Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2018

25.04.2018 | Review Paper

How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features

verfasst von: Paulo José Lorenzoni, Rosana Herminia Scola, Claudia Suemi Kamoi Kay, Lineu Cesar Werneck, Rita Horvath, Hanns Lochmüller

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert–Eaton myasthenic syndrome (CMS–LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS–LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS–LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS–LEMS to achieve the correct diagnosis and therapy. We believe that CMS–LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS–LEMS.
Literatur
Zurück zum Zitat Aran, A., Segel, R., Kaneshige, K., et al. (2017). Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology, 88, 1021–1028.CrossRefPubMedPubMedCentral Aran, A., Segel, R., Kaneshige, K., et al. (2017). Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology, 88, 1021–1028.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bady, D., Chauplannaz, G., & Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 476–478.CrossRefPubMedPubMedCentral Bady, D., Chauplannaz, G., & Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 476–478.CrossRefPubMedPubMedCentral
Zurück zum Zitat Beeson, D., Hantaï, D., Lochmüller, H., & Engel, A. G. (2005). 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscular Disorders, 15, 498–512.CrossRefPubMed Beeson, D., Hantaï, D., Lochmüller, H., & Engel, A. G. (2005). 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscular Disorders, 15, 498–512.CrossRefPubMed
Zurück zum Zitat Campagna, J. A., Ruegg, M. A., & Bixby, J. L. (1997). Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. European Journal of Neuroscience, 9, 2269–2283.CrossRefPubMed Campagna, J. A., Ruegg, M. A., & Bixby, J. L. (1997). Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. European Journal of Neuroscience, 9, 2269–2283.CrossRefPubMed
Zurück zum Zitat Engel, A. G., Ohno, K., & Sine, S. M. (2003). Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 27, 4–25.CrossRefPubMed Engel, A. G., Ohno, K., & Sine, S. M. (2003). Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 27, 4–25.CrossRefPubMed
Zurück zum Zitat Engel, A. G., Selcen, D., Shen, X. M., Milone, M., & Harper, C. M. (2016). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurology Genetics, 2, e105.CrossRefPubMedPubMedCentral Engel, A. G., Selcen, D., Shen, X. M., Milone, M., & Harper, C. M. (2016). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurology Genetics, 2, e105.CrossRefPubMedPubMedCentral
Zurück zum Zitat Engel, A. G., Shen, X. M., & Selcen, D. (2018). The unfolding landscape of the congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1413, 25–34.CrossRefPubMed Engel, A. G., Shen, X. M., & Selcen, D. (2018). The unfolding landscape of the congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1413, 25–34.CrossRefPubMed
Zurück zum Zitat Herrmann, D. N., Horvath, R., Sowden, J. E., et al. (2014). Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. American Journal of Human Genetics, 95, 332–339.CrossRefPubMedPubMedCentral Herrmann, D. N., Horvath, R., Sowden, J. E., et al. (2014). Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. American Journal of Human Genetics, 95, 332–339.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hülsbrink, R., & Hashemolhosseini, S. (2014). Lambert-Eaton myasthenic syndrome: diagnosis, pathogenesis and therapy. Clinical Neurophysiology, 125, 2328–2336.CrossRefPubMed Hülsbrink, R., & Hashemolhosseini, S. (2014). Lambert-Eaton myasthenic syndrome: diagnosis, pathogenesis and therapy. Clinical Neurophysiology, 125, 2328–2336.CrossRefPubMed
Zurück zum Zitat Lorenzoni, P. J., Scola, R. H., Kay, C. S., Parolin, S. F., & Werneck, L. C. (2010). Non-paraneoplastic Lambert-Eaton myasthenic syndrome: A brief review of 10 cases. Arquivos de Neuro-Psiquiatria, 68, 849–854.CrossRefPubMed Lorenzoni, P. J., Scola, R. H., Kay, C. S., Parolin, S. F., & Werneck, L. C. (2010). Non-paraneoplastic Lambert-Eaton myasthenic syndrome: A brief review of 10 cases. Arquivos de Neuro-Psiquiatria, 68, 849–854.CrossRefPubMed
Zurück zum Zitat Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., & Werneck, L. C. (2012). Congenital myasthenic syndrome: A brief review. Pediatric Neurology, 46, 141–148.CrossRefPubMed Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., & Werneck, L. C. (2012). Congenital myasthenic syndrome: A brief review. Pediatric Neurology, 46, 141–148.CrossRefPubMed
Zurück zum Zitat Ma, C., Su, L., Seven, A. B., Yu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339, 421–425.CrossRefPubMed Ma, C., Su, L., Seven, A. B., Yu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339, 421–425.CrossRefPubMed
Zurück zum Zitat Malsam, J., Kreye, S., & Sollner, T. H. (2008). Membrane fusion: SNAREs and regulation. Cellular and Molecular Life Sciences, 65, 2814–2832.CrossRefPubMed Malsam, J., Kreye, S., & Sollner, T. H. (2008). Membrane fusion: SNAREs and regulation. Cellular and Molecular Life Sciences, 65, 2814–2832.CrossRefPubMed
Zurück zum Zitat Maselli, R. A., Arredondo, J., Ferns, M. J., & Wollmann, R. L. (2012). Synaptic basal lamina-associated congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1275, 36–48.CrossRefPubMed Maselli, R. A., Arredondo, J., Ferns, M. J., & Wollmann, R. L. (2012). Synaptic basal lamina-associated congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1275, 36–48.CrossRefPubMed
Zurück zum Zitat Maselli, R. A., Arredondo, J., Vazquez, J., et al. (2017). Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. American Journal of Medical Genetics, 173, 2240–2245.CrossRefPubMed Maselli, R. A., Arredondo, J., Vazquez, J., et al. (2017). Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. American Journal of Medical Genetics, 173, 2240–2245.CrossRefPubMed
Zurück zum Zitat Maselli, R. A., Fernandez, J. M., Arredondo, J., et al. (2012). LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Human Genetics, 131, 1123–1135.CrossRefPubMed Maselli, R. A., Fernandez, J. M., Arredondo, J., et al. (2012). LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Human Genetics, 131, 1123–1135.CrossRefPubMed
Zurück zum Zitat McMacken, G., Abicht, A., Evangelista, T., Spendiff, S., & Lochmüller, H. (2017). The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics, 48, 294–308.CrossRefPubMed McMacken, G., Abicht, A., Evangelista, T., Spendiff, S., & Lochmüller, H. (2017). The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics, 48, 294–308.CrossRefPubMed
Zurück zum Zitat Miner, J. H., Cunningham, J., & Sanes, J. R. (1998). Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin-5 chain. Journal of Cell Biology, 143, 1713–1723.CrossRefPubMedPubMedCentral Miner, J. H., Cunningham, J., & Sanes, J. R. (1998). Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin-5 chain. Journal of Cell Biology, 143, 1713–1723.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nicole, S., Azuma, Y., Bauché, S., Eymard, B., Lochmüller, H., & Slater, C. (2017). Congenital myasthenic syndromes or inherited disorders of neuromuscular transmission: Recent discoveries and open questions. Journal of Neuromuscular Diseases, 4, 269–284.CrossRefPubMedPubMedCentral Nicole, S., Azuma, Y., Bauché, S., Eymard, B., Lochmüller, H., & Slater, C. (2017). Congenital myasthenic syndromes or inherited disorders of neuromuscular transmission: Recent discoveries and open questions. Journal of Neuromuscular Diseases, 4, 269–284.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nicole, S., Chaouch, A., Torbergsen, T., et al. (2014). Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 137, 2429–2443.CrossRefPubMed Nicole, S., Chaouch, A., Torbergsen, T., et al. (2014). Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 137, 2429–2443.CrossRefPubMed
Zurück zum Zitat Nishimune, H., Sanes, J. R., & Carlson, S. S. (2004). A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature, 432, 580–587.CrossRefPubMed Nishimune, H., Sanes, J. R., & Carlson, S. S. (2004). A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature, 432, 580–587.CrossRefPubMed
Zurück zum Zitat Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367.CrossRefPubMed Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367.CrossRefPubMed
Zurück zum Zitat Salpietro, V., Lin, W., Vedove, A. D., et al. (2017). Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 81, 597–603.CrossRefPubMedPubMedCentral Salpietro, V., Lin, W., Vedove, A. D., et al. (2017). Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 81, 597–603.CrossRefPubMedPubMedCentral
Zurück zum Zitat Schoser, B., Eymard, B., Datt, J., & Mantegazza, R. (2017). Lambert-Eaton myasthenic syndrome (LEMS): A rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 264, 1854–1863.CrossRefPubMed Schoser, B., Eymard, B., Datt, J., & Mantegazza, R. (2017). Lambert-Eaton myasthenic syndrome (LEMS): A rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 264, 1854–1863.CrossRefPubMed
Zurück zum Zitat Shen, X. M., Scola, R. H., Lorenzoni, P. J., et al. (2017). Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Annals of Clinical and Translational Neurology, 4, 130–138.CrossRefPubMedPubMedCentral Shen, X. M., Scola, R. H., Lorenzoni, P. J., et al. (2017). Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Annals of Clinical and Translational Neurology, 4, 130–138.CrossRefPubMedPubMedCentral
Zurück zum Zitat Shen, X. M., Selcen, D., Brengman, J., & Engel, A. G. (2014). Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology, 83, 2247–2255.CrossRefPubMedPubMedCentral Shen, X. M., Selcen, D., Brengman, J., & Engel, A. G. (2014). Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology, 83, 2247–2255.CrossRefPubMedPubMedCentral
Zurück zum Zitat Son, Y. J., Scranton, T. W., Sunderland, W. J., et al. (2000). The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. Journal of Biological Chemistry, 275, 451–460.CrossRefPubMed Son, Y. J., Scranton, T. W., Sunderland, W. J., et al. (2000). The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. Journal of Biological Chemistry, 275, 451–460.CrossRefPubMed
Zurück zum Zitat Souza, P. V., Batistella, G. N., Lino, V. C., Pinto, W. B., Annes, M., & Oliveira, A. S. (2016). Clinical and genetic basis of congenital myasthenic syndromes. Arquivos de Neuro-Psiquiatria, 4, 750–760.CrossRef Souza, P. V., Batistella, G. N., Lino, V. C., Pinto, W. B., Annes, M., & Oliveira, A. S. (2016). Clinical and genetic basis of congenital myasthenic syndromes. Arquivos de Neuro-Psiquiatria, 4, 750–760.CrossRef
Zurück zum Zitat Titulaer, M. J., Lang, B., & Verschuuren, J. (2011). Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, 10, 1098–1107.CrossRefPubMed Titulaer, M. J., Lang, B., & Verschuuren, J. (2011). Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, 10, 1098–1107.CrossRefPubMed
Zurück zum Zitat Whittaker, R. G., Herrmann, D. N., Bansagi, B., et al. (2015). Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology, 85, 1964–1971.CrossRefPubMedPubMedCentral Whittaker, R. G., Herrmann, D. N., Bansagi, B., et al. (2015). Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology, 85, 1964–1971.CrossRefPubMedPubMedCentral
Metadaten
Titel
How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features
verfasst von
Paulo José Lorenzoni
Rosana Herminia Scola
Claudia Suemi Kamoi Kay
Lineu Cesar Werneck
Rita Horvath
Hanns Lochmüller
Publikationsdatum
25.04.2018
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2018
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8490-1

Weitere Artikel der Ausgabe 2/2018

NeuroMolecular Medicine 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.