Skip to main content
Erschienen in: Der Ophthalmologe 3/2017

19.12.2016 | Leitthema

Histologie im lebenden Auge

Nichtinvasive mikroskopische Struktur- und Funktionsanalyse der Netzhaut mit adaptiven Optiken

verfasst von: N. Domdei, M.Sc., J. L. Reiniger, M. Pfau, P. Charbel Issa, F. G. Holz, W. M. Harmening

Erschienen in: Die Ophthalmologie | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Adaptive Optiken (AO) ermöglichen im lebenden Auge eine Untersuchung der Netzhaut auf zellulärer Ebene. Mittels AO können die Nervenfaserschicht, kleinste Blutgefäße der inneren Netzhaut, Photorezeptorzellen (Zapfen und Stäbchen) und das Mosaik des retinalen Pigmentepithels in gesunder und erkrankter Netzhaut direkt beobachtet werden. Eine Vielzahl wissenschaftlicher Untersuchungen bei verschiedenen Erkrankungen der Netzhaut zeigt schon jetzt, dass diese neugewonnenen strukturellen Details Krankheitsverläufe präziser beschreiben und in einigen Fällen eine Früherkennung ermöglichen können. Die Koppelung mit hochaufgelöster AO-Stimulation zeigt, dass auch visuelle Funktion auf zellulärer Ebene untersuchbar ist. Daraus ergeben sich völlig neue Wege für die klinische und interventionelle Ophthalmologie, und für die grundlagenwissenschaftliche Untersuchung des Sehens und der zugrunde liegenden neuronalen Strukturen.
Literatur
1.
Zurück zum Zitat Bruce KS, Harmening WM, Langston BR et al (2015) Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci 56:4431–4438CrossRefPubMedPubMedCentral Bruce KS, Harmening WM, Langston BR et al (2015) Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci 56:4431–4438CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974CrossRefPubMedPubMedCentral Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Chen MF, Chui TYP, Alhadeff P et al (2015) Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci 56:674–681CrossRefPubMedPubMedCentral Chen MF, Chui TYP, Alhadeff P et al (2015) Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci 56:674–681CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Chui TYP, Gast TJ, Burns SA (2013) Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 54:7115–7124CrossRefPubMedPubMedCentral Chui TYP, Gast TJ, Burns SA (2013) Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 54:7115–7124CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Chui TYP, Mo S, Krawitz B et al (2016) Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retin Vitr 2:11CrossRef Chui TYP, Mo S, Krawitz B et al (2016) Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retin Vitr 2:11CrossRef
6.
Zurück zum Zitat Chui TYP, Pinhas A, Gan A et al (2016) Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 36:290–302CrossRefPubMed Chui TYP, Pinhas A, Gan A et al (2016) Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 36:290–302CrossRefPubMed
7.
Zurück zum Zitat Chui TYP, Vannasdale DA, Burns SA (2012) The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 3:2537–2549CrossRefPubMedPubMedCentral Chui TYP, Vannasdale DA, Burns SA (2012) The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 3:2537–2549CrossRefPubMedPubMedCentral
8.
10.
Zurück zum Zitat Dubow M, Pinhas A, Shah N et al (2014) Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 55:1299–1309CrossRefPubMedPubMedCentral Dubow M, Pinhas A, Shah N et al (2014) Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 55:1299–1309CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Dubra A, Sulai Y, Norris JL et al (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2:1864–1876CrossRefPubMedPubMedCentral Dubra A, Sulai Y, Norris JL et al (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2:1864–1876CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Eizenman M, Hallet PE, Frecker RC (1985) Power spectra for ocular drift and tremor. Vision Res 25:1635–1640CrossRefPubMed Eizenman M, Hallet PE, Frecker RC (1985) Power spectra for ocular drift and tremor. Vision Res 25:1635–1640CrossRefPubMed
13.
Zurück zum Zitat Hammer DX, Ferguson RD, Bigelow CE et al (2006) Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Express 14:3354–3367CrossRefPubMedPubMedCentral Hammer DX, Ferguson RD, Bigelow CE et al (2006) Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Express 14:3354–3367CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Harmening WM, Tiruveedhula P, Roorda A, Sincich LC (2012) Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express 3:2066–2077CrossRefPubMedPubMedCentral Harmening WM, Tiruveedhula P, Roorda A, Sincich LC (2012) Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express 3:2066–2077CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hofer H, Singer B, Williams DR (2005) Different sensations from cones with the same photopigment. J Vis 5:444–454CrossRefPubMed Hofer H, Singer B, Williams DR (2005) Different sensations from cones with the same photopigment. J Vis 5:444–454CrossRefPubMed
17.
Zurück zum Zitat Hood DC, Chen MF, Lee D et al (2015) Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl Vis Sci Technol 4:12CrossRefPubMedPubMedCentral Hood DC, Chen MF, Lee D et al (2015) Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl Vis Sci Technol 4:12CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Horton JC, Parker AB, Botelho JV, Duncan JL (2015) Spontaneous regeneration of human photoreceptor outer segments. Sci. Rep. 5:12364 Horton JC, Parker AB, Botelho JV, Duncan JL (2015) Spontaneous regeneration of human photoreceptor outer segments. Sci. Rep. 5:12364
20.
21.
22.
Zurück zum Zitat Koch E, Rosenbaum D, Brolly A et al (2014) Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 32:890–898CrossRefPubMedPubMedCentral Koch E, Rosenbaum D, Brolly A et al (2014) Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 32:890–898CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14:2884–2892CrossRefPubMed Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14:2884–2892CrossRefPubMed
24.
Zurück zum Zitat Liu Z, Kocaoglu OP, Miller DT (2016) 3D imaging of retinal pigment epithelial cells in the living human retina. Invest Ophthalmol Vis Sci 57(9):OCT533–OCT543CrossRefPubMedPubMedCentral Liu Z, Kocaoglu OP, Miller DT (2016) 3D imaging of retinal pigment epithelial cells in the living human retina. Invest Ophthalmol Vis Sci 57(9):OCT533–OCT543CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lombardo M, Parravano M, Serrao S et al (2016) Investigation of adaptive optics imaging Biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLOS ONE 11:e0151380CrossRefPubMedPubMedCentral Lombardo M, Parravano M, Serrao S et al (2016) Investigation of adaptive optics imaging Biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLOS ONE 11:e0151380CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Martin JA, Roorda A (2009) Pulsatility of parafoveal capillary leukocytes. Exp Eye Res 88:356–360CrossRefPubMed Martin JA, Roorda A (2009) Pulsatility of parafoveal capillary leukocytes. Exp Eye Res 88:356–360CrossRefPubMed
27.
Zurück zum Zitat Morgan JIW, Dubra A, Wolfe R et al (2009) In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest Ophthalmol Vis Sci 50:1350–1359CrossRefPubMed Morgan JIW, Dubra A, Wolfe R et al (2009) In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest Ophthalmol Vis Sci 50:1350–1359CrossRefPubMed
28.
Zurück zum Zitat Morgan JIW, Han G, Klinman E et al (2014) High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci 55:6381–6397CrossRefPubMedPubMedCentral Morgan JIW, Han G, Klinman E et al (2014) High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci 55:6381–6397CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Obata R, Yanagi Y (2014) Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration. PLOS ONE 9:e91873CrossRefPubMedPubMedCentral Obata R, Yanagi Y (2014) Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration. PLOS ONE 9:e91873CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Pallikaris A, Williams DR, Hofer H (2003) The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci 44:4580–4592CrossRefPubMed Pallikaris A, Williams DR, Hofer H (2003) The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci 44:4580–4592CrossRefPubMed
31.
Zurück zum Zitat Popovic Z, Knutsson P, Thaung J et al (2011) Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest Ophthalmol Vis Sci 52:2649–2655CrossRefPubMed Popovic Z, Knutsson P, Thaung J et al (2011) Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest Ophthalmol Vis Sci 52:2649–2655CrossRefPubMed
32.
Zurück zum Zitat Razeen MM, Cooper RF, Langlo CS et al (2016) Correlating photoreceptor mosaic structure to clinical findings in Stargardt disease. Transl Vis Sci Technol 5:6CrossRefPubMedPubMedCentral Razeen MM, Cooper RF, Langlo CS et al (2016) Correlating photoreceptor mosaic structure to clinical findings in Stargardt disease. Transl Vis Sci Technol 5:6CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48:2297–2303CrossRefPubMed Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48:2297–2303CrossRefPubMed
35.
Zurück zum Zitat Rossi EA, Rangel-Fonseca P, Parkins K et al (2013) In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 4:2527–2539CrossRefPubMedPubMedCentral Rossi EA, Rangel-Fonseca P, Parkins K et al (2013) In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 4:2527–2539CrossRefPubMedPubMedCentral
36.
37.
Zurück zum Zitat Scoles D, Sulai YN, Langlo CS et al (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244–4251CrossRefPubMedPubMedCentral Scoles D, Sulai YN, Langlo CS et al (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244–4251CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Sheehy CK, Tiruveedhula P, Sabesan R, Roorda A (2015) Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 6:2412–2423CrossRefPubMedPubMedCentral Sheehy CK, Tiruveedhula P, Sabesan R, Roorda A (2015) Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 6:2412–2423CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Sun LW, Johnson RD, Langlo CS et al (2016) Assessing photoreceptor structure in Retinitis Pigmentosa and usher syndrome. Invest Ophthalmol Vis Sci 57:2428CrossRefPubMedPubMedCentral Sun LW, Johnson RD, Langlo CS et al (2016) Assessing photoreceptor structure in Retinitis Pigmentosa and usher syndrome. Invest Ophthalmol Vis Sci 57:2428CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Syed R, Sundquist SM, Ratnam K et al (2013) High-resolution images of retinal structure in patients with choroideremia. Invest Ophthalmol Vis Sci 54:950–961CrossRefPubMedPubMedCentral Syed R, Sundquist SM, Ratnam K et al (2013) High-resolution images of retinal structure in patients with choroideremia. Invest Ophthalmol Vis Sci 54:950–961CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Talcott KE, Ratnam K, Sundquist SM et al (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52:2219–2226CrossRefPubMedPubMedCentral Talcott KE, Ratnam K, Sundquist SM et al (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52:2219–2226CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Tam J, Liu J, Dubra A, Fariss R (2016) In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced Indocyanine. Invest Ophthalmol Vis Sci 57:4374–4384CrossRef Tam J, Liu J, Dubra A, Fariss R (2016) In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced Indocyanine. Invest Ophthalmol Vis Sci 57:4374–4384CrossRef
44.
Zurück zum Zitat Tam J, Martin JA, Roorda A (2010) Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 51:1691–1698CrossRefPubMedPubMedCentral Tam J, Martin JA, Roorda A (2010) Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 51:1691–1698CrossRefPubMedPubMedCentral
45.
46.
Zurück zum Zitat Wang Q, Tuten WS, Lujan BJ et al (2015) Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 56:778–786CrossRefPubMedPubMedCentral Wang Q, Tuten WS, Lujan BJ et al (2015) Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 56:778–786CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Wood EH, Leng T, Schachar IH, Karth PA (2016) Multi-modal longitudinal evaluation of subthreshold laser lesions in human retina, including scanning laser ophthalmoscope-adaptive optics imaging. Ophthalmic Surg Lasers Imaging Retina 47:268–275CrossRefPubMed Wood EH, Leng T, Schachar IH, Karth PA (2016) Multi-modal longitudinal evaluation of subthreshold laser lesions in human retina, including scanning laser ophthalmoscope-adaptive optics imaging. Ophthalmic Surg Lasers Imaging Retina 47:268–275CrossRefPubMed
48.
Zurück zum Zitat Zawadzki RJ, Jones SM, Olivier SS et al (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13:8532–8546CrossRefPubMedPubMedCentral Zawadzki RJ, Jones SM, Olivier SS et al (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13:8532–8546CrossRefPubMedPubMedCentral
Metadaten
Titel
Histologie im lebenden Auge
Nichtinvasive mikroskopische Struktur- und Funktionsanalyse der Netzhaut mit adaptiven Optiken
verfasst von
N. Domdei, M.Sc.
J. L. Reiniger
M. Pfau
P. Charbel Issa
F. G. Holz
W. M. Harmening
Publikationsdatum
19.12.2016
Verlag
Springer Medizin
Erschienen in
Die Ophthalmologie / Ausgabe 3/2017
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-016-0411-9

Weitere Artikel der Ausgabe 3/2017

Der Ophthalmologe 3/2017 Zur Ausgabe

Update Ophthalmologie

Update Ophthalmologie

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.