Skip to main content
Erschienen in: Immunologic Research 1/2018

05.10.2017 | Original Article

Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes

verfasst von: Xiao-xi Zhang, Yong-chao Qiao, Wan Li, Xia Zou, Yin-ling Chen, Jian Shen, Qin-yuan Liao, Qiu-jin Zhang, Lan He, Hai-lu Zhao

Erschienen in: Immunologic Research | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Autoimmune diabetes is a disorder of immune homeostasis that leads to targeted insulin-secreting islet β cell destruction characterized by insulitis. Human amylin (hA) is an important neuroendocrine hormone co-secreted with insulin by pancreatic β cells. Here, we report hA immune-modulatory action through inducing regulatory T cells. We ex vivo-treated human peripheral blood mononuclear cells (hPBMCs) with hA for 24 h and counted CD4+Foxp3+ regulatory T cells (Treg) using flow cytometry. Diabetic status was monitored and splenic Treg were measured in non-obese diabetic (NOD) male mice. NOD mice were intraperitoneally injected once daily with hA (n = 25) or solvent for control (n = 25) for 7 months continuously. Spleen tissues were collected at the end of intervention and processed for flow cytometry and Western blot. We found a 2.9-fold (p < 0.05) increase of CD4+Foxp3+ Treg in hPBMCs treated with 10 nmol/L hA compared with negative control. Incidence of diabetes in hA-treated NOD mice decreased 44% (p = 0.045) in the 6th month and 57% (p = 0.0002) in the 7th month. Meanwhile, the hA treatment induced a 1.5-fold increase of CD4+Foxp3+ Treg from mouse splenocytes (p = 0.0013). Expression of transforming growth factor-β (TGF-β) and toll-like receptor-4 (TLR-4) were upregulated in hA-treated mice. Human amylin might protect against autoimmune diabetes via the induction of CD4+Foxp3+ Treg, which suggests a novel approach to improve autoimmune conditions.
Literatur
1.
Zurück zum Zitat Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84:8628–32.CrossRefPubMedPubMedCentral Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84:8628–32.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Westermark P, Wernstedt C, Wilander E, Hayden DW, O'Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A. 1987;84:3881–5.CrossRefPubMedPubMedCentral Westermark P, Wernstedt C, Wilander E, Hayden DW, O'Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A. 1987;84:3881–5.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Gedulin BR, Jodka CM, Herrmann K, Young AA. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept. 2006;137:121–7.CrossRefPubMed Gedulin BR, Jodka CM, Herrmann K, Young AA. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept. 2006;137:121–7.CrossRefPubMed
4.
Zurück zum Zitat Edelman SV, Weyer C. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second beta-cell hormone. Diabetes Technol Ther. 2002;4:175–89.CrossRefPubMed Edelman SV, Weyer C. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second beta-cell hormone. Diabetes Technol Ther. 2002;4:175–89.CrossRefPubMed
5.
Zurück zum Zitat Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr. 2014;34:237–60.CrossRefPubMedPubMedCentral Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr. 2014;34:237–60.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Howard CF Jr. Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia. 1986;29:301–6.CrossRefPubMed Howard CF Jr. Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia. 1986;29:301–6.CrossRefPubMed
7.
Zurück zum Zitat Maloy AL, Longnecker DS, Greenberg ER. The relation of islet amyloid to the clinical type of diabetes. Hum Pathol. 1981;12:917–22.CrossRefPubMed Maloy AL, Longnecker DS, Greenberg ER. The relation of islet amyloid to the clinical type of diabetes. Hum Pathol. 1981;12:917–22.CrossRefPubMed
8.
Zurück zum Zitat Anguiano M, Nowak RJ, Lansbury PT Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry. 2002;41:11338–43.CrossRefPubMed Anguiano M, Nowak RJ, Lansbury PT Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry. 2002;41:11338–43.CrossRefPubMed
9.
Zurück zum Zitat Zhao HL, Sui Y, Guan J, He L, Gu XM, Wong HK, et al. Amyloid oligomers in diabetic and nondiabetic human pancreas. Translational research : the journal of laboratory and clinical medicine. 2009;153:24–32.CrossRef Zhao HL, Sui Y, Guan J, He L, Gu XM, Wong HK, et al. Amyloid oligomers in diabetic and nondiabetic human pancreas. Translational research : the journal of laboratory and clinical medicine. 2009;153:24–32.CrossRef
10.
Zurück zum Zitat Zhao HL, Sui Y, Guan J, He L, Lai FM, Zhong DR, et al. Higher islet amyloid load in men than in women with type 2 diabetes mellitus. Pancreas. 2008;37:e68–73.CrossRefPubMed Zhao HL, Sui Y, Guan J, He L, Lai FM, Zhong DR, et al. Higher islet amyloid load in men than in women with type 2 diabetes mellitus. Pancreas. 2008;37:e68–73.CrossRefPubMed
11.
Zurück zum Zitat Guan J, Zhao HL, Sui Y, He L, Lee HM, Lai FM, et al. Histopathological correlations of islet amyloidosis with apolipoprotein E polymorphisms in type 2 diabetic Chinese patients. Pancreas. 2013;42:1129–37.CrossRefPubMed Guan J, Zhao HL, Sui Y, He L, Lee HM, Lai FM, et al. Histopathological correlations of islet amyloidosis with apolipoprotein E polymorphisms in type 2 diabetic Chinese patients. Pancreas. 2013;42:1129–37.CrossRefPubMed
12.
Zurück zum Zitat Zhao HL, Lai FM, Tong PC, Zhong DR, Yang D, Tomlinson B, et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes. 2003;52:2759–66.CrossRefPubMed Zhao HL, Lai FM, Tong PC, Zhong DR, Yang D, Tomlinson B, et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes. 2003;52:2759–66.CrossRefPubMed
13.
Zurück zum Zitat Li XL, Chen T, Wong YS, Xu G, Fan RR, Zhao HL, et al. Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: an effect attenuated by phycocyanin. Int J Biochem Cell Biol. 2011;43:525–34.CrossRefPubMed Li XL, Chen T, Wong YS, Xu G, Fan RR, Zhao HL, et al. Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: an effect attenuated by phycocyanin. Int J Biochem Cell Biol. 2011;43:525–34.CrossRefPubMed
14.
Zurück zum Zitat Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, et al. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int J Biochem Cell Biol. 2009;41:1526–35.CrossRefPubMed Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, et al. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int J Biochem Cell Biol. 2009;41:1526–35.CrossRefPubMed
15.
Zurück zum Zitat Zhao H, Guan J, Lee HM, Sui Y, He L, Siu JJ, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas. 2010;39:843–6.CrossRefPubMed Zhao H, Guan J, Lee HM, Sui Y, He L, Siu JJ, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas. 2010;39:843–6.CrossRefPubMed
16.
Zurück zum Zitat Zhao HL, Guan J, Sui Y, He L, Lai FF. Islet amyloidosis and beta-cell neogenesis in chronic calcifying pancreatitis with non-insulin-dependent diabetes mellitus. Pancreas. 2009;38:342–4.CrossRefPubMed Zhao HL, Guan J, Sui Y, He L, Lai FF. Islet amyloidosis and beta-cell neogenesis in chronic calcifying pancreatitis with non-insulin-dependent diabetes mellitus. Pancreas. 2009;38:342–4.CrossRefPubMed
17.
Zurück zum Zitat Zhao H, Zhang J, Mu X. Patent: applications of a human polypeptide in immune inhibitor production. China, 2013. Zhao H, Zhang J, Mu X. Patent: applications of a human polypeptide in immune inhibitor production. China, 2013.
19.
Zurück zum Zitat Woerle HJ, Albrecht M, Linke R, Zschau S, Neumann C, Nicolaus M, et al. Impaired hyperglycemia-induced delay in gastric emptying in patients with type 1 diabetes deficient for islet amyloid polypeptide. Diabetes Care. 2008;31:2325–31.CrossRefPubMedPubMedCentral Woerle HJ, Albrecht M, Linke R, Zschau S, Neumann C, Nicolaus M, et al. Impaired hyperglycemia-induced delay in gastric emptying in patients with type 1 diabetes deficient for islet amyloid polypeptide. Diabetes Care. 2008;31:2325–31.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Karlsson E, Stridsberg M, Sandler S. Islet amyloid polypeptide (IAPP) secretion from pancreatic islets isolated from non-obese diabetic (NOD) mice. Regul Pept. 1996;63:39–45.CrossRefPubMed Karlsson E, Stridsberg M, Sandler S. Islet amyloid polypeptide (IAPP) secretion from pancreatic islets isolated from non-obese diabetic (NOD) mice. Regul Pept. 1996;63:39–45.CrossRefPubMed
21.
Zurück zum Zitat Singh-Franco D, Perez A, Harrington C. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2011;13:169–80.CrossRefPubMed Singh-Franco D, Perez A, Harrington C. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2011;13:169–80.CrossRefPubMed
22.
Zurück zum Zitat Weinzimer SA, Sherr JL, Cengiz E, Kim G, Ruiz JL, Carria L, et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care. 2012;35:1994–9.CrossRefPubMedPubMedCentral Weinzimer SA, Sherr JL, Cengiz E, Kim G, Ruiz JL, Carria L, et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care. 2012;35:1994–9.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Olcott AP, Tian J, Walker V, Dang H, Middleton B, Adorini L, et al. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J Immunol. 2005;175:1991–9.CrossRefPubMed Olcott AP, Tian J, Walker V, Dang H, Middleton B, Adorini L, et al. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J Immunol. 2005;175:1991–9.CrossRefPubMed
24.
Zurück zum Zitat Westwell-Roper C, Dunne A, Kim ML, Verchere CB, Masters SL. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol Biol. 2013;1040:9–18.CrossRefPubMed Westwell-Roper C, Dunne A, Kim ML, Verchere CB, Masters SL. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol Biol. 2013;1040:9–18.CrossRefPubMed
25.
Zurück zum Zitat Baker RL, Delong T, Barbour G, Bradley B, Nakayama M, Haskins K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. J Immunol. 2013;191:3990–4.CrossRefPubMed Baker RL, Delong T, Barbour G, Bradley B, Nakayama M, Haskins K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. J Immunol. 2013;191:3990–4.CrossRefPubMed
26.
Zurück zum Zitat Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4.CrossRefPubMedPubMedCentral Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Wiles TA, Delong T, Baker RL, Bradley B, Barbour G, Powell RL, et al. An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J Autoimmun. 2017;78:11–8.CrossRefPubMed Wiles TA, Delong T, Baker RL, Bradley B, Barbour G, Powell RL, et al. An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J Autoimmun. 2017;78:11–8.CrossRefPubMed
28.
Zurück zum Zitat Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.CrossRefPubMed Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.CrossRefPubMed
29.
Zurück zum Zitat Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.CrossRefPubMed Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.CrossRefPubMed
30.
Zurück zum Zitat Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes. 2004;53:1509–16.CrossRefPubMed Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes. 2004;53:1509–16.CrossRefPubMed
31.
Zurück zum Zitat Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, et al. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1992;15:89–96.CrossRefPubMed Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, et al. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1992;15:89–96.CrossRefPubMed
32.
Zurück zum Zitat Hartter E, Svoboda T, Ludvik B, Schuller M, Lell B, Kuenburg E, et al. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia. 1991;34:52–4.CrossRefPubMed Hartter E, Svoboda T, Ludvik B, Schuller M, Lell B, Kuenburg E, et al. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia. 1991;34:52–4.CrossRefPubMed
33.
Zurück zum Zitat Bach JF. Insulin-dependent diabetes mellitus as a beta-cell targeted disease of immunoregulation. J Autoimmun. 1995;8:439–63.CrossRefPubMed Bach JF. Insulin-dependent diabetes mellitus as a beta-cell targeted disease of immunoregulation. J Autoimmun. 1995;8:439–63.CrossRefPubMed
34.
Zurück zum Zitat Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.CrossRefPubMed Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.CrossRefPubMed
35.
Zurück zum Zitat De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192–9.CrossRefPubMed De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192–9.CrossRefPubMed
36.
Zurück zum Zitat Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.CrossRefPubMed Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.CrossRefPubMed
37.
Zurück zum Zitat Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.CrossRefPubMed Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.CrossRefPubMed
38.
Zurück zum Zitat Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.CrossRefPubMed Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.CrossRefPubMed
39.
Zurück zum Zitat Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199:1467–77.CrossRefPubMedPubMedCentral Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199:1467–77.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Ott PA, Anderson MR, Tary-Lehmann M, Lehmann PV. CD4+CD25+ regulatory T cells control the progression from periinsulitis to destructive insulitis in murine autoimmune diabetes. Cell Immunol. 2005;235:1–11.CrossRefPubMed Ott PA, Anderson MR, Tary-Lehmann M, Lehmann PV. CD4+CD25+ regulatory T cells control the progression from periinsulitis to destructive insulitis in murine autoimmune diabetes. Cell Immunol. 2005;235:1–11.CrossRefPubMed
41.
Zurück zum Zitat Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med. 1999;5:601–4.CrossRefPubMed Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med. 1999;5:601–4.CrossRefPubMed
42.
Zurück zum Zitat Ly D, Mi QS, Hussain S, Delovitch TL. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J Immunol. 2006;177:3695–704.CrossRefPubMed Ly D, Mi QS, Hussain S, Delovitch TL. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J Immunol. 2006;177:3695–704.CrossRefPubMed
43.
Zurück zum Zitat Chen D, Zhang N, Fu S, Schroppel B, Guo Q, Garin A, et al. CD4+ CD25+ regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes. 2006;55:1011–21.CrossRefPubMed Chen D, Zhang N, Fu S, Schroppel B, Guo Q, Garin A, et al. CD4+ CD25+ regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes. 2006;55:1011–21.CrossRefPubMed
44.
Zurück zum Zitat Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007;204:191–201.CrossRefPubMedPubMedCentral Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007;204:191–201.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 2009;30:458–69.CrossRefPubMedPubMedCentral Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 2009;30:458–69.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JB. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med. 2013;5:179ra142.CrossRef Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JB. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med. 2013;5:179ra142.CrossRef
47.
Zurück zum Zitat Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ, et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med. 2008;205:1975–81.CrossRefPubMedPubMedCentral Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ, et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med. 2008;205:1975–81.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A. 2004;101:4572–7.CrossRefPubMedPubMedCentral Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A. 2004;101:4572–7.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Lu L, Ma J, Wang X, Wang J, Zhang F, Yu J, et al. Synergistic effect of TGF-beta superfamily members on the induction of Foxp3+ Treg. Eur J Immunol. 2010;40:142–52.CrossRefPubMedPubMedCentral Lu L, Ma J, Wang X, Wang J, Zhang F, Yu J, et al. Synergistic effect of TGF-beta superfamily members on the induction of Foxp3+ Treg. Eur J Immunol. 2010;40:142–52.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Mazzoni A, Segal DM. Controlling the Toll road to dendritic cell polarization. J Leukoc Biol. 2004;75:721–30.CrossRefPubMed Mazzoni A, Segal DM. Controlling the Toll road to dendritic cell polarization. J Leukoc Biol. 2004;75:721–30.CrossRefPubMed
51.
Zurück zum Zitat Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.CrossRefPubMed Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.CrossRefPubMed
52.
Zurück zum Zitat Liu G, Zhao Y. Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology. 2007;122:149–56.CrossRefPubMedPubMedCentral Liu G, Zhao Y. Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology. 2007;122:149–56.CrossRefPubMedPubMedCentral
Metadaten
Titel
Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes
verfasst von
Xiao-xi Zhang
Yong-chao Qiao
Wan Li
Xia Zou
Yin-ling Chen
Jian Shen
Qin-yuan Liao
Qiu-jin Zhang
Lan He
Hai-lu Zhao
Publikationsdatum
05.10.2017
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 1/2018
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-017-8956-5

Weitere Artikel der Ausgabe 1/2018

Immunologic Research 1/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.