Skip to main content
Erschienen in:

06.09.2024 | Review

High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect

verfasst von: Rufaida Wasim, Aditya Singh, Anas Islam, Saad Mohammed, Aamir Anwar, Tarique Mahmood

Erschienen in: Cardiovascular Toxicology | Ausgabe 11/2024

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.
Literatur
1.
Zurück zum Zitat Xu, Y., Wan, W., Zeng, H., Xiang, Z., Li, M., Yao, Y., & Wu, J. (2023). Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. Journal of Translational Internal Medicine, 11(4), 341–354.CrossRefPubMedPubMedCentral Xu, Y., Wan, W., Zeng, H., Xiang, Z., Li, M., Yao, Y., & Wu, J. (2023). Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. Journal of Translational Internal Medicine, 11(4), 341–354.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Liu, Z., Huang, Y., Li, H., Li, W., Zhang, F., Ouyang, W., Wang, S., Luo, Z., Wang, J., Chen, Y., & Xia, R. (2023). A generalized deep learning model for heart failure diagnosis using dynamic and static ultrasound. Journal of Translational Internal Medicine, 11(2), 138–144.CrossRefPubMedPubMedCentral Liu, Z., Huang, Y., Li, H., Li, W., Zhang, F., Ouyang, W., Wang, S., Luo, Z., Wang, J., Chen, Y., & Xia, R. (2023). A generalized deep learning model for heart failure diagnosis using dynamic and static ultrasound. Journal of Translational Internal Medicine, 11(2), 138–144.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Yang, Y., Muisha, M. B., Zhang, J., Sun, Y., & Li, Z. (2023). Research progress on N6-adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine, 10(4), 340–348.CrossRefPubMedPubMedCentral Yang, Y., Muisha, M. B., Zhang, J., Sun, Y., & Li, Z. (2023). Research progress on N6-adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine, 10(4), 340–348.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Calogero, S., Grassi, F., Aguzzi, A., Voigtländer, T., Ferrier, P., Ferrari, S., & Bianchi, M. E. (1999). The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nature Genetics, 22(3), 276–280. https://doi.org/10.1038/10338CrossRefPubMed Calogero, S., Grassi, F., Aguzzi, A., Voigtländer, T., Ferrier, P., Ferrari, S., & Bianchi, M. E. (1999). The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nature Genetics, 22(3), 276–280. https://​doi.​org/​10.​1038/​10338CrossRefPubMed
11.
Zurück zum Zitat Lee, G., Espirito Santo, A. I., Zwingenberger, S., Cai, L., Vogl, T., Feldmann, M., & Nanchahal, J. (2018). Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proceedings of the National Academy of Sciences, 115(19), E4463-E4472. https://doi.org/10.1073/pnas.1802893115 Lee, G., Espirito Santo, A. I., Zwingenberger, S., Cai, L., Vogl, T., Feldmann, M., & Nanchahal, J. (2018). Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proceedings of the National Academy of Sciences, 115(19), E4463-E4472. https://​doi.​org/​10.​1073/​pnas.​1802893115
17.
Zurück zum Zitat Zhang, X., Wheeler, D., Tang, Y., Guo, L., Shapiro, R. A., Ribar, T. J., & Rosengart, M. R. (2008). Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. The Journal of Immunology, 181(7), 5015–5023. https://doi.org/10.4049/jimmunol.181.7.5015CrossRefPubMed Zhang, X., Wheeler, D., Tang, Y., Guo, L., Shapiro, R. A., Ribar, T. J., & Rosengart, M. R. (2008). Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. The Journal of Immunology, 181(7), 5015–5023. https://​doi.​org/​10.​4049/​jimmunol.​181.​7.​5015CrossRefPubMed
20.
Zurück zum Zitat Andersson, U., Wang, H., Palmblad, K., Aveberger, A. C., Bloom, O., Erlandsson-Harris, H., & Tracey, K. J. (2000). High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. Journal of Experimental Medicine, 192(4). https://doi.org/10.1084/jem.192.4.565 Andersson, U., Wang, H., Palmblad, K., Aveberger, A. C., Bloom, O., Erlandsson-Harris, H., & Tracey, K. J. (2000). High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. Journal of Experimental Medicine, 192(4). https://​doi.​org/​10.​1084/​jem.​192.​4.​565
21.
Zurück zum Zitat Wang, H., Vishnubhakat, J. M., Bloom, O., Zhang, M., Ombrellino, M., Sama, A., & Tracey, K. J. (1999). Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery, 126(2). https://doi.org/10.1016/S0039-6060(99)70182-0 Wang, H., Vishnubhakat, J. M., Bloom, O., Zhang, M., Ombrellino, M., Sama, A., & Tracey, K. J. (1999). Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery, 126(2). https://​doi.​org/​10.​1016/​S0039-6060(99)70182-0
22.
Zurück zum Zitat Sparatore, B., Passalacqua, M., Patrone, M., Melloni, E., & Pontremoli, S. (1996). Extracellular high-mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Biochemical Journal, 320(1). https://doi.org/10.1042/bj3200253 Sparatore, B., Passalacqua, M., Patrone, M., Melloni, E., & Pontremoli, S. (1996). Extracellular high-mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Biochemical Journal, 320(1). https://​doi.​org/​10.​1042/​bj3200253
43.
Zurück zum Zitat Ulloa, L., Batliwalla, F. M., Andersson, U., Gregersen, P. K., & Tracey, K. J. (2003). High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 48(4), 876–881. https://doi.org/10.1002/art.10854CrossRef Ulloa, L., Batliwalla, F. M., Andersson, U., Gregersen, P. K., & Tracey, K. J. (2003). High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 48(4), 876–881. https://​doi.​org/​10.​1002/​art.​10854CrossRef
44.
48.
Zurück zum Zitat Moshensky, A., Brand, C. S., Alhaddad, H., Shin, J., Masso-Silva, J. A., Advani, I., & Crotty Alexander, L. E. (2022). Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. eLife, 11. https://doi.org/10.7554/eLife.67621 Moshensky, A., Brand, C. S., Alhaddad, H., Shin, J., Masso-Silva, J. A., Advani, I., & Crotty Alexander, L. E. (2022). Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. eLife, 11. https://​doi.​org/​10.​7554/​eLife.​67621
51.
Zurück zum Zitat Maugeri, N., Rovere-Querini, P., Baldini, M., Baldissera, E., Sabbadini, M. G., Bianchi, M. E., & Manfredi, A. A. (2014). Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: A candidate for microvessel injury in sytemic sclerosis. Antioxidants & Redox Signaling, 20(7), 1060–1074. https://doi.org/10.1089/ars.2013.5298CrossRef Maugeri, N., Rovere-Querini, P., Baldini, M., Baldissera, E., Sabbadini, M. G., Bianchi, M. E., & Manfredi, A. A. (2014). Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: A candidate for microvessel injury in sytemic sclerosis. Antioxidants & Redox Signaling, 20(7), 1060–1074. https://​doi.​org/​10.​1089/​ars.​2013.​5298CrossRef
58.
Zurück zum Zitat Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., & Bianchi, M. E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). The FASEB Journal, 22(10), 3716–3727. https://doi.org/10.1096/fj.08-109033CrossRefPubMed Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., & Bianchi, M. E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). The FASEB Journal, 22(10), 3716–3727. https://​doi.​org/​10.​1096/​fj.​08-109033CrossRefPubMed
62.
Zurück zum Zitat Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., & Cavallo, F. (2013). The noninflammatory role of high mobility group box 1/toll-like receptor 2 axis in the self‐renewal of mammary cancer stem cells. The FASEB Journal, 27(12), 4731–4744. https://doi.org/10.1096/fj.13-230201CrossRefPubMed Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., & Cavallo, F. (2013). The noninflammatory role of high mobility group box 1/toll-like receptor 2 axis in the self‐renewal of mammary cancer stem cells. The FASEB Journal, 27(12), 4731–4744. https://​doi.​org/​10.​1096/​fj.​13-230201CrossRefPubMed
65.
Zurück zum Zitat Herzog, C., Lorenz, A., Gillmann, H. J., Chowdhury, A., Larmann, J., Harendza, T., & Theilmeier, G. (2014). Thrombomodulin’s lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling. Cardiovascular Research, 101(3), 400–410. https://doi.org/10.1093/cvr/cvt275CrossRefPubMed Herzog, C., Lorenz, A., Gillmann, H. J., Chowdhury, A., Larmann, J., Harendza, T., & Theilmeier, G. (2014). Thrombomodulin’s lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling. Cardiovascular Research, 101(3), 400–410. https://​doi.​org/​10.​1093/​cvr/​cvt275CrossRefPubMed
66.
Zurück zum Zitat Mersmann, J., Iskandar, F., Latsch, K., Habeck, K., Sprunck, V., Zimmermann, R., …Koch, A. (2013). Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators of inflammation, 2013. https://doi.org/10.1155/2013/174168. Mersmann, J., Iskandar, F., Latsch, K., Habeck, K., Sprunck, V., Zimmermann, R., …Koch, A. (2013). Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators of inflammation, 2013. https://​doi.​org/​10.​1155/​2013/​174168.​
73.
74.
Zurück zum Zitat Di Maggio, S., Milano, G., De Marchis, F., D’Ambrosio, A., Bertolotti, M., Palacios, B. S., Badi, I., Sommariva, E., Pompilio, G., Capogrossi, M. C., & Raucci, A. (2017). Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(11), 2693–2704. https://doi.org/10.1016/j.bbadis.2017.07.012CrossRefPubMed Di Maggio, S., Milano, G., De Marchis, F., D’Ambrosio, A., Bertolotti, M., Palacios, B. S., Badi, I., Sommariva, E., Pompilio, G., Capogrossi, M. C., & Raucci, A. (2017). Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(11), 2693–2704. https://​doi.​org/​10.​1016/​j.​bbadis.​2017.​07.​012CrossRefPubMed
76.
Zurück zum Zitat Chen, R., Zhu, S., Fan, X. G., Wang, H., Lotze, M. T., Zeh, H. J., & Tang, D. (2018). High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology, 67(5). https://doi.org/10.1002/hep.29663 Chen, R., Zhu, S., Fan, X. G., Wang, H., Lotze, M. T., Zeh, H. J., & Tang, D. (2018). High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology, 67(5). https://​doi.​org/​10.​1002/​hep.​29663
79.
Zurück zum Zitat Wahid, A., Chen, W., Wang, X., & Tang, X. (2021). High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomedicine & Pharmacotherapy, 1(139), 111555.CrossRef Wahid, A., Chen, W., Wang, X., & Tang, X. (2021). High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomedicine & Pharmacotherapy, 1(139), 111555.CrossRef
80.
Zurück zum Zitat Saxton, A., Chaudhry, R., & Manna, B. S. P. (2023). Anatomy, thorax, heart right coronary arteries. StatPearls Publishing. Saxton, A., Chaudhry, R., & Manna, B. S. P. (2023). Anatomy, thorax, heart right coronary arteries. StatPearls Publishing.
81.
Zurück zum Zitat Carter, Y. M., Wehrle, C. J., & Mahajan, K. (2023). Anatomy, thorax, heart anomalous left coronary artery. StatPearls Publishing. Carter, Y. M., Wehrle, C. J., & Mahajan, K. (2023). Anatomy, thorax, heart anomalous left coronary artery. StatPearls Publishing.
82.
Zurück zum Zitat Hussain, A., & Burns, B. (2023). Anatomy, thorax, wall. StatPearls Publishing. Hussain, A., & Burns, B. (2023). Anatomy, thorax, wall. StatPearls Publishing.
83.
Zurück zum Zitat Saxton, A., Tariq, M. A., & Bordoni, B. (2023). Anatomy, thorax, cardiac muscle. StatPearls Publishing. Saxton, A., Tariq, M. A., & Bordoni, B. (2023). Anatomy, thorax, cardiac muscle. StatPearls Publishing.
84.
Zurück zum Zitat Tucker, W. D., Weber, C., & Burns, B. (2023). Anatomy, thorax, heart pulmonary arteries. StatPearls Publishing. Tucker, W. D., Weber, C., & Burns, B. (2023). Anatomy, thorax, heart pulmonary arteries. StatPearls Publishing.
85.
Zurück zum Zitat Ogobuiro, I., Wehrle, C. J., & Tuma, F. (2023). Anatomy, thorax, heart coronary arteries. StatPearls Publishing. Ogobuiro, I., Wehrle, C. J., & Tuma, F. (2023). Anatomy, thorax, heart coronary arteries. StatPearls Publishing.
86.
Zurück zum Zitat Capobianco, S. M., Fahmy, M. W., & Sicari, V. (2023). Anatomy, thorax, subclavian veins. StatPearls Publishing. Capobianco, S. M., Fahmy, M. W., & Sicari, V. (2023). Anatomy, thorax, subclavian veins. StatPearls Publishing.
87.
Zurück zum Zitat Oliver, K. A., & Ashurst, J. V. (2023). Anatomy, thorax, phrenic nerves. StatPearls Publishing. Oliver, K. A., & Ashurst, J. V. (2023). Anatomy, thorax, phrenic nerves. StatPearls Publishing.
88.
Zurück zum Zitat Mathew, P., & Bordoni, B. (2023). Embryology, heart. StatPearls Publishing. Mathew, P., & Bordoni, B. (2023). Embryology, heart. StatPearls Publishing.
89.
Zurück zum Zitat Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309.CrossRefPubMed Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309.CrossRefPubMed
90.
Zurück zum Zitat Larson, W. J. (1997). Human embryology. Churchill Livingstone. Larson, W. J. (1997). Human embryology. Churchill Livingstone.
91.
Zurück zum Zitat Moore, K. L., & Dalley, A. F. (1999). Clinically oriented anatomy. Lippincott, Williams, and Wilkins. Moore, K. L., & Dalley, A. F. (1999). Clinically oriented anatomy. Lippincott, Williams, and Wilkins.
92.
Zurück zum Zitat Netter, F. H. (2003). Atlas of Human Anatomy. ICON Learning Systems. Netter, F. H. (2003). Atlas of Human Anatomy. ICON Learning Systems.
93.
Zurück zum Zitat Stedman, T. (1972). Stedman’s medical dictionary. Williams and Wilkins. Stedman, T. (1972). Stedman’s medical dictionary. Williams and Wilkins.
94.
Zurück zum Zitat Brown, J. C., Gerhardt, T. E., & Kwon, E. (2023). Risk factors for coronary artery disease. StatPearls Publishing. Brown, J. C., Gerhardt, T. E., & Kwon, E. (2023). Risk factors for coronary artery disease. StatPearls Publishing.
95.
Zurück zum Zitat Bauersachs, R., Zeymer, U., Brière, J. B., Marre, C., Bowrin, K., & Huelsebeck, M. (2019). Cardiovascular Therapy, 2019, 8295054.CrossRef Bauersachs, R., Zeymer, U., Brière, J. B., Marre, C., Bowrin, K., & Huelsebeck, M. (2019). Cardiovascular Therapy, 2019, 8295054.CrossRef
96.
Zurück zum Zitat Adams, H. P., & Biller, J. (1988). Hemorrhagic intracranial vascular disease. Clinical Neurology, 2(16), 1–64. Adams, H. P., & Biller, J. (1988). Hemorrhagic intracranial vascular disease. Clinical Neurology, 2(16), 1–64.
97.
Zurück zum Zitat Bamford, J. M., & Warlow, C. P. (1988). Evolution and testing of the lacunar hypothesis. Stroke, 19, 1074–1082.CrossRefPubMed Bamford, J. M., & Warlow, C. P. (1988). Evolution and testing of the lacunar hypothesis. Stroke, 19, 1074–1082.CrossRefPubMed
98.
Zurück zum Zitat Aysert, P., Özdil, T., Dizbay, M., Güzel, Ö., & Hızel, K. (2018). Peripheral arterial disease increases the risk of multidrug-resistant bacteria and amputation in diabetic foot infections. Turkish Journal of Medical Sciences, 48(4), 845–850.CrossRef Aysert, P., Özdil, T., Dizbay, M., Güzel, Ö., & Hızel, K. (2018). Peripheral arterial disease increases the risk of multidrug-resistant bacteria and amputation in diabetic foot infections. Turkish Journal of Medical Sciences, 48(4), 845–850.CrossRef
99.
Zurück zum Zitat Yuksel, A., Velioglu, Y., Cayir, M. C., Kumtepe, G., & Gurbuz, O. (2018). Current status of arterial revascularization for the treatment of critical limb ischemia in Infrainguinal atherosclerotic disease. International Journal of Angiology, 27(3), 132–137.CrossRef Yuksel, A., Velioglu, Y., Cayir, M. C., Kumtepe, G., & Gurbuz, O. (2018). Current status of arterial revascularization for the treatment of critical limb ischemia in Infrainguinal atherosclerotic disease. International Journal of Angiology, 27(3), 132–137.CrossRef
100.
Zurück zum Zitat Michos, E. D., Rice, K. M., & Szklo, M. (2009). Factors associated with low levels of subclinical vascular disease in older adults: Multi-ethnic study of atherosclerosis. Preventive Cardiology, 12, 72–79.CrossRefPubMed Michos, E. D., Rice, K. M., & Szklo, M. (2009). Factors associated with low levels of subclinical vascular disease in older adults: Multi-ethnic study of atherosclerosis. Preventive Cardiology, 12, 72–79.CrossRefPubMed
101.
Zurück zum Zitat Ding, H. S., Yang, J., Chen, P., Yang, J., Bo, S. Q., Ding, J. W., & Yu, Q. Q. (2013). The HMGB1–TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene, 527(1), 389–393.CrossRefPubMed Ding, H. S., Yang, J., Chen, P., Yang, J., Bo, S. Q., Ding, J. W., & Yu, Q. Q. (2013). The HMGB1–TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene, 527(1), 389–393.CrossRefPubMed
102.
Zurück zum Zitat Aneja, R. K., Alcamo, A. M., Cummings, J., Vagni, V., Feldman, K., Wang, Q., Dixon, C. E., Billiar, T. R., & Kochanek, P. M. (2019). Lack of benefit on brain edema, blood–brain barrier permeability, or cognitive outcome in global inducible high mobility group box 1 knockout mice despite tissue sparing after experimental traumatic brain injury. Journal of Neurotrauma, 36(2), 360–369. https://doi.org/10.1089/neu.2018.5664CrossRefPubMed Aneja, R. K., Alcamo, A. M., Cummings, J., Vagni, V., Feldman, K., Wang, Q., Dixon, C. E., Billiar, T. R., & Kochanek, P. M. (2019). Lack of benefit on brain edema, blood–brain barrier permeability, or cognitive outcome in global inducible high mobility group box 1 knockout mice despite tissue sparing after experimental traumatic brain injury. Journal of Neurotrauma, 36(2), 360–369. https://​doi.​org/​10.​1089/​neu.​2018.​5664CrossRefPubMed
103.
104.
Zurück zum Zitat Kitahara, T., Takeishi, Y., Harada, M., Niizeki, T., Suzuki, S., Sasaki, T., Ishino, M., Bilim, O., Nakajima, O., & Kubota, I. (2008). High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovascular Research, 80(1), 40–46. https://doi.org/10.1093/cvr/cvn163CrossRefPubMed Kitahara, T., Takeishi, Y., Harada, M., Niizeki, T., Suzuki, S., Sasaki, T., Ishino, M., Bilim, O., Nakajima, O., & Kubota, I. (2008). High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovascular Research, 80(1), 40–46. https://​doi.​org/​10.​1093/​cvr/​cvn163CrossRefPubMed
105.
Zurück zum Zitat Vaswani, A., Khaw, H. J., El-Medany, A., & Dougherty, S. (2022). Cardiology in a Heartbeat (p. 8). Scion Publishing Ltd. Vaswani, A., Khaw, H. J., El-Medany, A., & Dougherty, S. (2022). Cardiology in a Heartbeat (p. 8). Scion Publishing Ltd.
107.
108.
Zurück zum Zitat Porto, A., Palumbo, R., Pieroni, M., Aprigliano, G., Chiesa, R., Sanvito, F., Maseri, A., Bianchi, M. E., Porto, A., Palumbo, R., & Pieroni, M. (2006). Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. The FASEB Journal, 20(14), 2565–2566. https://doi.org/10.1096/fj.06-5867fjeCrossRefPubMed Porto, A., Palumbo, R., Pieroni, M., Aprigliano, G., Chiesa, R., Sanvito, F., Maseri, A., Bianchi, M. E., Porto, A., Palumbo, R., & Pieroni, M. (2006). Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. The FASEB Journal, 20(14), 2565–2566. https://​doi.​org/​10.​1096/​fj.​06-5867fjeCrossRefPubMed
110.
Zurück zum Zitat Kanellakis, P., Agrotis, A., Kyaw, T. S., Koulis, C., Ahrens, I., Mori, S., Takahashi, H. K., Liu, K., Peter, K., Nishibori, M., & Bobik, A. (2011). High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein E–deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 313–319. https://doi.org/10.1161/ATVBAHA.110.218669CrossRefPubMed Kanellakis, P., Agrotis, A., Kyaw, T. S., Koulis, C., Ahrens, I., Mori, S., Takahashi, H. K., Liu, K., Peter, K., Nishibori, M., & Bobik, A. (2011). High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein E–deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 313–319. https://​doi.​org/​10.​1161/​ATVBAHA.​110.​218669CrossRefPubMed
122.
Zurück zum Zitat Schiraldi, M., Raucci, A., Muñoz, L. M., Livoti, E., Celona, B., Venereau, E., Apuzzo, T., De Marchis, F., Pedotti, M., Bachi, A., & Thelen, M. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. Journal of Experimental Medicine, 209(3), 551–563. https://doi.org/10.1084/jem.20111739CrossRefPubMedPubMedCentral Schiraldi, M., Raucci, A., Muñoz, L. M., Livoti, E., Celona, B., Venereau, E., Apuzzo, T., De Marchis, F., Pedotti, M., Bachi, A., & Thelen, M. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. Journal of Experimental Medicine, 209(3), 551–563. https://​doi.​org/​10.​1084/​jem.​20111739CrossRefPubMedPubMedCentral
124.
128.
Zurück zum Zitat Kohno, T., Anzai, T., Naito, K., Miyasho, T., Okamoto, M., Yokota, H., Yamada, S., Maekawa, Y., Takahashi, T., Yoshikawa, T., & Ishizaka, A. (2009). Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research, 81(3), 565–573. https://doi.org/10.1093/cvr/cvn291CrossRefPubMed Kohno, T., Anzai, T., Naito, K., Miyasho, T., Okamoto, M., Yokota, H., Yamada, S., Maekawa, Y., Takahashi, T., Yoshikawa, T., & Ishizaka, A. (2009). Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research, 81(3), 565–573. https://​doi.​org/​10.​1093/​cvr/​cvn291CrossRefPubMed
133.
Zurück zum Zitat Li, W. J., Hu, K., Yang, J. P., Xu, X. Y., Li, N., Wen, Z. P., & Wang, H. (2017). HMGB1 affects the development of pulmonary arterial hypertension via RAGE. European Review for Medical & Pharmacological Sciences, 21(17), 3950–3958. Li, W. J., Hu, K., Yang, J. P., Xu, X. Y., Li, N., Wen, Z. P., & Wang, H. (2017). HMGB1 affects the development of pulmonary arterial hypertension via RAGE. European Review for Medical & Pharmacological Sciences, 21(17), 3950–3958.
140.
Zurück zum Zitat Lu, B., Antoine, D. J., Kwan, K., Lundbäck, P., Wähämaa, H., Schierbeck, H., Robinson, M., Van Zoelen, M. A., Yang, H., Li, J., & Erlandsson-Harris, H. (2014). JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proceedings of the National Academy of Sciences, 111(8), 3068–3073. https://doi.org/10.1073/pnas.1316925111CrossRef Lu, B., Antoine, D. J., Kwan, K., Lundbäck, P., Wähämaa, H., Schierbeck, H., Robinson, M., Van Zoelen, M. A., Yang, H., Li, J., & Erlandsson-Harris, H. (2014). JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proceedings of the National Academy of Sciences, 111(8), 3068–3073. https://​doi.​org/​10.​1073/​pnas.​1316925111CrossRef
141.
Zurück zum Zitat Narumi, T., Shishido, T., Otaki, Y., Kadowaki, S., Honda, Y., Funayama, A., Honda, S., Hasegawa, H., Kinoshita, D., Yokoyama, M., Nishiyama, S., & Kubota, I. (2015). High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis. Journal of Molecular and Cellular Cardiology, 82, 1–12. https://doi.org/10.1016/j.yjmcc.2015.02.018CrossRefPubMed Narumi, T., Shishido, T., Otaki, Y., Kadowaki, S., Honda, Y., Funayama, A., Honda, S., Hasegawa, H., Kinoshita, D., Yokoyama, M., Nishiyama, S., & Kubota, I. (2015). High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis. Journal of Molecular and Cellular Cardiology, 82, 1–12. https://​doi.​org/​10.​1016/​j.​yjmcc.​2015.​02.​018CrossRefPubMed
145.
149.
Zurück zum Zitat Brozena, S. C., & Jessup, M. (2003). The new staging system for heart failure. What every primary care physician should know. Geriatrics (Basel Switzerland), 58(6), 31–36. Brozena, S. C., & Jessup, M. (2003). The new staging system for heart failure. What every primary care physician should know. Geriatrics (Basel Switzerland), 58(6), 31–36.
153.
Zurück zum Zitat Karuppagounder, V., Giridharan, V. V., Arumugam, S., Sreedhar, R., Palaniyandi, S. S., Krishnamurthy, P., Quevedo, J., Watanabe, K., Konishi, T., & Thandavarayan, R. A. (2016). Modulation of macrophage polarization and HMGB1-TLR2/TLR4 cascade plays a crucial role for cardiac remodeling in senescence-accelerated prone mice. PloS One, 11(4), e0152922.CrossRefPubMedPubMedCentral Karuppagounder, V., Giridharan, V. V., Arumugam, S., Sreedhar, R., Palaniyandi, S. S., Krishnamurthy, P., Quevedo, J., Watanabe, K., Konishi, T., & Thandavarayan, R. A. (2016). Modulation of macrophage polarization and HMGB1-TLR2/TLR4 cascade plays a crucial role for cardiac remodeling in senescence-accelerated prone mice. PloS One, 11(4), e0152922.CrossRefPubMedPubMedCentral
157.
Zurück zum Zitat Thrasher, P., Singh, M., & Singh, K. (2017). Ataxia-telangiectasia mutated kinase: Role in myocardial remodeling. Journal of Rare Diseases Research & Treatment, 2(1), 32.CrossRef Thrasher, P., Singh, M., & Singh, K. (2017). Ataxia-telangiectasia mutated kinase: Role in myocardial remodeling. Journal of Rare Diseases Research & Treatment, 2(1), 32.CrossRef
158.
Zurück zum Zitat Kikuchi, K., Tancharoen, S., Ito, T., Morimoto-Yamashita, Y., Miura, N., Kawahara, K. I., Maruyama, I., Murai, Y., & Tanaka, E. (2013). Potential of the angiotensin receptor blockers (ARBs)telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. International Journal of Molecular Sciences, 14(9), 18899–18924. https://doi.org/10.3390/ijms140918899CrossRefPubMedPubMedCentral Kikuchi, K., Tancharoen, S., Ito, T., Morimoto-Yamashita, Y., Miura, N., Kawahara, K. I., Maruyama, I., Murai, Y., & Tanaka, E. (2013). Potential of the angiotensin receptor blockers (ARBs)telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. International Journal of Molecular Sciences, 14(9), 18899–18924. https://​doi.​org/​10.​3390/​ijms140918899CrossRefPubMedPubMedCentral
160.
163.
Zurück zum Zitat Zhang, L., Liu, M., Jiang, H., Yu, Y., Yu, P., Tong, R., Wu, J., Zhang, S., Yao, K., Zou, Y., & Ge, J. (2016). Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure. Journal of Cellular and Molecular Medicine, 20(3), 459–470. https://doi.org/10.1111/jcmm.12743CrossRefPubMed Zhang, L., Liu, M., Jiang, H., Yu, Y., Yu, P., Tong, R., Wu, J., Zhang, S., Yao, K., Zou, Y., & Ge, J. (2016). Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure. Journal of Cellular and Molecular Medicine, 20(3), 459–470. https://​doi.​org/​10.​1111/​jcmm.​12743CrossRefPubMed
164.
Zurück zum Zitat Tian, J., Avalos, A. M., Mao, S. Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., & Hua, J. (2007). Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunology, 8(5), 487–496.CrossRefPubMed Tian, J., Avalos, A. M., Mao, S. Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., & Hua, J. (2007). Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunology, 8(5), 487–496.CrossRefPubMed
167.
Zurück zum Zitat Bangert, A., Andrassy, M., Müller, A. M., Bockstahler, M., Fischer, A., Volz, C. H., Leib, C., Göser, S., Korkmaz-Icöz, S., Zittrich, S., & Jungmann, A. (2016). Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences, 113(2), 155–164. https://doi.org/10.1073/pnas.1522288113CrossRef Bangert, A., Andrassy, M., Müller, A. M., Bockstahler, M., Fischer, A., Volz, C. H., Leib, C., Göser, S., Korkmaz-Icöz, S., Zittrich, S., & Jungmann, A. (2016). Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences, 113(2), 155–164. https://​doi.​org/​10.​1073/​pnas.​1522288113CrossRef
Metadaten
Titel
High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect
verfasst von
Rufaida Wasim
Aditya Singh
Anas Islam
Saad Mohammed
Aamir Anwar
Tarique Mahmood
Publikationsdatum
06.09.2024
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 11/2024
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09919-5