Skip to main content
Erschienen in: Urolithiasis 1/2023

Open Access 01.12.2023 | Research

Hormonal and molecular characterization of calcium oxalate stone formers predicting occurrence and recurrence

verfasst von: Ahmed M. Elshal, Heba Shamshoun, Amira Awadalla, Ramy Elbaz, Asmaa E. Ahmed, Omali Y. El-khawaga, Ahmed A. Shokeir

Erschienen in: Urolithiasis | Ausgabe 1/2023

Abstract

The purpose of the study is to investigate the role of sex hormones, androgen receptors (ARs) and miRNA/CSF-1 in occurrence and recurrence of calcium oxalate (CaOx) renal urolithiasis. In this prospective study, 74 patients with CaOx stones; stone formers group (SFG) and 40 healthy subjects; control group were compared. SFG includes both de novo and recurrent cases. Steroid sex hormone plasma assay including testosterone, free testosterone, dihydrotestosterone, estradiol, and sex hormone binding globulin was analyzed. ARs, miRNA-185-5p and CSF-1 expression were compared between the groups. SFG showed significant higher ARs and miRNA-185-5p expression (3.7 ± 1.3, 1.8 ± 0.4, respectively) than control group (1 ± 0.08 and 1 ± 0.07, respectively) (p < 0.05). However, CSF-1 expression was significantly lower in stone formers than control group (0.4 ± 0.19 vs 1 ± 0.1, respectively) (p < 0.05). No differences were detected between de novo and recurrent SFG regarding sex hormones, AR, miRNA or CSF-1 expression. Our data suggest the important role of AR, miRNA and CSF-1 signaling in human nephrolithiasis pathogenesis.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Urolithiasis represents one of the most common urologic health care problems worldwide. Estimates of calcium oxalate (CaOx)/calcium phosphate (CaPh) stones occurrence are as high as 80% of all renal stones. The underlying pathophysiology of the calcium-based renal stones is complex and multifactorial with most of these stones which occur in healthy individuals because of metabolic derangements which involve an imbalance between stone formers and stone inhibitors. The most common of these derangements are idiopathic hypercalciuria, hyperoxaluria and hypocitraturia [1].
CaOx stones formation can be affected by infiltrating macrophages which include pro-inflammatory macrophages or M1 promoting crystals deposition and anti-inflammatory or M2 macrophages phagocytosing ca-oxalate stone formation directly [2].
Regarding the age and sex prevalence of renal stones, it is more common in males compared to females by about 2–3:1. This prevalence gap is mainly present in reproductive age between 15 and 49 years and lowest in postmenopausal females with low estrogen which propose that estrogen can serve as a protective hormone against urolithiasis [3, 4]. However, recent evidence suggests that the difference in incidence between men and women is narrowing. Using National Health and Nutrition Examination Survey (NHANES) data, Stamatelou et al. reported a slight decrease in the male-to-female ratio of stone disease, from 1.75 (between 1976 and 1980) to 1.54 (between 1988 and 1994) [5]. Recently, NHANES data (2007–2010) showed a stone prevalence of 10.6% in men and 7.1% in women for a ratio of 1.49:1 [6]. Lieske et al. found a peak incidence in the age group 60 to 69 years in men with just a slightly higher incidence in women in the age groups 30 to 39 and 60 to 69 [7].
In addition, androgen-deprivation therapy (ADT) use in patients with prostate cancer results in approximately one-third lower risk of subsequent renal calculi [8] which may suggest a promoting effect of male androgens on renal stones formation. This effect has been established experimentally in rats in some trials [9].
Testosterone appears to promote stone formation by suppressing osteopontin expression in the kidneys and increasing urinary oxalate excretion, and this action has been found that is reversed with estrogen [10]. Another possible mechanism for promoting role of testosterone on calcium oxalate stone formation may be due to increase in urinary uric acid excretion [3] and increase in hepatic synthesis of glycolic acid oxidase (GAO), an enzyme essentially involved in primary hyperoxaluria [11].
This action of sex hormones could be done either through alternation of serum hormone levels or expression of their receptors. It was found that androgen receptors (AR) stimulation increases miRNA-185-5p which inhibit macrophages colony-stimulating factor 1 (CSF-1) result in inhibition of M2-mediated CaOx crystals phagocytosis [1214]. However, this action was demonstrated only using human cell lines via in vitro studies and rat models. Furthermore, higher testosterone levels were reported in renal stones patients. Considering the role of estrogen, data are sparse due to lack of assessment of the role of estrogen or absence of depictable inhibitory role of estrogen on stones formation [1214]. In addition, the relation between sex hormones and calcium oxalates stones recurrence was not assessed before in any trial.
Until now, there is a shortage of data regarding the association between sex hormones and the prevalence of urolithiasis and the utility of this association in clinical practice. This study was conducted looking for an association between sex hormones and calcium oxalate stone formation. Moreover, the relation between sex hormones and recurrence of calcium oxalate stones was assessed.

Patients and methods

  • Study design and groups
This is a prospective controlled study that was performed between June 2020 and June 2021 after approval of the local ethical committee.
Patients who were diagnosed with calcium oxalate (CaOx) stones on further stone analysis either as pure CaOx stones or mixed stones were allocated as stone formers group (SFG) and compared against healthy volunteers who were selected from same age range with no history or radiological evidence of urinary stones and considered as “control” group.
Stone formers group was subdivided into: “denovo” group included patients who presented with renal stones for the first time, and they were compared against “recurrent” group who presented with previous episodes of renal stones that necessitated active intervention.
  • Inclusion and exclusion criteria
Inclusion criteria included male patients between 18 and 60 years who were diagnosed with renal stones and were admitted to our center for active stone intervention. Eligible subjects were asked to sign an informed consent.
Exclusion criteria included patients with known hyperthyroidism, hyperparathyroidism, recurrent urinary tract infections, renal and liver diseases, intestinal malabsorption, or metabolic syndromes were excluded from the study. In addition, patients with known structural or functional abnormality of the urinary tract such as vesico-ureteric reflux, neuropathic bladder or pelvi-uretral junction obstruction were also excluded from the study.
  • Intervention
All patients who were diagnosed with renal stones were managed with standard percutaneous nephrolithotomy (PNL) or retrograde intrarenal surgery (RIRS) depending on stone volume, location, and surgeons’ preference. Retrieved stones were submitted for stone analysis and calcium oxalate (CaOx) stone formers were included.
  • Study workup
All clinical data including history, clinical examination and routine laboratory investigation were collected. The sonographic and computerized tomographic evaluations of the kidneys and urinary tract systems and the diagnosis of renal stone were performed by the attending expert radiologists.
Sample collection for laboratory and molecular analysis was done as following:
24-h urine samples collection for determination the levels of calcium, uric acid, citrate and oxalate.
Stone samples for analysis using FT-IR (Fourier Transform- Infrared) spectroscopy looking for type of stone.
Blood samples were taken for evaluation the level of sex hormones and gene expression.

Hormone analysis

For hormone analysis, all samples of blood were collected, and each sample was centrifuged at 3000 g for 15 min and the separated plasma then fractionated and stored at − 20 ℃ until hormone assay. Hormones in the plasma samples including testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), estradiol (E2), and sex hormone binding globulin (SHBG) were analyzed by ELISA.

Gene expression of AR and CSF-1 using real-time PCR

AR mRNA levels were assessed by quantitative RT-qPCR method. Total RNA (0.5 μg) was isolated from the blood samples, and reverse transcribed. Gene expression for Primers for the AR and CSF-1 and human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined by real-time qPCR, using AR primers (Applied Biosystems, Foster City, CA, USA). Gene expressions all data were normalized to GAPDH; expression of one tumor was assumed to be 1 and used as reference. The 2−ΔΔCT method was used to calculate relative amounts of target genes.

Gene expression of miRNA-185-5p

miRNA technology ingeniously integrates a universal tailing and reverse transcription reaction specific for mature miRNA combined with state-of-the-art primer-assay design technology to enable the accurate expression level measurement of miR-2909.miRNA was extracted from plasma samples using an miRneasy Mini Kit. cDNA was synthesized from 1 μg of total miRNA. Amplification and detection were performed using real-time PCR (step one plus). AR, CSF-1 and miRNA-185-5p
  • Study outcomes
The primary outcome was to assess the association between sex hormones and occurrence of calcium oxalate renal stones, while the secondary outcome was to assess the association between these hormones and recurrence of calcium oxalate stones over time.
  • Statistical analysis
Continuous variables were presented as mean ± SD for normally distributed and as median and range for non-normally distributed variables. Ordinal and nominal variables were presented as frequency and percentage. Comparison between study and control groups was performed by Student’s t test for normally distributed continuous variables and by Mann–Whitney test for asymmetric continuous variables. Chi square and Fisher exact tests was used for comparison between categorical variables. Multivariable analysis by logistic regression was done as appropriate. A P value < 0.05 was considered significant. A software SPSS was used for storage and analysis of data.

Results

Demographic and perioperative data

Out of 91 male patient who were diagnosed with renal stones and underwent endoscopic treatment with PNL or RIRS between June 2020 and June 2021, 74 patients were diagnosed as CaOx stones and included in the study. Then, they were compared against 40 healthy subjects.
After that, the 2 subgroups of SFG were compared against each other: 40 patients of de novo group and 34 patients of recurrent group as shown in study’s flow chart (Fig. 1).
The mean ± SD age and BMI in SFG and control groups were (52 ± 14 and 54 ± 10, P 0.4) and (30.6 ± 7.3 and 29 ± 5.3, P 0.09), respectively. In addition, patients̓ demographics and stone characteristics of de novo and recurrent stone formers group were comparable with no significant difference as shown in Table 1.
Table 1
Baseline demographic characteristics of de novo and recurrent stone formers groups
Variable
De novo group
Recurrent group
P value
N:40
N:34
Patients’ characteristics
   
 Age (years)
   
  Mean ± SD
51 ± 10
53 ± 8
0.3*
 BMI (kg/m2)
   
  Mean ± SD
30.1 ± 5.3
28 ± 8.3
0.07*
 DM
   
  NO (%)
4 (10%)
7 (20.6)
0.3#
Urinary tract characteristics
   
 Urine PH
   
  Mean ± SD
5.7 ± 0.7
5.4 ± 0.7
0.02*
 S Cr
   
  Median (range)
0.9 (0.6–4)
1 (0.4–3)
0.1**
Stone characteristics
   
 Stone density
   
  Mean ± SD
1015 ± 306
1021 ± 266
0.9*
 Stone diameter
   
  Median (range)
13 (4–30)
14 (1–40)
0.7**
 Stone length
   
  Median (range)
16 (2–40)
15 (1.6–42)
0.7**
 Stone side
   
  NO (%)
  
0.6#
  RT
15 (37.5)
11 (32.4)
 
  LT
21 (52.5)
17 (50)
0.6#
  Bilateral
4 (10)
6 (17.6)
 
S Cr serum creatinine, BMI body mass index
*Independent sample t test
**Mann–Whitney U test
#Chi square test

The primary outcome

As shown in Table 2, the mean ± SD levels of RQ-AR, miRNA-185 and serum estradiol were significantly higher in SFG 3.7 ± 1.3, 1.8 ± 0.4 and 69.5 (20–300), respectively, compared to control group 1 ± 0.08, 1 ± 0.07 and 34 (20–55), respectively, with p < 0.001.
Table 2
Comparison of hormonal and molecular characteristics of SFG (with its 2 subgroups) and control group
Variable
Stone formers group N:74
Control group N:40
P1
P2
De novo N:40
Recurrent N:34
Total N:74
Testosterone (2.62–16 ng/ml)
      
 Median (range)
7 (1.5–17.5)
4.5 (1–20)
5.3 (13.3–20)
7 (1.4–16)
0.8**
0.6**
Free testosterone (10-40 pg/ml)
      
 Mean ± SD
24 ± 11
23.5 ± 11
24 ± 11
24.7 ± 7
0.7*
0.8*
DHT (52–90 ng/dl)
      
 Mean ± SD
40 ± 15
41 ± 15
40.6 ± 15
37.5 ± 10
0.2*
0.7*
SHBG (10–71 nmol/l)
      
 Mean ± SD
37 ± 9
39 ± 9
37.8 ± 9
37.7 ± 9
0.9*
0.5*
Estradiol (up to 56 pg/ml)
      
 Median (range)
65 (20–226)
73 (20–300)
69.5 (20–300)
34 (20–55)
 < 0.001**
0.8**
RQ-AR
      
 Mean ± SD
3.8 ± 1.3
3.5 ± 1.4
3.7 ± 1.3
1 ± 8
 < 0.001*
0.5*
RQ-csf-1
      
 Mean ± SD
0.5 ± 0.19
0.4 ± 0.19
0.4 ± 0.19
1 ± 0.1
 < 0.001*
0.6*
Mirna 185
      
 Mean ± SD
1.8 ± 0.3
1.9 ± 0.4
1.8 ± 0.4
1 ± 0.07
 < 0.001*
0.4*
P1 Total stone formers group vs control group
P2 De novo vs control group
SHBG sex hormone binding globulin, DHT dihydrotestosterone
*Independent sample t test
**Mann–Whitney U test
However, RQ-csf-1 was significantly lower in SFG than control group (0.4 ± 0.19 vs 1 ± 0.1, respectively) with p < 0.001, while serum androgens and SHBG levels did not show significant difference between 2 groups.

The secondary outcome

Table 2 summarizes data of SFG with comparative analysis of its 2 subgroups. Both de novo and recurrent stone formers group were comparable regarding serum androgens, estradiol levels and molecular gene expression of RQ-AR, RQ-csf-1 and Mirna 185 with p > 0.05.
Table 3 summarizes 24-h urinary metabolites among the 2 subgroups of stone formers with only urinary citrate level that showed significant higher median concentration in de novo stone formers (< 0.001).
Table 3
Comparison of metabolic work up between de novo and recurrent stone formers group
Variable
De novo group N: 40
Recurrent group N: 34
P value
24 h urinary Ca
   
 Median (range)
327 (125–3511)
410 (123–710)
0.3**
24 h urinary uric acid
   
 Median (range)
240 (122–921)
254 (201–698)
0.2**
24 h urinary oxalate
   
 Median (range)
55 (22–80)
47 (41–84)
0.2**
24 h urinary citrate
   
 Median (range)
354 (30–651)
526 (236–652)
 < 0.001**
Hypercalciuria
   
 NO (%)
37 (92.5)
32 (94.1)
0.7#
Hyperuricosuria
   
 NO (%)
2 (5)
0
0.2#
Hyperoxaluria
   
 NO (%)
31 (77.5)
22 (64.7)
0.2#
Hypocitraturia
   
 NO (%)
14 (35)
5 (15.2)
0.05#
Reference range; hypercalciuria; > 200 mg/day, hyperuricosuria; > 750 mg/day, hyperoxaluria; > 45 mg/day and hypocitraturia; < 320 mg/day
**Mann–Whitney U test
#Chi square test

Discussion

Kidney stones prevalence had markedly increased over the past 2 decades. According to the latest report from the National Health and Nutrition Examination Survey (NHANES 2007–2010), the prevalence of kidney stones among American adults was 8.8%: 10.6% among men and 7.1% among women [13].
Renal stones have major economic and medical burdens due to cost of treatment, sick leaves from work, risk of renal impairment and renovascular hypertension [15]. Another major problem of stone diseases is the risk of recurrence, 50% of patient with kidney stones have chance of development another episode of stone disease over 7 years [16].
CaOx stones are formed through a complex and multifactorial process including underlying genetic and metabolic abnormalities, life style pattern, obesity and hot climatic environment [1]. Recently, a strong association was found between sex hormones and kidney stones. Testosterone and dihydrotestosterone hormones were found to be a potential promoting factor in occurrence of CaOx urolithiasis, while estrogen hormone was found to be a protective against urolithiasis [3, 14].
This role was supported by prevalence of urolithiasis. It has been observed that women show a bimodal distribution of stone disease, demonstrating a second peak in incidence in the sixth decade of life corresponding to the onset of menopause and a fall in estrogen levels [7]. In addition, hyperoxaluria was found to be significantly lower in castrated male rates compared to normal ones [17]. Polycystic ovary syndrome which is characterized by clinical and laboratory evidence of hyperandrogenism is a known risk factor in kidney stones formation [18]. In some animal studies, administration of testosterone increases urinary oxalate excretion and enhances the formation of calcium oxalate stones [19].
This promoting effect of testosterone in urolithiasis pathogenesis is mediated through different mechanisms including increase hepatic synthesis of glycolic acid oxidase (GAO) which results in hyperoxaluria [11]. In addition, testosterone was found to inhibit renal osteopontin expression and subsequently increase renal excretion of oxalate [10]. In serum, 95% of testosterone binds sex hormone binding globulin and only 1% to 2% is free testosterone [20]. Free testosterone diffuses into target cells, where it binds to AR, which has the pivotal role in androgen signaling.
ARs were found to be expressed in nuclei of normal distal renal tubular epithelial cells. Moreover, they were found to be upregulated in tubular epithelial cells of patients with hyperoxaluria which suggests the important role of androgen/AR axis enhancement in kidney stones formation [9].
The molecular mechanisms of action of ARs in pathogenesis of hyperoxaluria and CaOx stones formation were demonstrated in 2 animal trials on mice [12, 21].
First, on physiological basis, there are Types of intrarenal macrophages: M1 macrophages which induce kidney epithelial injury and inflammation and not phagocytose CaOx crystals and M 2 macrophages which promote phagocytosis of CaOx crystals.
In this trial, they found that CSF-1 is mainly secreted from renal tubular epithelium and play an important role in M2 macrophages proliferation and in extension suppression of hyperoxaluria.
However, they found that AR increase miRNA expression which inhibit CSF-1 resulting in M2 macrophages inhibition and promoting hyperoxaluria.
In the second trial [21], they found that AR could directly upregulate hepatic glycolate oxidase and kidney epithelial NADPH oxidase subunit p22-PHOX at the transcriptional level. This upregulation might then increase oxalate biosynthesis and oxidative stress that resulted in induction of kidney tubular injury. Targeting AR with the AR degradation enhancer dimethyl curcumin (ASC-J9) led to suppression of CaOx crystal formation. However, these results were demonstrated only in animal studies.
Only one trial assessed the levels of ARs in human patients with CaOx stones [9]. This study included 68 participants, 37 male patients with CaOx/CaPh stones and 31 healthy controls. ARs were detected by immunohistochemistry in nuclei of normal distal renal tubular epithelial cells. Moreover, they were found to be upregulated in tubular epithelial cells of patients with hyperoxaluria which suggests the important role of androgen/AR axis enhancement in kidney stones formation. However, this study has some limitations of being small sample size and the detailed mechanism of ARs could not yet be fully elucidated.
From clinical point of view, knowing that the risk of recurrence of stone formation is about 50% [16], there was a need for a trial looking after molecular and genetic differences and if they have a role in stone recurrence. This might have clinical impact on attempts to reduce stone recurrence.
To the best of our knowledge, this prospective trial is the first one to compare the difference in sex hormones between de novo and recurrent stone formers and, the first one to study the relation between AR and genetic expression of miRNA and CSF-1 in stone former patients. Moreover, it includes a sample size larger than any other previous study.
In the current study, AR and miRNA were significantly higher and CSF-1 was significantly lower in SFG compared to control group. These results go in parallel with the previous result of [12] animal studies. However, no difference between both groups was observed regarding blood androgen level. Interestingly plasma estradiol level was higher among SFG in the current study, yet this could be explained by the higher rate of conversion of testosterone to estradiol in the testosterone metabolic pathway. However, this higher level did not seem strong enough to exert stone inhibiting effect in males [13].
Nevertheless, de novo and recurrent stone formers were not different regarding all studied parameters. Further studies are warranted to look for the clinical utility of those findings.
In conclusion, CaOx renal stones was found to positively correlated with genetic expression of AR and miRNA and it inversely related with CSF-1. However, renal CaOx stones’ recurrence was not associated with changes in sex hormone levels nor its related molecular pathway.

Declarations

Conflict of interest

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat Xu H, Zisman AL, Coe FL, Worcester EM (2013) Kidney stones: an update on current pharmacological management and future directions. Expert Opin Pharmacother 14(4):435–447CrossRefPubMedPubMedCentral Xu H, Zisman AL, Coe FL, Worcester EM (2013) Kidney stones: an update on current pharmacological management and future directions. Expert Opin Pharmacother 14(4):435–447CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Taguchi K, Okada A, Hamamoto S, Iwatsuki S, Naiki T, Ando R et al (2015) Proinflammatory and metabolic changes facilitate renal crystal deposition in an obese mouse model of metabolic syndrome. J Urol 194(6):1787–1796CrossRefPubMed Taguchi K, Okada A, Hamamoto S, Iwatsuki S, Naiki T, Ando R et al (2015) Proinflammatory and metabolic changes facilitate renal crystal deposition in an obese mouse model of metabolic syndrome. J Urol 194(6):1787–1796CrossRefPubMed
3.
Zurück zum Zitat Shakhssalim N, Roohi Gilani K, Parvin M, Mohammadi Torbati P, Kashi AH, Azadvari M et al (2011) An assessment of parathyroid hormone, calcitonin, 1, 25 (OH) 2 vitamin D3, estradiol and testosterone in men with active calcium stone disease and evaluation of its biochemical risk factors. Urol Res 39(1):1–7CrossRefPubMed Shakhssalim N, Roohi Gilani K, Parvin M, Mohammadi Torbati P, Kashi AH, Azadvari M et al (2011) An assessment of parathyroid hormone, calcitonin, 1, 25 (OH) 2 vitamin D3, estradiol and testosterone in men with active calcium stone disease and evaluation of its biochemical risk factors. Urol Res 39(1):1–7CrossRefPubMed
5.
Zurück zum Zitat Stamatelou KK, Francis ME, Jones CA, Nyberg LM Jr, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823CrossRefPubMed Stamatelou KK, Francis ME, Jones CA, Nyberg LM Jr, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823CrossRefPubMed
6.
Zurück zum Zitat Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165CrossRefPubMedPubMedCentral Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Lieske J, De La Vega LP, Slezak J, Bergstralh E, Leibson C, Ho K-L et al (2006) Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int 69(4):760–764CrossRefPubMed Lieske J, De La Vega LP, Slezak J, Bergstralh E, Leibson C, Ho K-L et al (2006) Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int 69(4):760–764CrossRefPubMed
8.
Zurück zum Zitat Lin C-Y, Liu J-M, Wu C-T, Hsu R-J, Hsu W-L (2020) Decreased risk of renal calculi in patients receiving androgen deprivation therapy for prostate cancer. Int J Environ Res Public Health 17(5):1762CrossRefPubMedPubMedCentral Lin C-Y, Liu J-M, Wu C-T, Hsu R-J, Hsu W-L (2020) Decreased risk of renal calculi in patients receiving androgen deprivation therapy for prostate cancer. Int J Environ Res Public Health 17(5):1762CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Li J-Y, Zhou T, Gao X, Xu C, Sun Y, Peng Y et al (2010) Testosterone and androgen receptor in human nephrolithiasis. J Urol 184(6):2360–2363CrossRefPubMed Li J-Y, Zhou T, Gao X, Xu C, Sun Y, Peng Y et al (2010) Testosterone and androgen receptor in human nephrolithiasis. J Urol 184(6):2360–2363CrossRefPubMed
10.
Zurück zum Zitat Yagisawa T, Ito F, Osaka Y, Amano H, Kobayashi C, Toma H (2001) The influence of sex hormones on renal osteopontin expression and urinary constituents in experimental urolithiasis. J Urol 166(3):1078–1082CrossRefPubMed Yagisawa T, Ito F, Osaka Y, Amano H, Kobayashi C, Toma H (2001) The influence of sex hormones on renal osteopontin expression and urinary constituents in experimental urolithiasis. J Urol 166(3):1078–1082CrossRefPubMed
11.
Zurück zum Zitat Soundararajan P, Mahesh R, Ramesh T, Begum VH (2006) Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Indian J Exp Biol 44:981–986PubMed Soundararajan P, Mahesh R, Ramesh T, Begum VH (2006) Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Indian J Exp Biol 44:981–986PubMed
12.
Zurück zum Zitat Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S et al (2019) Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis 10(4):1–19CrossRef Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S et al (2019) Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis 10(4):1–19CrossRef
14.
Zurück zum Zitat Gupta K, Gill GS, Mahajan R (2016) Possible role of elevated serum testosterone in pathogenesis of renal stone formation. Int J Appl Basic Med Res 6(4):241CrossRefPubMedPubMedCentral Gupta K, Gill GS, Mahajan R (2016) Possible role of elevated serum testosterone in pathogenesis of renal stone formation. Int J Appl Basic Med Res 6(4):241CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rule AD, Bergstralh EJ, Melton LJ, Li X, Weaver AL, Lieske JC (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4(4):804–811CrossRefPubMedPubMedCentral Rule AD, Bergstralh EJ, Melton LJ, Li X, Weaver AL, Lieske JC (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4(4):804–811CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Sutherland J, Parks J, Coe F (1985) Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab 11(4):267–269PubMed Sutherland J, Parks J, Coe F (1985) Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab 11(4):267–269PubMed
17.
Zurück zum Zitat Lee Y-H, Huang W-C, Chiang H, Chen M-T, Huang J-K, Chang LS (1992) Determinant role of testosterone in the pathogenesis of urolithiasis in rats. J Urol 147(4):1134–1138CrossRefPubMed Lee Y-H, Huang W-C, Chiang H, Chen M-T, Huang J-K, Chang LS (1992) Determinant role of testosterone in the pathogenesis of urolithiasis in rats. J Urol 147(4):1134–1138CrossRefPubMed
18.
Zurück zum Zitat Kaygusuz I, Karatas OF, Kafali H, Cimentepe E, Unal D (2013) Is polycystic ovarian syndrome a risk factor for urolithiasis? Urolithiasis 41(4):361–362CrossRefPubMed Kaygusuz I, Karatas OF, Kafali H, Cimentepe E, Unal D (2013) Is polycystic ovarian syndrome a risk factor for urolithiasis? Urolithiasis 41(4):361–362CrossRefPubMed
19.
Zurück zum Zitat Fan J, Chandhoke P, Grampsas S (1999) Role of sex hormones in experimental calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:S376–S380PubMed Fan J, Chandhoke P, Grampsas S (1999) Role of sex hormones in experimental calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:S376–S380PubMed
20.
Zurück zum Zitat Dunn JF, Nisula BC, Rodbard D (1981) Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 53(1):58–68CrossRefPubMed Dunn JF, Nisula BC, Rodbard D (1981) Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 53(1):58–68CrossRefPubMed
21.
Zurück zum Zitat Liang L, Li L, Tian J, Lee SO, Dang Q, Huang C-K et al (2014) Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol 28(8):1291–1303CrossRefPubMedPubMedCentral Liang L, Li L, Tian J, Lee SO, Dang Q, Huang C-K et al (2014) Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol 28(8):1291–1303CrossRefPubMedPubMedCentral
Metadaten
Titel
Hormonal and molecular characterization of calcium oxalate stone formers predicting occurrence and recurrence
verfasst von
Ahmed M. Elshal
Heba Shamshoun
Amira Awadalla
Ramy Elbaz
Asmaa E. Ahmed
Omali Y. El-khawaga
Ahmed A. Shokeir
Publikationsdatum
01.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 1/2023
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-023-01440-8

Weitere Artikel der Ausgabe 1/2023

Urolithiasis 1/2023 Zur Ausgabe

Neu im Fachgebiet Urologie

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Prostatakarzinom: EU initiiert neues Screeningkonzept

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Blasenkarzinom – Biomarker statt Zytologie?

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.