Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 1/2020

31.05.2019 | Review

HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction

verfasst von: Ampadu O Jackson, Huifang Tang, Kai Yin

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplatelet therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells (CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).
Literatur
1.
Zurück zum Zitat Zwi-Dantsis, L., et al. (2013). Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 34(21), 1575–1586.PubMed Zwi-Dantsis, L., et al. (2013). Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 34(21), 1575–1586.PubMed
2.
Zurück zum Zitat D'Amico, R. W., et al. (2018). Pulmonary vascular platform models the effects of flow and pressure on endothelial dysfunction in BMPR2 associated pulmonary arterial hypertension. International Journal of Molecular Sciences, 19(9), 2561.PubMedCentral D'Amico, R. W., et al. (2018). Pulmonary vascular platform models the effects of flow and pressure on endothelial dysfunction in BMPR2 associated pulmonary arterial hypertension. International Journal of Molecular Sciences, 19(9), 2561.PubMedCentral
3.
Zurück zum Zitat Tang, N., et al. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. The FASEB Journal, 30(9), 3097–3106.PubMedPubMedCentral Tang, N., et al. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. The FASEB Journal, 30(9), 3097–3106.PubMedPubMedCentral
4.
Zurück zum Zitat Chen, L., et al. (2019). CTRP3 alleviates ox-LDL-induced inflammatory response and endothelial dysfunction in mouse aortic endothelial cells by activating the PI3K/Akt/eNOS pathway. Inflammation, 1–10. Chen, L., et al. (2019). CTRP3 alleviates ox-LDL-induced inflammatory response and endothelial dysfunction in mouse aortic endothelial cells by activating the PI3K/Akt/eNOS pathway. Inflammation, 1–10.
5.
Zurück zum Zitat Cai, H., et al. (2019). Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radical Biology & Medicine, 134, 516–526. Cai, H., et al. (2019). Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radical Biology & Medicine, 134, 516–526.
6.
Zurück zum Zitat Lacolley, P., et al. (2017). Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiological Reviews, 97(4), 1555–1617.PubMed Lacolley, P., et al. (2017). Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiological Reviews, 97(4), 1555–1617.PubMed
7.
Zurück zum Zitat Jin, H., et al. (2018). Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Molecular Therapy, 26(4), 1040–1055.PubMedPubMedCentral Jin, H., et al. (2018). Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Molecular Therapy, 26(4), 1040–1055.PubMedPubMedCentral
8.
Zurück zum Zitat Luo, Y., et al. (2017). Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Research, 27(3), 352–372.PubMedPubMedCentral Luo, Y., et al. (2017). Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Research, 27(3), 352–372.PubMedPubMedCentral
9.
Zurück zum Zitat Zhang, Y., et al. (2016). Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell, 18(3), 368–381.PubMedPubMedCentral Zhang, Y., et al. (2016). Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell, 18(3), 368–381.PubMedPubMedCentral
10.
Zurück zum Zitat Ye, L., et al. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell, 15(6), 750–761.PubMedPubMedCentral Ye, L., et al. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell, 15(6), 750–761.PubMedPubMedCentral
11.
Zurück zum Zitat Zhou, J., et al. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 28(10), 1741–1750.PubMedPubMedCentral Zhou, J., et al. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 28(10), 1741–1750.PubMedPubMedCentral
12.
Zurück zum Zitat Bai, H., et al. (2013). The balance of positive and negative effects of TGF-beta signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells. Stem Cells and Development, 22(20), 2765–2776.PubMedPubMedCentral Bai, H., et al. (2013). The balance of positive and negative effects of TGF-beta signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells. Stem Cells and Development, 22(20), 2765–2776.PubMedPubMedCentral
13.
Zurück zum Zitat Wang, J., et al. (2013). Transforming growth factor beta-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. The Journal of Biological Chemistry, 288(15), 10418–10426.PubMedPubMedCentral Wang, J., et al. (2013). Transforming growth factor beta-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. The Journal of Biological Chemistry, 288(15), 10418–10426.PubMedPubMedCentral
14.
Zurück zum Zitat Adams, W. J., et al. (2013). Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports, 1(2), 105–113.PubMedPubMedCentral Adams, W. J., et al. (2013). Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports, 1(2), 105–113.PubMedPubMedCentral
15.
Zurück zum Zitat Bulysheva, A. A., et al. (2016). Vascular endothelial growth factor-A gene electrotransfer promotes angiogenesis in a porcine model of cardiac ischemia. Gene Therapy, 23(8–9), 649–656.PubMedPubMedCentral Bulysheva, A. A., et al. (2016). Vascular endothelial growth factor-A gene electrotransfer promotes angiogenesis in a porcine model of cardiac ischemia. Gene Therapy, 23(8–9), 649–656.PubMedPubMedCentral
16.
Zurück zum Zitat Lv, Y. X., et al. (2018). VEGF-A and VEGF-B coordinate the arteriogenesis to repair the infarcted heart with vagus nerve stimulation. Cellular Physiology and Biochemistry, 48(2), 433–449.PubMed Lv, Y. X., et al. (2018). VEGF-A and VEGF-B coordinate the arteriogenesis to repair the infarcted heart with vagus nerve stimulation. Cellular Physiology and Biochemistry, 48(2), 433–449.PubMed
17.
Zurück zum Zitat Wang, Y., et al. (2016). The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Molecular Medicine Reports, 14(1), 234–242.PubMedPubMedCentral Wang, Y., et al. (2016). The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Molecular Medicine Reports, 14(1), 234–242.PubMedPubMedCentral
18.
Zurück zum Zitat Harding, A., et al. (2017). Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells, 35(4), 909–919.PubMed Harding, A., et al. (2017). Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells, 35(4), 909–919.PubMed
19.
Zurück zum Zitat Zhang, Z., et al. (2015). Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cellular Physiology and Biochemistry, 35(4), 1643–1653.PubMed Zhang, Z., et al. (2015). Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cellular Physiology and Biochemistry, 35(4), 1643–1653.PubMed
20.
Zurück zum Zitat Wang, Y., et al. (2014). Suicide gene-mediated sequencing ablation revealed the potential therapeutic mechanism of induced pluripotent stem cell-derived cardiovascular cell patch post-myocardial infarction. Antioxidants & Redox Signaling, 21(16), 2177–2191. Wang, Y., et al. (2014). Suicide gene-mediated sequencing ablation revealed the potential therapeutic mechanism of induced pluripotent stem cell-derived cardiovascular cell patch post-myocardial infarction. Antioxidants & Redox Signaling, 21(16), 2177–2191.
21.
Zurück zum Zitat Rosa, S., et al. (2019). Functional characterization of iPSC-derived arterial- and venous-like endothelial cells. Scientific Reports, 9(1), 3826.PubMedPubMedCentral Rosa, S., et al. (2019). Functional characterization of iPSC-derived arterial- and venous-like endothelial cells. Scientific Reports, 9(1), 3826.PubMedPubMedCentral
22.
Zurück zum Zitat Songstad, A. E., et al. (2017). Connective tissue growth factor promotes efficient generation of human induced pluripotent stem cell-derived choroidal endothelium. Stem Cells Translational Medicine, 6(6), 1533–1546.PubMedPubMedCentral Songstad, A. E., et al. (2017). Connective tissue growth factor promotes efficient generation of human induced pluripotent stem cell-derived choroidal endothelium. Stem Cells Translational Medicine, 6(6), 1533–1546.PubMedPubMedCentral
23.
Zurück zum Zitat Chan, X. Y., et al. (2015). Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(12), 2677–2685.PubMedPubMedCentral Chan, X. Y., et al. (2015). Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(12), 2677–2685.PubMedPubMedCentral
24.
Zurück zum Zitat Hurlstone, A. F., et al. (2003). The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature, 425(6958), 633–637.PubMed Hurlstone, A. F., et al. (2003). The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature, 425(6958), 633–637.PubMed
25.
Zurück zum Zitat Cai, X., et al. (2013). Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development, 140(15), 3176–3187.PubMedPubMedCentral Cai, X., et al. (2013). Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development, 140(15), 3176–3187.PubMedPubMedCentral
26.
Zurück zum Zitat Umbhauer, M., et al. (2000). The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. The EMBO Journal, 19(18), 4944–4954.PubMedPubMedCentral Umbhauer, M., et al. (2000). The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. The EMBO Journal, 19(18), 4944–4954.PubMedPubMedCentral
27.
Zurück zum Zitat Maltabe, V. A., et al. (2016). Isolation of an ES-derived cardiovascular multipotent cell population based on VE-cadherin promoter activity. Stem Cells International, 2016, 8305624.PubMedPubMedCentral Maltabe, V. A., et al. (2016). Isolation of an ES-derived cardiovascular multipotent cell population based on VE-cadherin promoter activity. Stem Cells International, 2016, 8305624.PubMedPubMedCentral
28.
Zurück zum Zitat Marchetti, S., et al. (2002). Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. Journal of Cell Science, (115(Pt 10), 2075–2085. Marchetti, S., et al. (2002). Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. Journal of Cell Science, (115(Pt 10), 2075–2085.
29.
Zurück zum Zitat Lian, X., et al. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804–816.PubMedPubMedCentral Lian, X., et al. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804–816.PubMedPubMedCentral
30.
Zurück zum Zitat Collado, M. S., et al. (2017). Exposure of induced pluripotent stem cell-derived vascular endothelial and smooth muscle cells in coculture to hemodynamics induces primary vascular cell-like phenotypes. Stem Cells Translational Medicine, 6(8), 1673–1683.PubMedPubMedCentral Collado, M. S., et al. (2017). Exposure of induced pluripotent stem cell-derived vascular endothelial and smooth muscle cells in coculture to hemodynamics induces primary vascular cell-like phenotypes. Stem Cells Translational Medicine, 6(8), 1673–1683.PubMedPubMedCentral
31.
Zurück zum Zitat Shen, X., et al. (2017). Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. Journal of Biomedical Science, 24(1), 29.PubMedPubMedCentral Shen, X., et al. (2017). Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. Journal of Biomedical Science, 24(1), 29.PubMedPubMedCentral
32.
Zurück zum Zitat Ishizuka, T., et al. (2012). Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells. Biochemical and Biophysical Research Communications, 420(1), 148–155.PubMed Ishizuka, T., et al. (2012). Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells. Biochemical and Biophysical Research Communications, 420(1), 148–155.PubMed
33.
Zurück zum Zitat Zheng, X., et al. (2013). Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-kappaB. Differentiation, 85(1–2), 41–54.PubMed Zheng, X., et al. (2013). Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-kappaB. Differentiation, 85(1–2), 41–54.PubMed
34.
Zurück zum Zitat Jiao, J., et al. (2018). Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: implications for bicuspid aortic valve-related aortopathy. The Journal of Thoracic and Cardiovascular Surgery, 156(2), 515–522 e1.PubMed Jiao, J., et al. (2018). Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: implications for bicuspid aortic valve-related aortopathy. The Journal of Thoracic and Cardiovascular Surgery, 156(2), 515–522 e1.PubMed
35.
Zurück zum Zitat Jiao, J., et al. (2016). Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine, 10, 282–290.PubMedPubMedCentral Jiao, J., et al. (2016). Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine, 10, 282–290.PubMedPubMedCentral
36.
Zurück zum Zitat Chang, L., et al. (2012). Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 6993–6998.PubMedPubMedCentral Chang, L., et al. (2012). Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 6993–6998.PubMedPubMedCentral
37.
Zurück zum Zitat Liu, Y., et al. (2014). Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS One, 9(10), e109588.PubMedPubMedCentral Liu, Y., et al. (2014). Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS One, 9(10), e109588.PubMedPubMedCentral
38.
Zurück zum Zitat Yang, C., et al. (2017). Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Human Molecular Genetics, 26(16), 3031–3045.PubMedPubMedCentral Yang, C., et al. (2017). Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Human Molecular Genetics, 26(16), 3031–3045.PubMedPubMedCentral
39.
Zurück zum Zitat Gong, H., et al. (2014). Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 32(7), 1759–1773.PubMed Gong, H., et al. (2014). Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 32(7), 1759–1773.PubMed
40.
Zurück zum Zitat Jiang, S., & Zhang, S. (2017). Differentiation of cardiomyocytes from amniotic fluid-derived mesenchymal stem cells by combined induction with transforming growth factor beta1 and 5azacytidine. Molecular Medicine Reports, 16(5), 5887–5893.PubMedPubMedCentral Jiang, S., & Zhang, S. (2017). Differentiation of cardiomyocytes from amniotic fluid-derived mesenchymal stem cells by combined induction with transforming growth factor beta1 and 5azacytidine. Molecular Medicine Reports, 16(5), 5887–5893.PubMedPubMedCentral
41.
Zurück zum Zitat Ishizuka, T., et al. (2014). Involvement of beta-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. European Journal of Pharmacology, 740, 28–34.PubMed Ishizuka, T., et al. (2014). Involvement of beta-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. European Journal of Pharmacology, 740, 28–34.PubMed
42.
Zurück zum Zitat Ikuno, T., et al. (2017). Correction: efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12(4), e0176238.PubMedPubMedCentral Ikuno, T., et al. (2017). Correction: efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12(4), e0176238.PubMedPubMedCentral
43.
Zurück zum Zitat Yamazaki, A., et al. (2016). Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle, 15(5), 760–765.PubMedPubMedCentral Yamazaki, A., et al. (2016). Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle, 15(5), 760–765.PubMedPubMedCentral
44.
Zurück zum Zitat Shirai, K., et al. (2017). Hypoxia enhances differentiation of hair follicle-associated-pluripotent (HAP) stem cells to cardiac-muscle cells. Journal of Cellular Biochemistry, 118(3), 554–558.PubMed Shirai, K., et al. (2017). Hypoxia enhances differentiation of hair follicle-associated-pluripotent (HAP) stem cells to cardiac-muscle cells. Journal of Cellular Biochemistry, 118(3), 554–558.PubMed
45.
Zurück zum Zitat Liao, S., et al. (2019). Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Research & Therapy, 10(1), 78. Liao, S., et al. (2019). Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Research & Therapy, 10(1), 78.
46.
Zurück zum Zitat Kim, J. A., et al. (2015). Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Research, 14(3), 356–368.PubMed Kim, J. A., et al. (2015). Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Research, 14(3), 356–368.PubMed
47.
Zurück zum Zitat von Gise, A., et al. (2011). WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Developmental Biology, 356(2), 421–431. von Gise, A., et al. (2011). WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Developmental Biology, 356(2), 421–431.
48.
Zurück zum Zitat Mahapatra, S., Martin, D., & Gallicano, G. I. (2018). Re-defining stem cell-cardiomyocyte interactions: focusing on the paracrine effector approach. Journal of Stem cells and Regenerative Medicine, 14(1), 10–26.PubMed Mahapatra, S., Martin, D., & Gallicano, G. I. (2018). Re-defining stem cell-cardiomyocyte interactions: focusing on the paracrine effector approach. Journal of Stem cells and Regenerative Medicine, 14(1), 10–26.PubMed
49.
Zurück zum Zitat Luxan, G., et al. (2016). Endocardial notch signaling in cardiac development and disease. Circulation Research, 118(1), e1–e18.PubMed Luxan, G., et al. (2016). Endocardial notch signaling in cardiac development and disease. Circulation Research, 118(1), e1–e18.PubMed
50.
Zurück zum Zitat Wu, K. H., et al. (2018). MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development. Journal of Molecular and Cellular Cardiology, 114, 300–308.PubMed Wu, K. H., et al. (2018). MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development. Journal of Molecular and Cellular Cardiology, 114, 300–308.PubMed
51.
Zurück zum Zitat High, F. A., et al. (2007). An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. The Journal of Clinical Investigation, 117(2), 353–363.PubMedPubMedCentral High, F. A., et al. (2007). An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. The Journal of Clinical Investigation, 117(2), 353–363.PubMedPubMedCentral
52.
Zurück zum Zitat Godby, R. C., et al. (2014). Cross talk between Notch signaling and biomechanics in human aortic valve disease pathogenesis. Journal of Cardiovascular Development and Disease, 1(3), 237–256.PubMedPubMedCentral Godby, R. C., et al. (2014). Cross talk between Notch signaling and biomechanics in human aortic valve disease pathogenesis. Journal of Cardiovascular Development and Disease, 1(3), 237–256.PubMedPubMedCentral
53.
Zurück zum Zitat Hrstka, S. C., et al. (2017). NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells, 35(4), 1106–1119.PubMed Hrstka, S. C., et al. (2017). NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells, 35(4), 1106–1119.PubMed
54.
Zurück zum Zitat Bischoff, J., et al. (2016). CD45 expression in mitral valve endothelial cells after myocardial infarction. Circulation Research, 119(11), 1215–1225.PubMedPubMedCentral Bischoff, J., et al. (2016). CD45 expression in mitral valve endothelial cells after myocardial infarction. Circulation Research, 119(11), 1215–1225.PubMedPubMedCentral
55.
Zurück zum Zitat Skelton, R. J., et al. (2014). SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 13(1), 172–179.PubMed Skelton, R. J., et al. (2014). SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 13(1), 172–179.PubMed
56.
Zurück zum Zitat Clayton, Z. E., et al. (2018). Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Bioscience Reports, 38(4). Clayton, Z. E., et al. (2018). Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Bioscience Reports, 38(4).
57.
Zurück zum Zitat Liu, G., et al. (2018). Human urine-derived stem cell differentiation to endothelial cells with barrier function and nitric oxide production. Stem Cells Translational Medicine. Liu, G., et al. (2018). Human urine-derived stem cell differentiation to endothelial cells with barrier function and nitric oxide production. Stem Cells Translational Medicine.
58.
Zurück zum Zitat Nakayama, K. H., et al. (2015). Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regenerative Medicine, 10(6), 745–755.PubMedPubMedCentral Nakayama, K. H., et al. (2015). Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regenerative Medicine, 10(6), 745–755.PubMedPubMedCentral
59.
Zurück zum Zitat Halaidych, O. V., et al. (2018). Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Reports, 10(5), 1642–1656.PubMedPubMedCentral Halaidych, O. V., et al. (2018). Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Reports, 10(5), 1642–1656.PubMedPubMedCentral
60.
Zurück zum Zitat Ding, X., et al. (2017). Upregulation of SRF is associated with hypoxic pulmonary hypertension by promoting viability of smooth muscle cells via increasing expression of Bcl-2. Journal of Cellular Biochemistry, 118(9), 2731–2738.PubMed Ding, X., et al. (2017). Upregulation of SRF is associated with hypoxic pulmonary hypertension by promoting viability of smooth muscle cells via increasing expression of Bcl-2. Journal of Cellular Biochemistry, 118(9), 2731–2738.PubMed
61.
Zurück zum Zitat Liu, S., et al. (2019). MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1. Frontiers in Genetics, 10, 22.PubMedPubMedCentral Liu, S., et al. (2019). MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1. Frontiers in Genetics, 10, 22.PubMedPubMedCentral
62.
Zurück zum Zitat Bai, Y., et al. (2019). Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 Axis. International Heart Journal, 60(2), 444–450.PubMed Bai, Y., et al. (2019). Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 Axis. International Heart Journal, 60(2), 444–450.PubMed
63.
Zurück zum Zitat Jamaiyar, A., et al. (2017). Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Research in Cardiology, 112(4), 41.PubMed Jamaiyar, A., et al. (2017). Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Research in Cardiology, 112(4), 41.PubMed
64.
Zurück zum Zitat Chen, S., & Lechleider, R. J. (2004). Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circulation Research, 94(9), 1195–1202.PubMed Chen, S., & Lechleider, R. J. (2004). Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circulation Research, 94(9), 1195–1202.PubMed
65.
Zurück zum Zitat Chan, M. C., et al. (2010). Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. The EMBO Journal, 29(3), 559–573.PubMed Chan, M. C., et al. (2010). Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. The EMBO Journal, 29(3), 559–573.PubMed
66.
Zurück zum Zitat Patsch, C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.PubMedPubMedCentral Patsch, C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.PubMedPubMedCentral
67.
Zurück zum Zitat Dash, B. C., et al. (2016). Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports, 7(1), 19–28.PubMedPubMedCentral Dash, B. C., et al. (2016). Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports, 7(1), 19–28.PubMedPubMedCentral
68.
Zurück zum Zitat Liu, Y., et al. (2016). Mesp1 marked cardiac progenitor cells repair infarcted mouse hearts. Scientific Reports, 6, 31457.PubMedPubMedCentral Liu, Y., et al. (2016). Mesp1 marked cardiac progenitor cells repair infarcted mouse hearts. Scientific Reports, 6, 31457.PubMedPubMedCentral
69.
Zurück zum Zitat Remedios, L. J. Y. H. S. H. C. G.d. (2003). Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle. European Heart Journal, 24(8), 742–751. Remedios, L. J. Y. H. S. H. C. G.d. (2003). Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle. European Heart Journal, 24(8), 742–751.
70.
Zurück zum Zitat Tachibana, A., et al. (2017). Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circulation Research, 121(6), e22–e36.PubMedPubMedCentral Tachibana, A., et al. (2017). Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circulation Research, 121(6), e22–e36.PubMedPubMedCentral
71.
Zurück zum Zitat Martinez-Fernandez, A., et al. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.PubMedPubMedCentral Martinez-Fernandez, A., et al. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.PubMedPubMedCentral
72.
Zurück zum Zitat Chan, S. S., et al. (2010). Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells. PLoS One, 5(12), e14414.PubMedPubMedCentral Chan, S. S., et al. (2010). Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells. PLoS One, 5(12), e14414.PubMedPubMedCentral
73.
Zurück zum Zitat Morabito, C. J., et al. (2001). Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Developmental Biology, 234(1), 204–215.PubMed Morabito, C. J., et al. (2001). Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Developmental Biology, 234(1), 204–215.PubMed
74.
Zurück zum Zitat Karimzadeh, F., & Opas, M. (2017). Calreticulin is required for TGF-beta-induced epithelial-to-mesenchymal transition during cardiogenesis in mouse embryonic stem cells. Stem Cell Reports, 8(5), 1299–1311.PubMedPubMedCentral Karimzadeh, F., & Opas, M. (2017). Calreticulin is required for TGF-beta-induced epithelial-to-mesenchymal transition during cardiogenesis in mouse embryonic stem cells. Stem Cell Reports, 8(5), 1299–1311.PubMedPubMedCentral
75.
Zurück zum Zitat Wang, K., et al. (2018). Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1alpha/Jagged1/Notch1 signaling. Acta Pharmaceutica Sinica B, 8(5), 795–804.PubMedPubMedCentral Wang, K., et al. (2018). Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1alpha/Jagged1/Notch1 signaling. Acta Pharmaceutica Sinica B, 8(5), 795–804.PubMedPubMedCentral
76.
Zurück zum Zitat Sun, X., et al. (2015). HIF2alpha induces cardiomyogenesis via Wnt/beta-catenin signaling in mouse embryonic stem cells. Journal of Translational Medicine, 13, 88.PubMedPubMedCentral Sun, X., et al. (2015). HIF2alpha induces cardiomyogenesis via Wnt/beta-catenin signaling in mouse embryonic stem cells. Journal of Translational Medicine, 13, 88.PubMedPubMedCentral
77.
Zurück zum Zitat Xue, Y., et al. (2014). Insulin-like growth factor binding protein 4 enhances cardiomyocytes induction in murine-induced pluripotent stem cells. Journal of Cellular Biochemistry, 115(9), 1495–1504.PubMed Xue, Y., et al. (2014). Insulin-like growth factor binding protein 4 enhances cardiomyocytes induction in murine-induced pluripotent stem cells. Journal of Cellular Biochemistry, 115(9), 1495–1504.PubMed
78.
Zurück zum Zitat Minato, A., et al. (2012). Cardiac differentiation of embryonic stem cells by substrate immobilization of insulin-like growth factor binding protein 4 with elastin-like polypeptides. Biomaterials, 33(2), 515–523.PubMed Minato, A., et al. (2012). Cardiac differentiation of embryonic stem cells by substrate immobilization of insulin-like growth factor binding protein 4 with elastin-like polypeptides. Biomaterials, 33(2), 515–523.PubMed
79.
Zurück zum Zitat Sebastiao, M. J., et al. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10(1), 77. Sebastiao, M. J., et al. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10(1), 77.
80.
Zurück zum Zitat El Harane, N., et al. (2018). Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 39(20), 1835–1847.PubMedPubMedCentral El Harane, N., et al. (2018). Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 39(20), 1835–1847.PubMedPubMedCentral
81.
Zurück zum Zitat Blazeski, A., et al. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 110(2–3), 166–177.PubMedPubMedCentral Blazeski, A., et al. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 110(2–3), 166–177.PubMedPubMedCentral
82.
Zurück zum Zitat Wang, H., et al. (2016). Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells. Stem Cell Research, 16(2), 522–530.PubMedPubMedCentral Wang, H., et al. (2016). Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells. Stem Cell Research, 16(2), 522–530.PubMedPubMedCentral
83.
Zurück zum Zitat Nakamura, Y., et al. (2017). Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Scientific Reports, 7(1), 9377.PubMedPubMedCentral Nakamura, Y., et al. (2017). Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Scientific Reports, 7(1), 9377.PubMedPubMedCentral
84.
Zurück zum Zitat Al-Ahmad, A. J. (2017). Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. American Journal of Physiology. Cell Physiology, 313(4), C421–C429.PubMedPubMedCentral Al-Ahmad, A. J. (2017). Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. American Journal of Physiology. Cell Physiology, 313(4), C421–C429.PubMedPubMedCentral
85.
Zurück zum Zitat Shaer, A., et al. (2015). Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. Experimental and Clinical Transplantation, 13(1), 68–75.PubMed Shaer, A., et al. (2015). Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. Experimental and Clinical Transplantation, 13(1), 68–75.PubMed
86.
Zurück zum Zitat Nose, N., et al. (2018). Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: functional assessment using in vitro radionuclide uptake assay. International Journal of Cardiology, 269, 229–234.PubMed Nose, N., et al. (2018). Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: functional assessment using in vitro radionuclide uptake assay. International Journal of Cardiology, 269, 229–234.PubMed
87.
Zurück zum Zitat Ju, Z., et al. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496.PubMed Ju, Z., et al. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496.PubMed
88.
Zurück zum Zitat Kirby, R. J., et al. (2018). Discovery of novel small-molecule inducers of heme oxygenase-1 that protect human iPSC-derived cardiomyocytes from oxidative stress. The Journal of Pharmacology and Experimental Therapeutics, 364(1), 87–96.PubMed Kirby, R. J., et al. (2018). Discovery of novel small-molecule inducers of heme oxygenase-1 that protect human iPSC-derived cardiomyocytes from oxidative stress. The Journal of Pharmacology and Experimental Therapeutics, 364(1), 87–96.PubMed
89.
Zurück zum Zitat Yue, X., Acun, A., & Zorlutuna, P. (2017). Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomaterialia, 58, 337–348.PubMedPubMedCentral Yue, X., Acun, A., & Zorlutuna, P. (2017). Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomaterialia, 58, 337–348.PubMedPubMedCentral
90.
Zurück zum Zitat Matsa, E., et al. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962.PubMedPubMedCentral Matsa, E., et al. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962.PubMedPubMedCentral
91.
Zurück zum Zitat Kooreman, N. G., et al. (2017). Alloimmune responses of humanized mice to human pluripotent stem cell therapeutics. Cell Reports, 20(8), 1978–1990.PubMedPubMedCentral Kooreman, N. G., et al. (2017). Alloimmune responses of humanized mice to human pluripotent stem cell therapeutics. Cell Reports, 20(8), 1978–1990.PubMedPubMedCentral
92.
Zurück zum Zitat Hattori, F., et al. (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nature Methods, 7(1), 61–66.PubMed Hattori, F., et al. (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nature Methods, 7(1), 61–66.PubMed
93.
Zurück zum Zitat Dubois, N. C., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29(11), 1011–1018.PubMedPubMedCentral Dubois, N. C., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29(11), 1011–1018.PubMedPubMedCentral
94.
Zurück zum Zitat Tohyama, S., et al. (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1), 127–137.PubMed Tohyama, S., et al. (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1), 127–137.PubMed
95.
Zurück zum Zitat Jiang, Y., et al. (2018). TGF-beta1-induced SMAD2/3/4 activation promotes RELM-beta transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. The International Journal of Biochemistry & Cell Biology, 105, 52–60. Jiang, Y., et al. (2018). TGF-beta1-induced SMAD2/3/4 activation promotes RELM-beta transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. The International Journal of Biochemistry & Cell Biology, 105, 52–60.
96.
Zurück zum Zitat Miscianinov, V., et al. (2018). MicroRNA-148b targets the TGF-beta pathway to regulate angiogenesis and endothelial-to-mesenchymal transition during skin wound healing. Molecular Therapy, 26(8), 1996–2007.PubMedPubMedCentral Miscianinov, V., et al. (2018). MicroRNA-148b targets the TGF-beta pathway to regulate angiogenesis and endothelial-to-mesenchymal transition during skin wound healing. Molecular Therapy, 26(8), 1996–2007.PubMedPubMedCentral
97.
Zurück zum Zitat Wang, J., et al. (2017). The mechanism of TGF-beta/miR-155/c-Ski regulates endothelial-mesenchymal transition in human coronary artery endothelial cells. Bioscience Reports, 37(4). Wang, J., et al. (2017). The mechanism of TGF-beta/miR-155/c-Ski regulates endothelial-mesenchymal transition in human coronary artery endothelial cells. Bioscience Reports, 37(4).
98.
Zurück zum Zitat Bezenah, J. R., Kong, Y. P., & Putnam, A. J. (2018). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8(1), 2671.PubMedPubMedCentral Bezenah, J. R., Kong, Y. P., & Putnam, A. J. (2018). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8(1), 2671.PubMedPubMedCentral
99.
Zurück zum Zitat Maleszewska, M., et al. (2013). IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology, 218(4), 443–454.PubMed Maleszewska, M., et al. (2013). IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology, 218(4), 443–454.PubMed
100.
Zurück zum Zitat Maleszewska, M., et al. (2015). Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22alpha expression in endothelial cells in response to interleukin-1beta and transforming growth factor-beta2. Cellular Signalling, 27(8), 1589–1596.PubMed Maleszewska, M., et al. (2015). Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22alpha expression in endothelial cells in response to interleukin-1beta and transforming growth factor-beta2. Cellular Signalling, 27(8), 1589–1596.PubMed
101.
Zurück zum Zitat Tang, R. N., et al. (2013). Effects of angiotensin II receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. International Journal of Cardiology, 162(2), 92–99.PubMed Tang, R. N., et al. (2013). Effects of angiotensin II receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. International Journal of Cardiology, 162(2), 92–99.PubMed
102.
Zurück zum Zitat Giordano, S., et al. (2017). Induced pluripotent stem cell-derived endothelial cells overexpressing Interleukin-8 receptors a/B and/or C-C chemokine receptors 2/5 inhibit vascular injury response. Stem Cells Translational Medicine, 6(4), 1168–1177.PubMedPubMedCentral Giordano, S., et al. (2017). Induced pluripotent stem cell-derived endothelial cells overexpressing Interleukin-8 receptors a/B and/or C-C chemokine receptors 2/5 inhibit vascular injury response. Stem Cells Translational Medicine, 6(4), 1168–1177.PubMedPubMedCentral
103.
Zurück zum Zitat Chang, A. C., et al. (2014). A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. Developmental Dynamics, 243(7), 894–905.PubMed Chang, A. C., et al. (2014). A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. Developmental Dynamics, 243(7), 894–905.PubMed
104.
Zurück zum Zitat Chang, A. C., et al. (2011). Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Developmental Cell, 21(2), 288–300.PubMed Chang, A. C., et al. (2011). Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Developmental Cell, 21(2), 288–300.PubMed
Metadaten
Titel
HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction
verfasst von
Ampadu O Jackson
Huifang Tang
Kai Yin
Publikationsdatum
31.05.2019
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 1/2020
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09891-4

Weitere Artikel der Ausgabe 1/2020

Journal of Cardiovascular Translational Research 1/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.