Skip to main content
Erschienen in: Lung 2/2017

20.02.2017 | Airway Biology

Homeobox, Wnt, and Fibroblast Growth Factor Signaling is Augmented During Alveogenesis in Mice Lacking Superoxide Dismutase 3, Extracellular

verfasst von: Tania A. Thimraj, Rahel L. Birru, Ankita Mitra, Holger Schulz, George D. Leikauf, Koustav Ganguly

Erschienen in: Lung | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Superoxide dismutase 3, extracellular (SOD3) polymorphisms have been implicated in reduced pulmonary function development and altered risk for chronic obstructive pulmonary disease. We previously reported that gene-targeted Sod3−/− mice have impaired lung function and human SOD3 variants are associated with reduced pulmonary function in children. Reduced lung SOD3 levels were reported in mice with lower lung function with the greatest difference occurring during alveogenesis phase [postnatal (P) days 14–28]. Interactions between homeobox (HOX), wingless-type MMTV integration site member (WNT), and fibroblast growth factor (FGF) signaling govern complex developmental processes in several organs. A subset of HOX family members, HOXA5 and HOXB5, is expressed in the developing lung. Therefore, in this study we assessed the transcript expression of these family members and their downstream targets in Sod3−/− mice during alveogenesis (P14). In the lung of Sod3−/− mice, Hoxa5 and Hoxb5 increased. These transcription factors regulate WNT gene expression and were accompanied by increases in their downstream targets Wnt2 and Wnt5A, canonical and noncanonical WNT members, respectively. The WNT signaling target, lymphoid enhancer binding factor 1 (Lef1), also increased along with its downstream targets Fgf2, Fgf7, and Fgf10 in the lungs of Sod3−/− mice. Due to limited knowledge on the role of FGF2 in lung development, we further examined FGF2 protein and found increased levels in the bronchial and alveolar type II epithelial cells of Sod3−/− mice compared to age-matched controls. Thus, our findings suggest that deficient management of extracellular superoxide can lead to altered lung developmental signaling during alveogenesis in mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Krauss-Etschmann S, Bush A, Bellusci S, Brusselle GG, Dahlén SE, Dehmel S, Eickelberg O, Gibson G, Hylkema MN, Knaus P, Königshoff M, Lloyd CM, Macciarini P, Mailleux A, Marsland BJ, Postma DS, Roberts G, Samakovlis C, Stocks J, Vandesompele J, Wjst M, Holloway J (2013) Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax 68(4):380–384. doi:10.1136/thoraxjnl-2012-201902 CrossRefPubMed Krauss-Etschmann S, Bush A, Bellusci S, Brusselle GG, Dahlén SE, Dehmel S, Eickelberg O, Gibson G, Hylkema MN, Knaus P, Königshoff M, Lloyd CM, Macciarini P, Mailleux A, Marsland BJ, Postma DS, Roberts G, Samakovlis C, Stocks J, Vandesompele J, Wjst M, Holloway J (2013) Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax 68(4):380–384. doi:10.​1136/​thoraxjnl-2012-201902 CrossRefPubMed
3.
Zurück zum Zitat Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, Meek P, Owen CA, Petersen H, Pinto-Plata V, Schnohr P, Sood A, Soriano JB, Tesfaigzi Y, Vestbo J (2015) Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 373(2):111–122. doi:10.1056/NEJMoa1411532 CrossRefPubMed Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, Meek P, Owen CA, Petersen H, Pinto-Plata V, Schnohr P, Sood A, Soriano JB, Tesfaigzi Y, Vestbo J (2015) Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 373(2):111–122. doi:10.​1056/​NEJMoa1411532 CrossRefPubMed
5.
Zurück zum Zitat Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci USA 107(35):15571–15576. doi:10.1073/pnas.1007625107 CrossRefPubMedPubMedCentral Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci USA 107(35):15571–15576. doi:10.​1073/​pnas.​1007625107 CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Poonyagariyagorn HK, Metzger S, Dikeman D, Lopez-Mercado A, Malinina A, McGrath-Morrow S, Neptune ER (2012) Extracellular superoxide dismutase (sod3) deficiency contributes to durable effects of neonatal hyperoxic lung injury [abstract]. Am J Respir Crit Care Med 185:A1278 Poonyagariyagorn HK, Metzger S, Dikeman D, Lopez-Mercado A, Malinina A, McGrath-Morrow S, Neptune ER (2012) Extracellular superoxide dismutase (sod3) deficiency contributes to durable effects of neonatal hyperoxic lung injury [abstract]. Am J Respir Crit Care Med 185:A1278
8.
Zurück zum Zitat Ganguly K, Stoeger T, Wesselkamper SC, Reinhard C, Sartor MA, Medvedovic M, Tomlinson CR, Bolle I, Mason JM, Leikauf GD, Schulz H (2007) Candidate genes controlling pulmonary function in mice: transcript profiling and predicted protein structure. Physiol Genomics 31. doi:10.1152/physiolgenomics.00260.2006 Ganguly K, Stoeger T, Wesselkamper SC, Reinhard C, Sartor MA, Medvedovic M, Tomlinson CR, Bolle I, Mason JM, Leikauf GD, Schulz H (2007) Candidate genes controlling pulmonary function in mice: transcript profiling and predicted protein structure. Physiol Genomics 31. doi:10.​1152/​physiolgenomics.​00260.​2006
10.
Zurück zum Zitat Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, Bakke P, Gulsvik A, Lomas DA, Anderson W, Kong X, Rennard SI, Beaty TH, Hokanson JE, Crapo JD, Lange C, Silverman EK, The COPDGene and ECLIPSE Investigators (2013) Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet 132(4):431–441. doi:10.1007/s00439-012-1262-3 CrossRefPubMedPubMedCentral Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, Bakke P, Gulsvik A, Lomas DA, Anderson W, Kong X, Rennard SI, Beaty TH, Hokanson JE, Crapo JD, Lange C, Silverman EK, The COPDGene and ECLIPSE Investigators (2013) Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet 132(4):431–441. doi:10.​1007/​s00439-012-1262-3 CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KB, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fatman C, Kaminski N, Schulz H, Leikauf GD (2014) Secreted phosphoprotein 1 (Spp1) is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 51(5):637–651CrossRefPubMedPubMedCentral Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KB, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fatman C, Kaminski N, Schulz H, Leikauf GD (2014) Secreted phosphoprotein 1 (Spp1) is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 51(5):637–651CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Ganguly K, Upadhyay S, Irmler M, Takenaka S, Pukelsheim K, Beckers J, Hamelmann E, Schulz H, Stoeger T (2009) Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice. Part Fibre Toxicol 6(1):1–14. doi:10.1186/1743-8977-6-31 CrossRef Ganguly K, Upadhyay S, Irmler M, Takenaka S, Pukelsheim K, Beckers J, Hamelmann E, Schulz H, Stoeger T (2009) Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice. Part Fibre Toxicol 6(1):1–14. doi:10.​1186/​1743-8977-6-31 CrossRef
13.
Zurück zum Zitat Hrycaj SM, Dye BR, Baker NC, Larsen BM, Burke AC, Spence JR, Wellik DM (2015) Hox5 genes regulate the Wnt2/2b-Bmp4-signaling axis during lung development. Cell Rep 12(6):903–912CrossRefPubMedPubMedCentral Hrycaj SM, Dye BR, Baker NC, Larsen BM, Burke AC, Spence JR, Wellik DM (2015) Hox5 genes regulate the Wnt2/2b-Bmp4-signaling axis during lung development. Cell Rep 12(6):903–912CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Perkins TN, Dentener MA, Stassen FR, Rohde GG, Mossman BT, Wouters EF, Reynaert NL (2016) Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicol Appl Pharmacol 301:61–70. doi:10.1016/j.taap.2016.04.003 CrossRefPubMed Perkins TN, Dentener MA, Stassen FR, Rohde GG, Mossman BT, Wouters EF, Reynaert NL (2016) Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicol Appl Pharmacol 301:61–70. doi:10.​1016/​j.​taap.​2016.​04.​003 CrossRefPubMed
17.
Zurück zum Zitat Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878PubMed Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878PubMed
18.
Zurück zum Zitat Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86(1–2):125–136CrossRefPubMed Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86(1–2):125–136CrossRefPubMed
20.
Zurück zum Zitat Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM (2014) Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol 307:L338–L344CrossRefPubMedPubMedCentral Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM (2014) Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol 307:L338–L344CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nozik-Grayck E, Dieterle CS, Piantadosi CA, Enghild JJ, Oury TD (2000) Secretion of extracellular superoxide dismutase in neonatal lungs. Am J Physiol Lung Cell Mol Physiol 279(5):977–984 Nozik-Grayck E, Dieterle CS, Piantadosi CA, Enghild JJ, Oury TD (2000) Secretion of extracellular superoxide dismutase in neonatal lungs. Am J Physiol Lung Cell Mol Physiol 279(5):977–984
23.
Zurück zum Zitat Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thogersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710CrossRefPubMed Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thogersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710CrossRefPubMed
24.
Zurück zum Zitat Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283:6058–6066CrossRefPubMed Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283:6058–6066CrossRefPubMed
25.
Zurück zum Zitat Kliment CR, Tobolewski JM, Manni ML, Tan RJ, Enghild J, Oury TD (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10:261–268CrossRefPubMedPubMedCentral Kliment CR, Tobolewski JM, Manni ML, Tan RJ, Enghild J, Oury TD (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10:261–268CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Aubin J, Lemieux M, Tremblay M, Bérard J, Jeannotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445CrossRefPubMed Aubin J, Lemieux M, Tremblay M, Bérard J, Jeannotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445CrossRefPubMed
28.
Zurück zum Zitat Boucherat O, Montaron S, Bérubé-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L (2013) Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 15:304 Boucherat O, Montaron S, Bérubé-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L (2013) Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 15:304
29.
Zurück zum Zitat Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122(11):3343–3353PubMed Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122(11):3343–3353PubMed
31.
Zurück zum Zitat Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248(1):68–81CrossRefPubMed Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248(1):68–81CrossRefPubMed
32.
Zurück zum Zitat Duan D, Yue Y, Zhou W, Labed B, Ritchie TC, Grosschedl R, Engelhardt JF (1999) Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 126 (20):4441–4453PubMed Duan D, Yue Y, Zhou W, Labed B, Ritchie TC, Grosschedl R, Engelhardt JF (1999) Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 126 (20):4441–4453PubMed
33.
Zurück zum Zitat Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183CrossRefPubMedPubMedCentral Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER (2002) Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277(24):21657–21665CrossRefPubMed Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER (2002) Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277(24):21657–21665CrossRefPubMed
35.
Zurück zum Zitat El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306CrossRefPubMedPubMedCentral El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Post M, Souza P, Liu J et al (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115PubMed Post M, Souza P, Liu J et al (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115PubMed
37.
Zurück zum Zitat Park W, Miranda B, Lebeche D, Hashimoto G, Cardoso W (1998) FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol 201(2):125–134CrossRefPubMed Park W, Miranda B, Lebeche D, Hashimoto G, Cardoso W (1998) FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol 201(2):125–134CrossRefPubMed
38.
Zurück zum Zitat Volckaert T et al (2013) Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140(18):3731–3742CrossRefPubMedPubMedCentral Volckaert T et al (2013) Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140(18):3731–3742CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Weinstein M, Xu X, Ohyama K, Deng C (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623PubMed Weinstein M, Xu X, Ohyama K, Deng C (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623PubMed
40.
Zurück zum Zitat Powell PP, Wang C, Horinouchi H (1998) Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 19(4):563–572CrossRefPubMed Powell PP, Wang C, Horinouchi H (1998) Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 19(4):563–572CrossRefPubMed
41.
Zurück zum Zitat Cordon-Cardo C, Vlodavsky I, Haimovitz-Friedman A, Hicklin D, Fuks Z (1990) Expression of basic fibroblast growth factor in normal human tissues. Lab Invest 63(6):832–840PubMed Cordon-Cardo C, Vlodavsky I, Haimovitz-Friedman A, Hicklin D, Fuks Z (1990) Expression of basic fibroblast growth factor in normal human tissues. Lab Invest 63(6):832–840PubMed
42.
Zurück zum Zitat Azhar M, Yin M, Zhou M, Li H, Mustafa M, Nusayr E, Keenan JB, Chen H, Pawlosky S, Gard C, Grisham C, Sanford LP, Doetschman T (2009) Gene targeted ablation of high molecular weight fibroblast growth factor-2. Dev Dyn 238(2):351–357. doi:10.1002/dvdy.21835 CrossRefPubMedPubMedCentral Azhar M, Yin M, Zhou M, Li H, Mustafa M, Nusayr E, Keenan JB, Chen H, Pawlosky S, Gard C, Grisham C, Sanford LP, Doetschman T (2009) Gene targeted ablation of high molecular weight fibroblast growth factor-2. Dev Dyn 238(2):351–357. doi:10.​1002/​dvdy.​21835 CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Matsui R, Brody JS, Yu Q (1999) FGF-2 induces surfactant protein gene expression in foetal rat lung epithelial cells through a MAPK-independent pathway. Cell Signal 11(3):221–228CrossRefPubMed Matsui R, Brody JS, Yu Q (1999) FGF-2 induces surfactant protein gene expression in foetal rat lung epithelial cells through a MAPK-independent pathway. Cell Signal 11(3):221–228CrossRefPubMed
44.
Zurück zum Zitat Bonner JC, Badgett A, Lindroos PM, Coin PG (1996) Basic fibroblast growth factor induces expression of the PDGF receptor-alpha on human bronchial smooth muscle cells. Am J Physiol 271(6 Pt 1):L880–L888PubMed Bonner JC, Badgett A, Lindroos PM, Coin PG (1996) Basic fibroblast growth factor induces expression of the PDGF receptor-alpha on human bronchial smooth muscle cells. Am J Physiol 271(6 Pt 1):L880–L888PubMed
Metadaten
Titel
Homeobox, Wnt, and Fibroblast Growth Factor Signaling is Augmented During Alveogenesis in Mice Lacking Superoxide Dismutase 3, Extracellular
verfasst von
Tania A. Thimraj
Rahel L. Birru
Ankita Mitra
Holger Schulz
George D. Leikauf
Koustav Ganguly
Publikationsdatum
20.02.2017
Verlag
Springer US
Erschienen in
Lung / Ausgabe 2/2017
Print ISSN: 0341-2040
Elektronische ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-017-9980-x

Weitere Artikel der Ausgabe 2/2017

Lung 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.