Skip to main content
Erschienen in: Brain Structure and Function 5/2016

24.04.2015 | Original Article

How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter

verfasst von: Ilyess Zemmoura, Emmanuelle Blanchard, Pierre-Ivan Raynal, Cécilia Rousselot-Denis, Christophe Destrieux, Stéphane Velut

Erschienen in: Brain Structure and Function | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

The objective of this study is to explore histological and ultrastructural changes induced by Klingler’s method. Five human brains were prepared. First, the effects of freezing–defrosting on white matter were explored with optical microscopy on corpus callosum samples of two brains; one prepared in accordance with the description of Klingler (1956) and the other without freezing–defrosting. Then, the combined effect of formalin fixation and freezing–defrosting was explored with transmission electron microscopy (EM) on samples of cingulum from one brain: samples from one hemisphere were fixed in paraformaldehyde–glutaraldehyde (para/gluta), other samples from the other hemisphere were fixed in formalin; once fixed, half of the samples were frozen–defrosted. Finally, the effect of dissection was explored from three formalin-fixed brains: one hemisphere of each brain was frozen-defrosted; samples of the corpus callosum were dissected before preparation for scanning EM. Optical microscopy showed enlarged extracellular space on frozen samples. Transmission EM showed no significant alteration of white matter ultrastructure after formalin or para/gluta fixation. Freezing–defrosting created extra-axonal lacunas, larger on formalin-fixed than on para/gluta-fixed samples. In all cases, myelin sheaths were preserved, allowing maintenance of axonal integrity. Scanning EM showed the destruction of most of the extra-axonal structures after freezing–defrosting and the preservation of most of the axons after dissection. Our results are the first to highlight the effects of Klingler’s preparation and dissection on white matter ultrastructure. Preservation of myelinated axons is a strong argument to support the reliability of Klingler’s dissection to explore the structure of human white matter.
Literatur
Zurück zum Zitat Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRefPubMed Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRefPubMed
Zurück zum Zitat Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52:1374–1389CrossRefPubMed Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52:1374–1389CrossRefPubMed
Zurück zum Zitat Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354CrossRefPubMedPubMedCentral Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354CrossRefPubMedPubMedCentral
Zurück zum Zitat Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain J Neurol 132:1210–1220CrossRef Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain J Neurol 132:1210–1220CrossRef
Zurück zum Zitat Cragg B (1979) Brain extracellular space fixed for electron microscopy. Neurosci Lett 15:301–306CrossRefPubMed Cragg B (1979) Brain extracellular space fixed for electron microscopy. Neurosci Lett 15:301–306CrossRefPubMed
Zurück zum Zitat Dammers J, Axer M, Grassel D et al (2010) Signal enhancement in polarized light imaging by means of independent component analysis. NeuroImage 49:1241–1248CrossRefPubMed Dammers J, Axer M, Grassel D et al (2010) Signal enhancement in polarized light imaging by means of independent component analysis. NeuroImage 49:1241–1248CrossRefPubMed
Zurück zum Zitat De Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069CrossRefPubMed De Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069CrossRefPubMed
Zurück zum Zitat Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff, Paris Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff, Paris
Zurück zum Zitat Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026 (discussion 1026–1028) CrossRefPubMed Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026 (discussion 1026–1028) CrossRefPubMed
Zurück zum Zitat Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMed Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMed
Zurück zum Zitat Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254CrossRefPubMed Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254CrossRefPubMed
Zurück zum Zitat Kiernan JA (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 1:5 Kiernan JA (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 1:5
Zurück zum Zitat Kinoshita M, Shinohara H, Hori O et al (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg 116:323–330CrossRefPubMed Kinoshita M, Shinohara H, Hori O et al (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg 116:323–330CrossRefPubMed
Zurück zum Zitat Klingler J (1935) Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256 Klingler J (1935) Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256
Zurück zum Zitat Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369CrossRefPubMed Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369CrossRefPubMed
Zurück zum Zitat Liewald D, Miller R, Logothetis N et al (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557CrossRefPubMedPubMedCentral Liewald D, Miller R, Logothetis N et al (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557CrossRefPubMedPubMedCentral
Zurück zum Zitat Liu X-B, Schumann CM (2014) Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections. Acta Neuropathol Commun 2(1):42CrossRefPubMedPubMedCentral Liu X-B, Schumann CM (2014) Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections. Acta Neuropathol Commun 2(1):42CrossRefPubMedPubMedCentral
Zurück zum Zitat Lu Y-B, Franze K, Seifert G et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci 103:17759–17764CrossRefPubMedPubMedCentral Lu Y-B, Franze K, Seifert G et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci 103:17759–17764CrossRefPubMedPubMedCentral
Zurück zum Zitat Ludwig E, Klingler J (1956) Atlas humani cerebri. Karger Publications, New York Ludwig E, Klingler J (1956) Atlas humani cerebri. Karger Publications, New York
Zurück zum Zitat Magnain C, Augustinack JC, Reuter M et al (2014) Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage 84:524–533CrossRefPubMedPubMedCentral Magnain C, Augustinack JC, Reuter M et al (2014) Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage 84:524–533CrossRefPubMedPubMedCentral
Zurück zum Zitat Maldonado IL, de Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45CrossRefPubMedPubMedCentral Maldonado IL, de Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45CrossRefPubMedPubMedCentral
Zurück zum Zitat Martino J, Vergani F, Robles SG, Duffau H (2010) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12PubMed Martino J, Vergani F, Robles SG, Duffau H (2010) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12PubMed
Zurück zum Zitat Martino J, da Silva-Freitas R, Caballero H et al (2013a) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72:87–97 (discussion 97–98) PubMed Martino J, da Silva-Freitas R, Caballero H et al (2013a) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72:87–97 (discussion 97–98) PubMed
Zurück zum Zitat Martino J, De Witt Hamer PC, Berger MS et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121CrossRefPubMed Martino J, De Witt Hamer PC, Berger MS et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121CrossRefPubMed
Zurück zum Zitat Palm C, Axer M, Grassel D et al (2010) Towards ultra-high resolution fibre tract mapping of the human brain—registration of polarised light images and reorientation of fibre vectors. Front Hum Neurosci 4:9PubMedPubMedCentral Palm C, Axer M, Grassel D et al (2010) Towards ultra-high resolution fibre tract mapping of the human brain—registration of polarised light images and reorientation of fibre vectors. Front Hum Neurosci 4:9PubMedPubMedCentral
Zurück zum Zitat Peltier J, Travers N, Destrieux C, Velut S (2006) Optic radiations: a microsurgical anatomical study. J Neurosurg 105:294–300CrossRefPubMed Peltier J, Travers N, Destrieux C, Velut S (2006) Optic radiations: a microsurgical anatomical study. J Neurosurg 105:294–300CrossRefPubMed
Zurück zum Zitat Peuskens D, van Loon J, Van Calenbergh F et al (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55:1174–1184CrossRefPubMed Peuskens D, van Loon J, Van Calenbergh F et al (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55:1174–1184CrossRefPubMed
Zurück zum Zitat Poupon C, Rieul B, Kezele I et al (2008) New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn Reson Med 60:1276–1283CrossRefPubMed Poupon C, Rieul B, Kezele I et al (2008) New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn Reson Med 60:1276–1283CrossRefPubMed
Zurück zum Zitat Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315CrossRefPubMed Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315CrossRefPubMed
Zurück zum Zitat Sarubbo S, Benedictis A, Maldonado IL et al (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37CrossRefPubMed Sarubbo S, Benedictis A, Maldonado IL et al (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37CrossRefPubMed
Zurück zum Zitat Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653CrossRefPubMed Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653CrossRefPubMed
Zurück zum Zitat Serres B, Zemmoura I, Andersson F et al (2013) Brain virtual dissection and white matter 3D visualization. Stud Health Technol Inf 184:392–396 Serres B, Zemmoura I, Andersson F et al (2013) Brain virtual dissection and white matter 3D visualization. Stud Health Technol Inf 184:392–396
Zurück zum Zitat Shreiber DI, Hao H, Elias RA (2008) Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech Model Mechanobiol 8:311–321CrossRefPubMed Shreiber DI, Hao H, Elias RA (2008) Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech Model Mechanobiol 8:311–321CrossRefPubMed
Zurück zum Zitat Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111:16574–16579CrossRefPubMedPubMedCentral Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111:16574–16579CrossRefPubMedPubMedCentral
Zurück zum Zitat Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426 (discussion 426–427) CrossRefPubMed Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426 (discussion 426–427) CrossRefPubMed
Zurück zum Zitat Wang H, Black AJ, Zhu J et al (2011) Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage 58:984–992CrossRefPubMedPubMedCentral Wang H, Black AJ, Zhu J et al (2011) Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage 58:984–992CrossRefPubMedPubMedCentral
Zurück zum Zitat Zemmoura I, Serres B, Andersson F et al (2014) FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. NeuroImage 103:106–118CrossRefPubMed Zemmoura I, Serres B, Andersson F et al (2014) FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. NeuroImage 103:106–118CrossRefPubMed
Metadaten
Titel
How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter
verfasst von
Ilyess Zemmoura
Emmanuelle Blanchard
Pierre-Ivan Raynal
Cécilia Rousselot-Denis
Christophe Destrieux
Stéphane Velut
Publikationsdatum
24.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1050-7

Weitere Artikel der Ausgabe 5/2016

Brain Structure and Function 5/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.