Skip to main content
Erschienen in: Journal of Artificial Organs 3/2016

30.04.2016 | Original Article

Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies

verfasst von: Anna Ciechanowska, Piotr Ladyzynski, Grazyna Hoser, Stanislawa Sabalinska, Jerzy Kawiak, Piotr Foltynski, Cezary Wojciechowski, Andrzej Chwojnowski

Erschienen in: Journal of Artificial Organs | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm2. The optimal density of cells to be seeded was 60,000 cells/cm2. Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells’ metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells’ proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells’ metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.
Literatur
1.
Zurück zum Zitat Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.CrossRefPubMed Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.CrossRefPubMed
2.
Zurück zum Zitat Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.CrossRefPubMed Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.CrossRefPubMed
3.
Zurück zum Zitat Watkins NV, Caro CG, Wang W. Parallel-plate flow chamber for studies of 3D flow-endothelium interaction. Biorheology. 2002;39:337–42.PubMed Watkins NV, Caro CG, Wang W. Parallel-plate flow chamber for studies of 3D flow-endothelium interaction. Biorheology. 2002;39:337–42.PubMed
4.
Zurück zum Zitat Brown A, Burke G, Meenan BJ. Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol Bioeng. 2011;108:1148–58.CrossRefPubMed Brown A, Burke G, Meenan BJ. Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol Bioeng. 2011;108:1148–58.CrossRefPubMed
5.
Zurück zum Zitat Janke D, Jankowski J, Rüth M, Buschmann I, Lemke HD, Jacobi D, et al. The “artificial artery” as in vitro perfusion model. PLoS One. 2013;8:e57227.CrossRefPubMedPubMedCentral Janke D, Jankowski J, Rüth M, Buschmann I, Lemke HD, Jacobi D, et al. The “artificial artery” as in vitro perfusion model. PLoS One. 2013;8:e57227.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Inoguchia H, Tanaka T, Maehara Y, Matsud T. The effect of gradually graded shear stress on the morphological integrity of a HUVEC-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28:486–95.CrossRef Inoguchia H, Tanaka T, Maehara Y, Matsud T. The effect of gradually graded shear stress on the morphological integrity of a HUVEC-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28:486–95.CrossRef
7.
Zurück zum Zitat Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999;5:40–6.CrossRefPubMed Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999;5:40–6.CrossRefPubMed
8.
Zurück zum Zitat Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:1209–24.CrossRef Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:1209–24.CrossRef
9.
Zurück zum Zitat Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, et al. Transmembrane pressure as an indicator of a density of endothelial cells cultured inside capillaries of a membrane bioreactor under dynamic conditions. IFMBE Proc. 2015;45:545–8.CrossRef Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, et al. Transmembrane pressure as an indicator of a density of endothelial cells cultured inside capillaries of a membrane bioreactor under dynamic conditions. IFMBE Proc. 2015;45:545–8.CrossRef
10.
Zurück zum Zitat Ciechanowska A, Schwanzer-Pfeiffer D, Rossmanith E, Sabalinska S, Wojciechowski C, Hartmann J, et al. Artificial vessel as a basis for disease related cell culture model. IFMBE Proc 2004;6. Ciechanowska A, Schwanzer-Pfeiffer D, Rossmanith E, Sabalinska S, Wojciechowski C, Hartmann J, et al. Artificial vessel as a basis for disease related cell culture model. IFMBE Proc 2004;6.
11.
Zurück zum Zitat Zolnierowicz J, Ambrozek-Latecka M, Kawiak J, Wasilewska D, Hoser G. Monitoring cell proliferation in vitro with different cellular fluorescent dyes. Folia Histochem Cytobiol. 2013;51:193–200.CrossRefPubMed Zolnierowicz J, Ambrozek-Latecka M, Kawiak J, Wasilewska D, Hoser G. Monitoring cell proliferation in vitro with different cellular fluorescent dyes. Folia Histochem Cytobiol. 2013;51:193–200.CrossRefPubMed
12.
Zurück zum Zitat Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.CrossRefPubMed Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.CrossRefPubMed
13.
Zurück zum Zitat Stoltz JF. Regenerative medicine and cell therapy. Influence of mechanical forces on cells and tissues. Amsterdam: IOS Press; 2012. p. 119–22. Stoltz JF. Regenerative medicine and cell therapy. Influence of mechanical forces on cells and tissues. Amsterdam: IOS Press; 2012. p. 119–22.
14.
Zurück zum Zitat Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, Figliuzzi M, Remuzzi G, Remuzzi A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90:1558–64.PubMed Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, Figliuzzi M, Remuzzi G, Remuzzi A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90:1558–64.PubMed
15.
Zurück zum Zitat Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni M, Remuzzi G, Remuzzi A. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995;85:1696–703.PubMed Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni M, Remuzzi G, Remuzzi A. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995;85:1696–703.PubMed
16.
Zurück zum Zitat Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem Biophys Res Commun. 1995;206:988–96.CrossRefPubMed Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem Biophys Res Commun. 1995;206:988–96.CrossRefPubMed
17.
Zurück zum Zitat Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw. 2004;15:91–8.PubMed Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw. 2004;15:91–8.PubMed
18.
Zurück zum Zitat Wijerante SS, Li J, Yeh HC, Nolasco L, Zhou Z, Bergeron A, Frey EW, et al. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor. Phys Rev E Stat Nonlinear Soft Matter Phys. 2016;93:012410.CrossRef Wijerante SS, Li J, Yeh HC, Nolasco L, Zhou Z, Bergeron A, Frey EW, et al. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor. Phys Rev E Stat Nonlinear Soft Matter Phys. 2016;93:012410.CrossRef
19.
Zurück zum Zitat Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014;15:2–19. Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014;15:2–19.
21.
Zurück zum Zitat Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:513–22.CrossRef Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:513–22.CrossRef
22.
Zurück zum Zitat Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006;14:321–4.CrossRefPubMed Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006;14:321–4.CrossRefPubMed
23.
Zurück zum Zitat Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.CrossRefPubMed Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.CrossRefPubMed
24.
Zurück zum Zitat Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun. 2001;285:751–9.CrossRefPubMed Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun. 2001;285:751–9.CrossRefPubMed
25.
Zurück zum Zitat Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res. 2002;39:465–76.CrossRefPubMed Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res. 2002;39:465–76.CrossRefPubMed
26.
Zurück zum Zitat Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip. 2009;9:1085–95.CrossRefPubMedPubMedCentral Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip. 2009;9:1085–95.CrossRefPubMedPubMedCentral
Metadaten
Titel
Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies
verfasst von
Anna Ciechanowska
Piotr Ladyzynski
Grazyna Hoser
Stanislawa Sabalinska
Jerzy Kawiak
Piotr Foltynski
Cezary Wojciechowski
Andrzej Chwojnowski
Publikationsdatum
30.04.2016
Verlag
Springer Japan
Erschienen in
Journal of Artificial Organs / Ausgabe 3/2016
Print ISSN: 1434-7229
Elektronische ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-016-0902-0

Weitere Artikel der Ausgabe 3/2016

Journal of Artificial Organs 3/2016 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.