015, 35: 14661–14680.PubMedPubMedCentralCrossRef Rikhye RV, Sur M. Spatial correlations in natural scenes modulate response reliability in mouse visual cortex. J Neurosci 2015, 35: 14661–14680.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Hao X, Liu Q, Chan J, Li N, Shi X, Gu Y. Binocular visual experience drives the maturation of response variability and reliability in the visual cortex. iScience 2022, 25: 104984.PubMedPubMedCentralCrossRef Hao X, Liu Q, Chan J, Li N, Shi X, Gu Y. Binocular visual experience drives the maturation of response variability and reliability in the visual cortex. iScience 2022, 25: 104984.PubMedPubMedCentralCrossRef
40.
42.
Zurück zum Zitat Hess RF, Thompson B, Baker DH. Binocular vision in amblyopia: Structure, suppression and plasticity. Ophthalmic Physiol Opt 2014, 34: 146–162.PubMedCrossRef Hess RF, Thompson B, Baker DH. Binocular vision in amblyopia: Structure, suppression and plasticity. Ophthalmic Physiol Opt 2014, 34: 146–162.PubMedCrossRef
43.
Zurück zum Zitat Shadlen MN, Newsome WT. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J Neurosci 1998, 18: 3870–3896.PubMedPubMedCentralCrossRef Shadlen MN, Newsome WT. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J Neurosci 1998, 18: 3870–3896.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Parker AJ. Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 2007, 8: 379–391.PubMedCrossRef Parker AJ. Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 2007, 8: 379–391.PubMedCrossRef
45.
Zurück zum Zitat Gianfranceschi L, Siciliano R, Walls J, Morales B, Kirkwood A, Huang ZJ, et al. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci U S A 2003, 100: 12486–12491.PubMedPubMedCentralCrossRef Gianfranceschi L, Siciliano R, Walls J, Morales B, Kirkwood A, Huang ZJ, et al. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci U S A 2003, 100: 12486–12491.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Fox MW. The visual cliff test for the study of visual depth perception in the mouse. Anim Behav 1965, 13: 232–233.PubMedCrossRef Fox MW. The visual cliff test for the study of visual depth perception in the mouse. Anim Behav 1965, 13: 232–233.PubMedCrossRef
48.
Zurück zum Zitat Young JM, Hoane MR. Magnesium administration after experimental traumatic brain injury improves decision-making skills. Brain Res Bull 2018, 139: 182–189.PubMedCrossRef Young JM, Hoane MR. Magnesium administration after experimental traumatic brain injury improves decision-making skills. Brain Res Bull 2018, 139: 182–189.PubMedCrossRef
49.
Zurück zum Zitat Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 1999, 2: 352–357.PubMedCrossRef Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 1999, 2: 352–357.PubMedCrossRef
50.
Zurück zum Zitat Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 2003, 38: 977–985.PubMedCrossRef Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 2003, 38: 977–985.PubMedCrossRef
51.
Zurück zum Zitat Daw NW, Gordon B, Fox KD, Flavin HJ, Kirsch JD, Beaver CJ, et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 1999, 81: 204–215.PubMedCrossRef Daw NW, Gordon B, Fox KD, Flavin HJ, Kirsch JD, Beaver CJ, et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 1999, 81: 204–215.PubMedCrossRef
53.
Zurück zum Zitat Kanold PO, Kim YA, GrandPre T, Shatz CJ. Co-regulation of ocular dominance plasticity and NMDA receptor subunit expression in glutamic acid decarboxylase-65 knock-out mice. J Physiol 2009, 587: 2857–2867.PubMedPubMedCentralCrossRef Kanold PO, Kim YA, GrandPre T, Shatz CJ. Co-regulation of ocular dominance plasticity and NMDA receptor subunit expression in glutamic acid decarboxylase-65 knock-out mice. J Physiol 2009, 587: 2857–2867.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci USA 2018, 115: E8201–E8210.PubMedPubMedCentralCrossRef Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci USA 2018, 115: E8201–E8210.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 2001, 7: 1047–1057.PubMedCrossRef Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 2001, 7: 1047–1057.PubMedCrossRef
56.
Zurück zum Zitat Ferioli S, Zierler S, Zaißerer J, Schredelseker J, Gudermann T, Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg2+ and Mg·ATP. Sci Rep 2017, 7: 8806.PubMedPubMedCentralCrossRef Ferioli S, Zierler S, Zaißerer J, Schredelseker J, Gudermann T, Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg2+ and Mg·ATP. Sci Rep 2017, 7: 8806.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Liu Y, Chen C, Liu Y, Li W, Wang Z, Sun Q, et al. TRPM7 is required for normal synapse density, learning, and memory at different developmental stages. Cell Rep 2018, 23: 3480–3491.PubMedCrossRef Liu Y, Chen C, Liu Y, Li W, Wang Z, Sun Q, et al. TRPM7 is required for normal synapse density, learning, and memory at different developmental stages. Cell Rep 2018, 23: 3480–3491.PubMedCrossRef
59.
Zurück zum Zitat Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001, 411: 590–595.PubMedCrossRef Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001, 411: 590–595.PubMedCrossRef
60.
Zurück zum Zitat Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001, 291: 1043–1047.PubMedCrossRef Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001, 291: 1043–1047.PubMedCrossRef
61.
Zurück zum Zitat Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 2003, 121: 49–60.PubMedPubMedCentralCrossRef Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 2003, 121: 49–60.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Adorján P, Levitt JB, Lund JS, Obermayer K. A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Vis Neurosci 1999, 16: 303–318.PubMedCrossRef Adorján P, Levitt JB, Lund JS, Obermayer K. A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Vis Neurosci 1999, 16: 303–318.PubMedCrossRef
63.
Zurück zum Zitat Ben-Yishai R, Hansel D, Sompolinsky H. Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comput Neurosci 1997, 4: 57–77.PubMedCrossRef Ben-Yishai R, Hansel D, Sompolinsky H. Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comput Neurosci 1997, 4: 57–77.PubMedCrossRef
64.
65.
66.
Zurück zum Zitat Gambrill AC, Barria A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A 2011, 108: 5855–5860.PubMedPubMedCentralCrossRef Gambrill AC, Barria A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A 2011, 108: 5855–5860.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003, 40: 775–784.PubMedCrossRef Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003, 40: 775–784.PubMedCrossRef
68.
Zurück zum Zitat Kim MJ, Dunah AW, Wang YT, Sheng M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 2005, 46: 745–760.PubMedCrossRef Kim MJ, Dunah AW, Wang YT, Sheng M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 2005, 46: 745–760.PubMedCrossRef
69.
Zurück zum Zitat Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 2003, 23: 5208–5218.PubMedPubMedCentralCrossRef Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 2003, 23: 5208–5218.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, et al. Genetic enhancement of learning and memory in mice. Nature 1999, 401: 63–69.PubMedCrossRef Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, et al. Genetic enhancement of learning and memory in mice. Nature 1999, 401: 63–69.PubMedCrossRef
71.
72.
Zurück zum Zitat Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016, 139: 973–996.PubMedCrossRef Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016, 139: 973–996.PubMedCrossRef
73.
Zurück zum Zitat Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 2000, 10: 358–364.PubMedCrossRef Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 2000, 10: 358–364.PubMedCrossRef
75.
Zurück zum Zitat Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007, 23: 613–643.PubMedCrossRef Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007, 23: 613–643.PubMedCrossRef
76.
Zurück zum Zitat Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 2012, 7: 61–98.PubMedCrossRef Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 2012, 7: 61–98.PubMedCrossRef
77.
Zurück zum Zitat Dati LM, Ulrich H, Real CC, Feng ZP, Sun HS, Britto LR. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience 2017, 356: 176–181.PubMedCrossRef Dati LM, Ulrich H, Real CC, Feng ZP, Sun HS, Britto LR. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience 2017, 356: 176–181.PubMedCrossRef
78.
Zurück zum Zitat Kim Y, Oh HG, Cho YY, Kwon OH, Park MK, Chung S. Stress hormone potentiates Zn(2+)-induced neurotoxicity via TRPM7 channel in dopaminergic neuron. Biochem Biophys Res Commun 2016, 470: 362–367.PubMedCrossRef Kim Y, Oh HG, Cho YY, Kwon OH, Park MK, Chung S. Stress hormone potentiates Zn(2+)-induced neurotoxicity via TRPM7 channel in dopaminergic neuron. Biochem Biophys Res Commun 2016, 470: 362–367.PubMedCrossRef
79.
Zurück zum Zitat Low SE, Amburgey K, Horstick E, Linsley J, Sprague SM, Cui WW, et al. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 2011, 31: 11633–11644.PubMedPubMedCentralCrossRef Low SE, Amburgey K, Horstick E, Linsley J, Sprague SM, Cui WW, et al. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 2011, 31: 11633–11644.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Fan J, Gladding CM, Wang L, Zhang LY, Kaufman AM, Milnerwood AJ, et al. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 2012, 45: 999–1009.PubMedCrossRef Fan J, Gladding CM, Wang L, Zhang LY, Kaufman AM, Milnerwood AJ, et al. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 2012, 45: 999–1009.PubMedCrossRef
81.
Zurück zum Zitat Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 2020, 21: 5624.PubMedPubMedCentralCrossRef Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 2020, 21: 5624.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, et al. TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett 2013, 333: 96–102.PubMedCrossRef Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, et al. TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett 2013, 333: 96–102.PubMedCrossRef
83.
Zurück zum Zitat Ramírez-Barrantes R, Cordova C, Poblete H, Muñoz P, Marchant I, Wianny F, et al. Perspectives of TRPV1 function on the neurogenesis and neural plasticity. Neural Plast 2016, 2016: 1568145.PubMedPubMedCentralCrossRef Ramírez-Barrantes R, Cordova C, Poblete H, Muñoz P, Marchant I, Wianny F, et al. Perspectives of TRPV1 function on the neurogenesis and neural plasticity. Neural Plast 2016, 2016: 1568145.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, et al. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019, 17: e3000445.PubMedPubMedCentralCrossRef Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, et al. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019, 17: e3000445.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Tai Y, Jia Y. TRPC channels and neuron development, plasticity, and activities. Adv Exp Med Biol 2017, 976: 95–110.PubMedCrossRef Tai Y, Jia Y. TRPC channels and neuron development, plasticity, and activities. Adv Exp Med Biol 2017, 976: 95–110.PubMedCrossRef
Metadaten
Titel
High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7
verfasst von
Menghan Dai
Jie Li
Xiangwen Hao
Na Li
Mingfang Zheng
Miao He
Yu Gu
Publikationsdatum
04.06.2024
Verlag
Springer Nature Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 9/2024
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-024-01242-x

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Neuartige Antikörpertherapie bremst MS über zwei Jahre hinweg

Eine Therapie mit dem C40-Ligand-Blocker Frexalimab kann MS-Schübe und neue MRT-Läsionen über zwei Jahre hinweg verhindern. Dafür spricht die Auswertung einer offen fortgeführten Phase-2-Studie.

Positive Phase IIb-Studie zu mRNA-gestützter CAR-T bei Myasthenia gravis

Eine auf das B-Zell-Reifungsantigen gerichtete mRNA-basierte CAR-T-Zell-Therapie wurde jetzt in einer ersten Phase IIb-Studie zur Behandlung der generalisierten Myasthenia gravis mit Placebo verglichen.

Therapiestopp bei älteren MS-Kranken kann sich lohnen

Eine Analyse aus Kanada bestätigt: Setzen ältere MS-Kranke die Behandlung mit Basistherapeutika ab, müssen sie kaum mit neuen Schüben und MRT-Auffälligkeiten rechnen.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.