Skip to main content
Erschienen in: Annals of Hematology 6/2021

31.03.2021 | Original Article

High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells

verfasst von: Zhihong Zeng, Charlie Ly, Naval Daver, Jorge Cortes, Hagop M. Kantarjian, Michael Andreeff, Marina Konopleva

Erschienen in: Annals of Hematology | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

FLT3 mutations, which are found in a third of patients with acute myeloid leukemia (AML), are associated with poor prognosis. Responses to currently available FLT3 inhibitors in AML patients are typically transient and followed by disease recurrence. Thus, FLT3 inhibitors with new inhibitory mechanisms are needed to improve therapeutic outcomes. AMG925 is a novel, potent, small-molecule dual inhibitor of FLT3 and CDK4/6. In this study. we determined the antileukemic effects and mechanisms of action of AMG925 in AML cell lines and primary samples, in particular AML stem/progenitor cells. AMG925 inhibited cell growth and promoted apoptosis in AML cells with or without FLT3 mutations. Reverse-phase protein array profiling confirmed its on-target effects on FLT3-CDK4/6–regulated pathways and identified unrevealed signaling network alterations in AML blasts and stem/progenitor cells in response to AMG925. Mass cytometry identified pathways that may confer resistance to AMG925 in phenotypically defined AML stem/progenitor cells and demonstrated that combined blockade of FLT3-CDK4/6 and AKT/mTOR signaling facilitated stem cell death. Our findings provide a rationale for the mechanism-based inhibition of FLT3-CDK4/6 and for combinatorial approaches to improve the efficacy of FLT3 inhibition in both FLT3 wild-type and FLT3-mutated AML.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221PubMedPubMedCentralCrossRef Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D (1991) Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 6(9):1641–1650PubMed Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D (1991) Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 6(9):1641–1650PubMed
3.
Zurück zum Zitat Rosnet O, Birnbaum D (1993) Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit Rev Oncog 4(6):595–613PubMed Rosnet O, Birnbaum D (1993) Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit Rev Oncog 4(6):595–613PubMed
4.
Zurück zum Zitat Shurin MR, Esche C, Lotze MT (1998) FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev 9(1):37–48PubMedCrossRef Shurin MR, Esche C, Lotze MT (1998) FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev 9(1):37–48PubMedCrossRef
5.
Zurück zum Zitat Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T (1997) Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11(10):1605–1609PubMedCrossRef Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T (1997) Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11(10):1605–1609PubMedCrossRef
6.
Zurück zum Zitat Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439PubMedCrossRef Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439PubMedCrossRef
7.
Zurück zum Zitat Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, Kienast J, Leo R, Schwartz S, Berdel WE, Serve H (2000) Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 108(2):322–330PubMedCrossRef Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, Kienast J, Leo R, Schwartz S, Berdel WE, Serve H (2000) Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 108(2):322–330PubMedCrossRef
8.
Zurück zum Zitat Tse KF, Mukherjee G, Small D (2000) Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14(10):1766–1776PubMedCrossRef Tse KF, Mukherjee G, Small D (2000) Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14(10):1766–1776PubMedCrossRef
9.
Zurück zum Zitat Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312PubMedPubMedCentralCrossRef Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M (2010) FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115(7):1425–1432PubMedPubMedCentralCrossRef Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M (2010) FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115(7):1425–1432PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP (2012) Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397):260–263PubMedPubMedCentralCrossRef Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP (2012) Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397):260–263PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O’Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, Hundal J, Cook LL, Swift GW, Reed JP, Alldredge PA, Wylie TN, Walker JR, Watson MA, Heath SE, Shannon WD, Varghese N, Nagarajan R, Payton JE, Baty JD, Kulkarni S, Klco JM, Tomasson MH, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278PubMedPubMedCentralCrossRef Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O’Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, Hundal J, Cook LL, Swift GW, Reed JP, Alldredge PA, Wylie TN, Walker JR, Watson MA, Heath SE, Shannon WD, Varghese N, Nagarajan R, Payton JE, Baty JD, Kulkarni S, Klco JM, Tomasson MH, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Li Z, Wang X, Eksterowicz J, Gribble MW Jr, Alba GQ, Ayres M, Carlson TJ, Chen A, Chen X, Cho R, Connors RV, DeGraffenreid M, Deignan JT, Duquette J, Fan P, Fisher B, Fu J, Huard JN, Kaizerman J, Keegan KS, Li C, Li K, Li Y, Liang L, Liu W, Lively SE, Lo MC, Ma J, McMinn DL, Mihalic JT, Modi K, Ngo R, Pattabiraman K, Piper DE, Queva C, Ragains ML, Suchomel J, Thibault S, Walker N, Wang X, Wang Z, Wanska M, Wehn PM, Weidner MF, Zhang AJ, Zhao X, Kamb A, Wickramasinghe D, Dai K, McGee LR, Medina JC (2014) Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3. J Med Chem 57(8):3430–3449PubMedCrossRef Li Z, Wang X, Eksterowicz J, Gribble MW Jr, Alba GQ, Ayres M, Carlson TJ, Chen A, Chen X, Cho R, Connors RV, DeGraffenreid M, Deignan JT, Duquette J, Fan P, Fisher B, Fu J, Huard JN, Kaizerman J, Keegan KS, Li C, Li K, Li Y, Liang L, Liu W, Lively SE, Lo MC, Ma J, McMinn DL, Mihalic JT, Modi K, Ngo R, Pattabiraman K, Piper DE, Queva C, Ragains ML, Suchomel J, Thibault S, Walker N, Wang X, Wang Z, Wanska M, Wehn PM, Weidner MF, Zhang AJ, Zhao X, Kamb A, Wickramasinghe D, Dai K, McGee LR, Medina JC (2014) Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3. J Med Chem 57(8):3430–3449PubMedCrossRef
14.
Zurück zum Zitat Keegan K, Li C, Li Z, Ma J, Ragains M, Coberly S, Hollenback D, Eksterowicz J, Liang L, Weidner M, Huard J, Wang X, Alba G, Orf J, Lo MC, Zhao S, Ngo R, Chen A, Liu L, Carlson T, Quéva C, McGee LR, Medina J, Kamb A, Wickramasinghe D, Dai K (2014) Preclinical evaluation of AMG 925, a FLT3/CDK4 dual kinase inhibitor for treating acute myeloid leukemia. Mol Cancer Ther 13(4):880–889PubMedCrossRef Keegan K, Li C, Li Z, Ma J, Ragains M, Coberly S, Hollenback D, Eksterowicz J, Liang L, Weidner M, Huard J, Wang X, Alba G, Orf J, Lo MC, Zhao S, Ngo R, Chen A, Liu L, Carlson T, Quéva C, McGee LR, Medina J, Kamb A, Wickramasinghe D, Dai K (2014) Preclinical evaluation of AMG 925, a FLT3/CDK4 dual kinase inhibitor for treating acute myeloid leukemia. Mol Cancer Ther 13(4):880–889PubMedCrossRef
15.
Zurück zum Zitat Tibes R, Qiu YH, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521PubMedCrossRef Tibes R, Qiu YH, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521PubMedCrossRef
16.
Zurück zum Zitat Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696PubMedPubMedCentralCrossRef Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Kojima K, Konopleva M, McQueen T, O'Brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108(3):993–1000PubMedPubMedCentralCrossRef Kojima K, Konopleva M, McQueen T, O'Brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108(3):993–1000PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D, Frolova O, Hail N Jr, Chen W, Kornblau SM, Huang P, Lu Y, Mills GB, Andreeff M, Konopleva M (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66(7):3737–3746PubMedCrossRef Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D, Frolova O, Hail N Jr, Chen W, Kornblau SM, Huang P, Lu Y, Mills GB, Andreeff M, Konopleva M (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66(7):3737–3746PubMedCrossRef
19.
Zurück zum Zitat Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR, Mills GB (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113(1):154–164PubMedPubMedCentralCrossRef Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR, Mills GB (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113(1):154–164PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Hu J, He X, Baggerly KA, Coombes KR, Hennessy BTJ, Mills GB (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23(15):1986–1994PubMedCrossRef Hu J, He X, Baggerly KA, Coombes KR, Hennessy BTJ, Mills GB (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23(15):1986–1994PubMedCrossRef
21.
Zurück zum Zitat Neeley ES, Baggerly KA, Kornblau SM (2012) Surface adjustment of reverse phase protein arrays using positive control spots. Cancer Informat 11:77–86CrossRef Neeley ES, Baggerly KA, Kornblau SM (2012) Surface adjustment of reverse phase protein arrays using positive control spots. Cancer Informat 11:77–86CrossRef
22.
Zurück zum Zitat Han L, Qiu P, Zeng Z, Jorgensen JL, Mak DH, Burks JK, Schober W, McQueen TJ, Cortes J, Tanner SD, Roboz GJ, Kantarjian HM, Kornblau SM, Guzman ML, Andreeff M, Konopleva M (2015) Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A 87(4):346–356PubMedPubMedCentralCrossRef Han L, Qiu P, Zeng Z, Jorgensen JL, Mak DH, Burks JK, Schober W, McQueen TJ, Cortes J, Tanner SD, Roboz GJ, Kantarjian HM, Kornblau SM, Guzman ML, Andreeff M, Konopleva M (2015) Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A 87(4):346–356PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Zeng Z, Konopleva M, Andreeff M (2017) Single-cell mass cytometry of acute myeloid leukemia and leukemia stem/progenitor cells. Methods Mol Biol 1633:75–86PubMedCrossRef Zeng Z, Konopleva M, Andreeff M (2017) Single-cell mass cytometry of acute myeloid leukemia and leukemia stem/progenitor cells. Methods Mol Biol 1633:75–86PubMedCrossRef
25.
Zurück zum Zitat Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J (2016) Cytofkit: A bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol 12(9):e1005112PubMedPubMedCentralCrossRef Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J (2016) Cytofkit: A bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol 12(9):e1005112PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRef Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRef
27.
Zurück zum Zitat Lankat-Buttgereit B, Goke R (2009) The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 101(6):309–317PubMedCrossRef Lankat-Buttgereit B, Goke R (2009) The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 101(6):309–317PubMedCrossRef
28.
Zurück zum Zitat Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70PubMedCrossRef Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70PubMedCrossRef
29.
Zurück zum Zitat Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT (2014) Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica 99(8):1277–1284PubMedPubMedCentralCrossRef Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT (2014) Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica 99(8):1277–1284PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Blank U, Karlsson S (2011) The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25(9):1379–1388PubMedCrossRef Blank U, Karlsson S (2011) The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25(9):1379–1388PubMedCrossRef
31.
Zurück zum Zitat Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJM, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Woude GV, Licht JD, Kung AL, Staudt LM, Look AT (2012) Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med 18(7):1118–1122PubMedPubMedCentralCrossRef Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJM, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Woude GV, Licht JD, Kung AL, Staudt LM, Look AT (2012) Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med 18(7):1118–1122PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17(1):1–8PubMedCrossRef Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17(1):1–8PubMedCrossRef
33.
Zurück zum Zitat Zeng Z, Wang RY, Qiu YH, Mak DH, Coombes K, Yoo SY, Zhang Q, Jessen K, Liu Y, Rommel C, Fruman DA, Kantarjian HM, Kornblau SM, Andreeff M, Konopleva M (2016) MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells. Oncotarget 7(34):55083–55097PubMedPubMedCentralCrossRef Zeng Z, Wang RY, Qiu YH, Mak DH, Coombes K, Yoo SY, Zhang Q, Jessen K, Liu Y, Rommel C, Fruman DA, Kantarjian HM, Kornblau SM, Andreeff M, Konopleva M (2016) MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells. Oncotarget 7(34):55083–55097PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Tsapogas P et al (2017) Int J Mol Sci 18(6) Tsapogas P et al (2017) Int J Mol Sci 18(6)
35.
Zurück zum Zitat Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S, Kuriyama K, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Ohno R, Emi N, Naoe T (2004) Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 103(5):1901–1908PubMedCrossRef Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S, Kuriyama K, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Ohno R, Emi N, Naoe T (2004) Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 103(5):1901–1908PubMedCrossRef
36.
Zurück zum Zitat Grunwald MR, Levis MJ (2013) FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol 97(6):683–694PubMedCrossRef Grunwald MR, Levis MJ (2013) FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol 97(6):683–694PubMedCrossRef
37.
Zurück zum Zitat Culter G, Fridman JS (2016) A machine-learning analysis suggests that FLX925, a FLT3/CDK4/6 kinase inhibitor, is potent against FLT3-wild type tumors via its CDK4/6 activity. Blood 128(22):3520CrossRef Culter G, Fridman JS (2016) A machine-learning analysis suggests that FLX925, a FLT3/CDK4/6 kinase inhibitor, is potent against FLT3-wild type tumors via its CDK4/6 activity. Blood 128(22):3520CrossRef
38.
Zurück zum Zitat Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6):1752–1759PubMedCrossRef Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6):1752–1759PubMedCrossRef
39.
Zurück zum Zitat Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, Brandts C, Serve H, Roesel J, Giles F, Feldman E, Ehninger G, Schiller GJ, Nimer S, Stone RM, Wang Y, Kindler T, Cohen PS, Huber C, Fischer T (2006) Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107(1):293–300PubMedCrossRef Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, Brandts C, Serve H, Roesel J, Giles F, Feldman E, Ehninger G, Schiller GJ, Nimer S, Stone RM, Wang Y, Kindler T, Cohen PS, Huber C, Fischer T (2006) Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107(1):293–300PubMedCrossRef
40.
Zurück zum Zitat Kindler T et al (2005) Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 105(1):335–340PubMedCrossRef Kindler T et al (2005) Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 105(1):335–340PubMedCrossRef
41.
Zurück zum Zitat Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L (2006) Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A 103(30):11318–11322PubMedPubMedCentralCrossRef Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L (2006) Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A 103(30):11318–11322PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Yang L et al (2013) Hsp27: a novel therapeutic target for pediatric M4/M5 acute myeloid leukemia. Oncol Rep 29(4):1459–1466PubMedCrossRef Yang L et al (2013) Hsp27: a novel therapeutic target for pediatric M4/M5 acute myeloid leukemia. Oncol Rep 29(4):1459–1466PubMedCrossRef
43.
Zurück zum Zitat Wu S, Akhtari M, Alachkar H (2018) Characterization of mutations in the mitochondrial encoded electron transport chain complexes in acute myeloid leukemia. Sci Rep 8(1):13301PubMedPubMedCentralCrossRef Wu S, Akhtari M, Alachkar H (2018) Characterization of mutations in the mitochondrial encoded electron transport chain complexes in acute myeloid leukemia. Sci Rep 8(1):13301PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Zhang W, Gao C, Konopleva M, Chen Y, Jacamo RO, Borthakur G, Cortes JE, Ravandi F, Ramachandran A, Andreeff M (2014) Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin Cancer Res 20(9):2363–2374PubMedPubMedCentralCrossRef Zhang W, Gao C, Konopleva M, Chen Y, Jacamo RO, Borthakur G, Cortes JE, Ravandi F, Ramachandran A, Andreeff M (2014) Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin Cancer Res 20(9):2363–2374PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Zhang W, Ruvolo VR, Gao C, Zhou L, Bornmann W, Tsao T, Schober WD, Smith P, Guichard S, Konopleva M, Andreeff M (2014) Evaluation of apoptosis induction by concomitant inhibition of MEK, mTOR, and Bcl-2 in human acute myelogenous leukemia cells. Mol Cancer Ther 13(7):1848–1859PubMedPubMedCentralCrossRef Zhang W, Ruvolo VR, Gao C, Zhou L, Bornmann W, Tsao T, Schober WD, Smith P, Guichard S, Konopleva M, Andreeff M (2014) Evaluation of apoptosis induction by concomitant inhibition of MEK, mTOR, and Bcl-2 in human acute myelogenous leukemia cells. Mol Cancer Ther 13(7):1848–1859PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Machado-Neto JA et al (2018) Insulin substrate receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 73(suppl 1):e566sCrossRef Machado-Neto JA et al (2018) Insulin substrate receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 73(suppl 1):e566sCrossRef
48.
Zurück zum Zitat Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2010) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 95(3):415–423PubMedCrossRef Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2010) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 95(3):415–423PubMedCrossRef
Metadaten
Titel
High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells
verfasst von
Zhihong Zeng
Charlie Ly
Naval Daver
Jorge Cortes
Hagop M. Kantarjian
Michael Andreeff
Marina Konopleva
Publikationsdatum
31.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Hematology / Ausgabe 6/2021
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-021-04493-0

Weitere Artikel der Ausgabe 6/2021

Annals of Hematology 6/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.