Skip to main content
Erschienen in: Inflammation 1/2012

01.02.2012

HMGB1 Increases Permeability of the Endothelial Cell Monolayer via RAGE and Src Family Tyrosine Kinase Pathways

verfasst von: Wenchang Huang, Yiyun Liu, Lei Li, Ruyuan Zhang, Wei Liu, Jun Wu, Enqiang Mao, Yaoqing Tang

Erschienen in: Inflammation | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

High-mobility group box 1 (HMGB1) was recently established as a proinflammatory mediator of sepsis, and its potential role in the pathogenesis of sepsis remains elusive. In the present study, we determined whether HMGB1 increases the permeability of the endothelial cell monolayer in sepsis. Permeability was measured from fluorescein isothiocyanate (FITC)–dextran 40-kDa flux across the endothelial cell monolayer at control and after HMGB1 administration. We found that HMGB1 increased human umbilical vein endothelial cell permeability to FITC–dextran 40 kDa in a time- and concentration-dependent manner. HMGB1 induced the mRNA transcription and protein expression of receptor for advanced glycation end products (RAGE). Blockade of cell surface receptors RAGE with specific neutralizing antibodies and RAGE siRNA or blockade of Src family tyrosine kinase with inhibitor PP2 significantly reduced HMGB1-induced hyperpermeability of endothelial cell monolayer. Our data demonstrate that (1) HMGB1 increases permeability of endothelial cell monolayer in a time- and concentration-dependent manner and (2) HMGB1-induced hyperpermeability is mediated through RAGE and Src family tyrosine kinase signaling pathway. These findings may have implications for therapeutic interventions in patients with sepsis.
Literatur
1.
Zurück zum Zitat Cross, A.S., and S.M. Opal. 2003. A new paradigm for the treatment of sepsis: is it time to consider combination therapy? Annals of Internal Medicine 138(6): 502–505.PubMed Cross, A.S., and S.M. Opal. 2003. A new paradigm for the treatment of sepsis: is it time to consider combination therapy? Annals of Internal Medicine 138(6): 502–505.PubMed
2.
Zurück zum Zitat Opal, S.M. 2007. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. International Journal of Medical Microbiology 297(5): 365–377.PubMedCrossRef Opal, S.M. 2007. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. International Journal of Medical Microbiology 297(5): 365–377.PubMedCrossRef
3.
Zurück zum Zitat Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348(16): 1546–1554.PubMedCrossRef Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348(16): 1546–1554.PubMedCrossRef
4.
5.
Zurück zum Zitat Brun-Buisson, C., F. Doyon, J. Carlet, P. Dellamonica, F. Gouin, A. Lepoutre, J.C. Mercier, G. Offenstadt, and B. Régnier. 1995. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274(12): 968–974.PubMedCrossRef Brun-Buisson, C., F. Doyon, J. Carlet, P. Dellamonica, F. Gouin, A. Lepoutre, J.C. Mercier, G. Offenstadt, and B. Régnier. 1995. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274(12): 968–974.PubMedCrossRef
6.
Zurück zum Zitat Legrand, M., E. Klijn, D. Payen, and C. Ince. 2010. The response of the host microcirculation to bacterial sepsis: Does the pathogen matter? Journal of Molecular Medicine 88(2): 127–133.PubMedCrossRef Legrand, M., E. Klijn, D. Payen, and C. Ince. 2010. The response of the host microcirculation to bacterial sepsis: Does the pathogen matter? Journal of Molecular Medicine 88(2): 127–133.PubMedCrossRef
7.
Zurück zum Zitat Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical Infectious Diseases 14: 1213–1228.PubMedCrossRef Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical Infectious Diseases 14: 1213–1228.PubMedCrossRef
8.
Zurück zum Zitat Parsons, P.E., G.S. Worthen, E.E. Moore, R.M. Tate, and P.M. Henson. 1989. The association of circulating endotoxin with the development of the adult respiratory distress syndrome. The American Review of Respiratory Disease 140: 294–301.PubMedCrossRef Parsons, P.E., G.S. Worthen, E.E. Moore, R.M. Tate, and P.M. Henson. 1989. The association of circulating endotoxin with the development of the adult respiratory distress syndrome. The American Review of Respiratory Disease 140: 294–301.PubMedCrossRef
9.
Zurück zum Zitat Hudson, L.D., J.A. Milberg, D. Anardi, and R.J. Maunder. 1995. Clinical risks for development of the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 151(2 Pt 1): 293–301.PubMed Hudson, L.D., J.A. Milberg, D. Anardi, and R.J. Maunder. 1995. Clinical risks for development of the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 151(2 Pt 1): 293–301.PubMed
10.
Zurück zum Zitat Tracey, K.J., B. Beutler, S.F. Lowry, J. Merryweather, S. Wolpe, I.W. Milsark, R.J. Hariri, T.J. Fahey 3rd, A. Zentella, J.D. Albert, et al. 1986. Shock and tissue injury induced by recombinant human cachectin. Science 234(4775): 470–474.PubMedCrossRef Tracey, K.J., B. Beutler, S.F. Lowry, J. Merryweather, S. Wolpe, I.W. Milsark, R.J. Hariri, T.J. Fahey 3rd, A. Zentella, J.D. Albert, et al. 1986. Shock and tissue injury induced by recombinant human cachectin. Science 234(4775): 470–474.PubMedCrossRef
11.
Zurück zum Zitat Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.PubMedCrossRef Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.PubMedCrossRef
12.
Zurück zum Zitat Mark, K.S., and D.W. Miller. 1999. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sciences 64(21): 1941–1953.PubMedCrossRef Mark, K.S., and D.W. Miller. 1999. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sciences 64(21): 1941–1953.PubMedCrossRef
13.
Zurück zum Zitat Marano, C.W., S.A. Lewis, L.A. Garulacan, A.P. Soler, and J.M. Mullin. 1998. Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. The Journal of Membrane Biology 161(3): 263–274.PubMedCrossRef Marano, C.W., S.A. Lewis, L.A. Garulacan, A.P. Soler, and J.M. Mullin. 1998. Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. The Journal of Membrane Biology 161(3): 263–274.PubMedCrossRef
14.
Zurück zum Zitat Hybertson, B.M., E.K. Jepson, O.J. Cho, J.H. Clarke, Y.M. Lee, and J.E. Repine. 1997. TNF mediates lung leak, but not neutrophil accumulation, in lungs of rats given IL-1 intratracheally. American Journal of Respiratory and Critical Care Medicine 155(6): 1972–1976.PubMed Hybertson, B.M., E.K. Jepson, O.J. Cho, J.H. Clarke, Y.M. Lee, and J.E. Repine. 1997. TNF mediates lung leak, but not neutrophil accumulation, in lungs of rats given IL-1 intratracheally. American Journal of Respiratory and Critical Care Medicine 155(6): 1972–1976.PubMed
15.
Zurück zum Zitat Saulpaw, C.E., and W.L. Joyner. 1997. Bradykinin and tumor necrosis factor-alpha alter albumin transport in vivo: a comparative study. Microvascular Research 54(3): 221–232.PubMedCrossRef Saulpaw, C.E., and W.L. Joyner. 1997. Bradykinin and tumor necrosis factor-alpha alter albumin transport in vivo: a comparative study. Microvascular Research 54(3): 221–232.PubMedCrossRef
16.
Zurück zum Zitat Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33(3): 564–573.PubMedCrossRef Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33(3): 564–573.PubMedCrossRef
17.
Zurück zum Zitat Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165(6): 2950–2954. Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165(6): 2950–2954.
18.
Zurück zum Zitat Fiuza, C., M. Bustin, S. Talwar, M. Tropea, E. Gerstenberger, J.H. Shelhamer, and A.F. Suffredini. 2003. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101(7): 2652–2660.PubMedCrossRef Fiuza, C., M. Bustin, S. Talwar, M. Tropea, E. Gerstenberger, J.H. Shelhamer, and A.F. Suffredini. 2003. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101(7): 2652–2660.PubMedCrossRef
19.
Zurück zum Zitat Lal, B.K., S. Varma, P.J. Pappas, R.W. Hobson 2nd, and W.N. Durán. 2001. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvascular Research 62(3): 252–262.PubMedCrossRef Lal, B.K., S. Varma, P.J. Pappas, R.W. Hobson 2nd, and W.N. Durán. 2001. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvascular Research 62(3): 252–262.PubMedCrossRef
20.
Zurück zum Zitat Breslin, J.W., P.J. Pappas, J.J. Cerveira, R.W. Hobson 2nd, and W.N. Durán. 2003. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. American Journal of Physiology. Heart and Circulatory Physiology 284(1): H92–H100.PubMed Breslin, J.W., P.J. Pappas, J.J. Cerveira, R.W. Hobson 2nd, and W.N. Durán. 2003. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. American Journal of Physiology. Heart and Circulatory Physiology 284(1): H92–H100.PubMed
21.
Zurück zum Zitat Yang, X., D.A. Fullerton, X. Su, L. Ao, J.C. Cleveland Jr., and X. Meng. 2009. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. Journal of the American College of Cardiology 53(6): 491–500.PubMedCrossRef Yang, X., D.A. Fullerton, X. Su, L. Ao, J.C. Cleveland Jr., and X. Meng. 2009. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. Journal of the American College of Cardiology 53(6): 491–500.PubMedCrossRef
22.
Zurück zum Zitat Su X, Ao L, Shi Y, Johnson TR, Fullerton DA, Meng X. 2011. Oxidized low-density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4. Journal of Biological Chemistry 286(14): 12213-12220. Su X, Ao L, Shi Y, Johnson TR, Fullerton DA, Meng X. 2011. Oxidized low-density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4. Journal of Biological Chemistry 286(14): 12213-12220.
23.
Zurück zum Zitat Huttunen, H.J., and H. Rauvala. 2004. Amphoterin as an extracellular regulator of cell motility: From discovery to disease. Journal of Internal Medicine 255(3): 351–366.PubMedCrossRef Huttunen, H.J., and H. Rauvala. 2004. Amphoterin as an extracellular regulator of cell motility: From discovery to disease. Journal of Internal Medicine 255(3): 351–366.PubMedCrossRef
24.
Zurück zum Zitat Czura, C.J., H. Wang, and K.J. Tracey. 2001. Dual roles for HMGB1: DNA binding and cytokine. Journal of Endotoxin Research 7(4): 315–321.PubMedCrossRef Czura, C.J., H. Wang, and K.J. Tracey. 2001. Dual roles for HMGB1: DNA binding and cytokine. Journal of Endotoxin Research 7(4): 315–321.PubMedCrossRef
25.
Zurück zum Zitat Andersson, U., H. Wang, K. Palmblad, A.C. Aveberger, O. Bloom, H. Erlandsson-Harris, A. Janson, R. Kokkola, M. Zhang, and H. Yang. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. The Journal of Experimental Medicine 192(4): 565–570.PubMedCrossRef Andersson, U., H. Wang, K. Palmblad, A.C. Aveberger, O. Bloom, H. Erlandsson-Harris, A. Janson, R. Kokkola, M. Zhang, and H. Yang. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. The Journal of Experimental Medicine 192(4): 565–570.PubMedCrossRef
26.
Zurück zum Zitat Wang, H., S. Zhu, R. Zhou, W. Li, and A.E. Sama. 2008. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Reviews in Molecular Medicine 10: e32.PubMedCrossRef Wang, H., S. Zhu, R. Zhou, W. Li, and A.E. Sama. 2008. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Reviews in Molecular Medicine 10: e32.PubMedCrossRef
27.
Zurück zum Zitat Andriopoulou, P., P. Navarro, A. Zanetti, M.G. Lampugnani, and E. Dejana. 1999. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arteriosclerosis, Thrombosis, and Vascular Biology 19(10): 2286–2297.PubMedCrossRef Andriopoulou, P., P. Navarro, A. Zanetti, M.G. Lampugnani, and E. Dejana. 1999. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arteriosclerosis, Thrombosis, and Vascular Biology 19(10): 2286–2297.PubMedCrossRef
28.
Zurück zum Zitat Collares-Buzato, C.B., M.A. Jepson, N.L. Simmons, and B.H. Hirst. 1998. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. European Journal of Cell Biology 76(2): 85–92.PubMed Collares-Buzato, C.B., M.A. Jepson, N.L. Simmons, and B.H. Hirst. 1998. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. European Journal of Cell Biology 76(2): 85–92.PubMed
29.
Zurück zum Zitat Konstantoulaki, M., P. Kouklis, and A.B. Malik. 2003. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology. Lung Cellular and Molecular Physiology 285(2): L434–L442.PubMed Konstantoulaki, M., P. Kouklis, and A.B. Malik. 2003. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology. Lung Cellular and Molecular Physiology 285(2): L434–L442.PubMed
30.
Zurück zum Zitat Harris, E.S., and W.J. Nelson. 2010. VE-cadherin: At the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology 22(5): 651–658.PubMedCrossRef Harris, E.S., and W.J. Nelson. 2010. VE-cadherin: At the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology 22(5): 651–658.PubMedCrossRef
31.
Zurück zum Zitat Gulino, D., E. Delachanal, E. Concord, Y. Genoux, B. Morand, M.O. Valiron, E. Sulpice, R. Scaife, M. Alemany, and T. Vernet. 1998. Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. The Journal of Biological Chemistry 273(45): 29786–29793.PubMedCrossRef Gulino, D., E. Delachanal, E. Concord, Y. Genoux, B. Morand, M.O. Valiron, E. Sulpice, R. Scaife, M. Alemany, and T. Vernet. 1998. Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. The Journal of Biological Chemistry 273(45): 29786–29793.PubMedCrossRef
32.
Zurück zum Zitat Rabiet, M.J., J.L. Plantier, Y. Rival, Y. Genoux, M.G. Lampugnani, and E. Dejana. 1996. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology 16(3): 488–496.PubMedCrossRef Rabiet, M.J., J.L. Plantier, Y. Rival, Y. Genoux, M.G. Lampugnani, and E. Dejana. 1996. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology 16(3): 488–496.PubMedCrossRef
33.
Zurück zum Zitat Alexander, J.S., B.C. Alexander, L.A. Eppihimer, N. Goodyear, R. Haque, C.P. Davis, T.J. Kalogeris, D.L. Carden, Y.N. Zhu, and C.G. Kevil. 2000. Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation 24(2): 99–113.PubMedCrossRef Alexander, J.S., B.C. Alexander, L.A. Eppihimer, N. Goodyear, R. Haque, C.P. Davis, T.J. Kalogeris, D.L. Carden, Y.N. Zhu, and C.G. Kevil. 2000. Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation 24(2): 99–113.PubMedCrossRef
34.
Zurück zum Zitat Tabibzadeh, S., Q.F. Kong, S. Kapur, P.G. Satyaswaroop, and K. Aktories. 1995. Tumour necrosis factor-alpha-mediated dyscohesion of epithelial cells is associated with disordered expression of cadherin/beta-catenin and disassembly of actin filaments. Human Reproduction 10(4): 994–1004.PubMed Tabibzadeh, S., Q.F. Kong, S. Kapur, P.G. Satyaswaroop, and K. Aktories. 1995. Tumour necrosis factor-alpha-mediated dyscohesion of epithelial cells is associated with disordered expression of cadherin/beta-catenin and disassembly of actin filaments. Human Reproduction 10(4): 994–1004.PubMed
35.
Zurück zum Zitat Alexander, J.S., S.A. Jackson, E. Chaney, C.G. Kevil, and F.R. Haselton. 1998. The role of cadherin endocytosis in endothelial barrier regulation: Involvement of protein kinase C and actin–cadherin interactions. Inflammation 22(4): 419–433.PubMedCrossRef Alexander, J.S., S.A. Jackson, E. Chaney, C.G. Kevil, and F.R. Haselton. 1998. The role of cadherin endocytosis in endothelial barrier regulation: Involvement of protein kinase C and actin–cadherin interactions. Inflammation 22(4): 419–433.PubMedCrossRef
36.
Zurück zum Zitat Kevil, C.G., N. Ohno, D.C. Gute, N. Okayama, S.A. Robinson, E. Chaney, and J.S. Alexander. 1998. Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radical Biology & Medicine 24(6): 1015–1022.CrossRef Kevil, C.G., N. Ohno, D.C. Gute, N. Okayama, S.A. Robinson, E. Chaney, and J.S. Alexander. 1998. Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radical Biology & Medicine 24(6): 1015–1022.CrossRef
37.
Zurück zum Zitat Nwariaku, F.E., J. Chang, X. Zhu, Z. Liu, S.L. Duffy, N.H. Halaihel, L. Terada, and R.H. Turnage. 2002. The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability. Shock 18(1): 82–85.PubMedCrossRef Nwariaku, F.E., J. Chang, X. Zhu, Z. Liu, S.L. Duffy, N.H. Halaihel, L. Terada, and R.H. Turnage. 2002. The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability. Shock 18(1): 82–85.PubMedCrossRef
38.
Zurück zum Zitat Wong, R.K., A.L. Baldwin, and R.L. Heimark. 1999. Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. The American Journal of Physiology 276(2 Pt 2): H736–H748.PubMed Wong, R.K., A.L. Baldwin, and R.L. Heimark. 1999. Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. The American Journal of Physiology 276(2 Pt 2): H736–H748.PubMed
39.
Zurück zum Zitat Schlegel, N., Y. Baumer, D. Drenckhahn, and J. Waschke. 2009. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Critical Care Medicine 37(5): 1735–1743.PubMedCrossRef Schlegel, N., Y. Baumer, D. Drenckhahn, and J. Waschke. 2009. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Critical Care Medicine 37(5): 1735–1743.PubMedCrossRef
40.
Zurück zum Zitat Park, J.S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J.Y. Kim, D. Strassheim, J.W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology. Cell Physiology 290(3): C917–C924.PubMedCrossRef Park, J.S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J.Y. Kim, D. Strassheim, J.W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology. Cell Physiology 290(3): C917–C924.PubMedCrossRef
41.
Zurück zum Zitat Kokkola, R., A. Andersson, G. Mullins, T. Ostberg, C.J. Treutiger, B. Arnold, P. Nawroth, U. Andersson, R.A. Harris, and H.E. Harris. 2005. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scandinavian Journal of Immunology 61(1): 1–9.PubMedCrossRef Kokkola, R., A. Andersson, G. Mullins, T. Ostberg, C.J. Treutiger, B. Arnold, P. Nawroth, U. Andersson, R.A. Harris, and H.E. Harris. 2005. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scandinavian Journal of Immunology 61(1): 1–9.PubMedCrossRef
42.
Zurück zum Zitat Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R.K. Tuominen, M. Lepäntalo, O. Carpén, and J. Parkkinen. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104(4): 1174–1182.PubMedCrossRef Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R.K. Tuominen, M. Lepäntalo, O. Carpén, and J. Parkkinen. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104(4): 1174–1182.PubMedCrossRef
43.
Zurück zum Zitat Treutiger, C.J., G.E. Mullins, A.S. Johansson, A. Rouhiainen, H.M. Rauvala, H. Erlandsson-Harris, U. Andersson, H. Yang, K.J. Tracey, J. Andersson, and J.E. Palmblad. 2003. High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine 254(4): 375–385.PubMedCrossRef Treutiger, C.J., G.E. Mullins, A.S. Johansson, A. Rouhiainen, H.M. Rauvala, H. Erlandsson-Harris, U. Andersson, H. Yang, K.J. Tracey, J. Andersson, and J.E. Palmblad. 2003. High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine 254(4): 375–385.PubMedCrossRef
44.
Zurück zum Zitat Hori, O., J. Brett, T. Slattery, R. Cao, J. Zhang, J.X. Chen, M. Nagashima, E.R. Lundh, S. Vijay, D. Nitecki, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. The Journal of Biological Chemistry 270(43): 25752–25761.PubMedCrossRef Hori, O., J. Brett, T. Slattery, R. Cao, J. Zhang, J.X. Chen, M. Nagashima, E.R. Lundh, S. Vijay, D. Nitecki, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. The Journal of Biological Chemistry 270(43): 25752–25761.PubMedCrossRef
45.
Zurück zum Zitat Huang, W., Y. Tang, and L. Li. 2010. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51: 119–126.PubMedCrossRef Huang, W., Y. Tang, and L. Li. 2010. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51: 119–126.PubMedCrossRef
46.
Zurück zum Zitat Huttunen, H.J., C. Fages, J. Kuja-Panula, A.J. Ridley, and H. Rauvala. 2002. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Research 62(16): 4805–4811.PubMed Huttunen, H.J., C. Fages, J. Kuja-Panula, A.J. Ridley, and H. Rauvala. 2002. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Research 62(16): 4805–4811.PubMed
47.
Zurück zum Zitat Huttunen, H.J., C. Fages, and H. Rauvala. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. The Journal of Biological Chemistry 274(28): 19919–19924.PubMedCrossRef Huttunen, H.J., C. Fages, and H. Rauvala. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. The Journal of Biological Chemistry 274(28): 19919–19924.PubMedCrossRef
48.
Zurück zum Zitat Park, J.S., D. Svetkauskaite, Q. He, J.Y. Kim, D. Strassheim, A. Ishizaka, and E. Abraham. 2004. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. The Journal of Biological Chemistry 279(9): 7370–7377.PubMedCrossRef Park, J.S., D. Svetkauskaite, Q. He, J.Y. Kim, D. Strassheim, A. Ishizaka, and E. Abraham. 2004. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. The Journal of Biological Chemistry 279(9): 7370–7377.PubMedCrossRef
49.
Zurück zum Zitat Lv, B., H. Wang, Y. Tang, Z. Fan, X. Xiao, and F. Chen. 2009. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thrombosis and Haemostasis 102(2): 352–359.PubMed Lv, B., H. Wang, Y. Tang, Z. Fan, X. Xiao, and F. Chen. 2009. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thrombosis and Haemostasis 102(2): 352–359.PubMed
50.
Zurück zum Zitat Luan, Z.G., H. Zhang, P.T. Yang, X.C. Ma, C. Zhang, and R.X. Guo. 2010. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology 215(12): 956–962.PubMedCrossRef Luan, Z.G., H. Zhang, P.T. Yang, X.C. Ma, C. Zhang, and R.X. Guo. 2010. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology 215(12): 956–962.PubMedCrossRef
51.
Zurück zum Zitat Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annual Review of Immunology 21: 335–376.PubMedCrossRef Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annual Review of Immunology 21: 335–376.PubMedCrossRef
52.
Zurück zum Zitat Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4): 443–451.PubMedCrossRef Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4): 443–451.PubMedCrossRef
53.
Zurück zum Zitat Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406(6797): 782–787.PubMedCrossRef Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406(6797): 782–787.PubMedCrossRef
54.
Zurück zum Zitat Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282(5396): 2085–2088.PubMedCrossRef Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282(5396): 2085–2088.PubMedCrossRef
55.
Zurück zum Zitat Aleshin, A., and R.S. Finn. 2010. SRC: a century of science brought to the clinic. Neoplasia 12(8): 599–607.PubMed Aleshin, A., and R.S. Finn. 2010. SRC: a century of science brought to the clinic. Neoplasia 12(8): 599–607.PubMed
Metadaten
Titel
HMGB1 Increases Permeability of the Endothelial Cell Monolayer via RAGE and Src Family Tyrosine Kinase Pathways
verfasst von
Wenchang Huang
Yiyun Liu
Lei Li
Ruyuan Zhang
Wei Liu
Jun Wu
Enqiang Mao
Yaoqing Tang
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2012
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9325-5

Weitere Artikel der Ausgabe 1/2012

Inflammation 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.