Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 3/2020

07.06.2019 | Original Research

Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation?

verfasst von: Corina Puppo, Magdalena Kasprowicz, Luzius A. Steiner, Bernardo Yelicich, Despina Afrodite Lalou, Peter Smielewski, Marek Czosnyka

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

The time constant of the cerebral arterial bed (“tau”) estimates how fast the blood entering the brain fills the arterial vascular sector. Analogous to an electrical resistor–capacitor circuit, it is expressed as the product of arterial compliance (Ca) and cerebrovascular resistance (CVR). Hypocapnia increases the time constant in healthy volunteers and decreases arterial compliance in head trauma. How the combination of hyocapnia and trauma affects this parameter has yet to be studied. We hypothesized that in TBI patients the intense vasoconstrictive action of hypocapnia would dominate over the decrease in compliance seen after hyperventilation. The predominant vasoconstrictive response would maintain an incoming blood volume in the arterial circulation, thereby lengthening tau. We retrospectively analyzed recordings of intracranial pressure (ICP), arterial blood pressure (ABP), and blood flow velocity (FV) obtained from a cohort of 27 severe TBI patients [(39/30 years (median/IQR), 5 women; admission GCS 6/5 (median/IQR)] studied during a standard clinical CO2 reactivity test. The reactivity test was performed by means of a 50-min increase in ventilation (20% increase in respiratory minute volume). CVR and Ca were estimated from these recordings, and their product calculated to find the time constant. CVR significantly increased [median CVR pre-hypocapnia/during hypocapnia: 1.05/1.35 mmHg/(cm3/s)]. Ca decreased (median Ca pre-hypocapnia/during hypocapnia: 0.130/0.124 arbitrary units) to statistical significance (p = 0.005). The product of these two parameters resulted in a significant prolongation of the time constant (median tau pre-hypocapnia/during hypocapnia: 0.136 s/0.152 s, p ˂ .001). Overall, the increase in CVR dominated over the decrease in compliance, hence tau was longer. We demonstrate a significant increase in the time constant of the cerebral circulation during hypocapnia after severe TBI, and attribute this to an increase in cerebrovascular resistance which outweighs the decrease in cerebral arterial bed compliance.
Literatur
3.
Zurück zum Zitat Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.CrossRef Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.CrossRef
4.
Zurück zum Zitat Capel C, Kasprowicz M, Czosnyka M, et al. Cerebrovascular time constant in patients suffering from hydrocephalus. Neurol Res. 2014;36:255–61.CrossRef Capel C, Kasprowicz M, Czosnyka M, et al. Cerebrovascular time constant in patients suffering from hydrocephalus. Neurol Res. 2014;36:255–61.CrossRef
5.
Zurück zum Zitat Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.CrossRef Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.CrossRef
6.
Zurück zum Zitat Trofimov A, Kalentiev G, Gribkov A, Voennov O, Grigoryeva V. Cerebrovascular time constant in patients with head injury. Acta Neurochir Suppl. 2016;121:295–7.CrossRef Trofimov A, Kalentiev G, Gribkov A, Voennov O, Grigoryeva V. Cerebrovascular time constant in patients with head injury. Acta Neurochir Suppl. 2016;121:295–7.CrossRef
7.
Zurück zum Zitat Kasprowicz M, Czosnyka M, Poplawska K, Reinhard M. Cerebral arterial time constant recorded from the MCA and PICA in normal subjects. Acta Neurochir Suppl. 2016;122:211–4.CrossRef Kasprowicz M, Czosnyka M, Poplawska K, Reinhard M. Cerebral arterial time constant recorded from the MCA and PICA in normal subjects. Acta Neurochir Suppl. 2016;122:211–4.CrossRef
8.
Zurück zum Zitat Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.CrossRef Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.CrossRef
9.
Zurück zum Zitat Carrera E, Steiner LA, Castellani G, et al. Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury. J Neurotrauma. 2011;28:889–96.CrossRef Carrera E, Steiner LA, Castellani G, et al. Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury. J Neurotrauma. 2011;28:889–96.CrossRef
10.
Zurück zum Zitat Dobrzeniecki M, Trofimov A, Bragin DE. Cerebral Arterial Compliance in Traumatic Brain Injury. Acta Neurochir Suppl. 2018;126:21–4.CrossRef Dobrzeniecki M, Trofimov A, Bragin DE. Cerebral Arterial Compliance in Traumatic Brain Injury. Acta Neurochir Suppl. 2018;126:21–4.CrossRef
11.
Zurück zum Zitat Steiner LA, Balestreri M, Johnston AJ, et al. Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med. 2004;30:2180–7.CrossRef Steiner LA, Balestreri M, Johnston AJ, et al. Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med. 2004;30:2180–7.CrossRef
12.
Zurück zum Zitat Smielewski P, Czosnyka Z, Kasprowicz M, Pickard JD, Czosnyka M. ICM + : a versatile software for assessment of CSF dynamics. Acta Neurochir Suppl. 2012;114:75–9.CrossRef Smielewski P, Czosnyka Z, Kasprowicz M, Pickard JD, Czosnyka M. ICM + : a versatile software for assessment of CSF dynamics. Acta Neurochir Suppl. 2012;114:75–9.CrossRef
13.
Zurück zum Zitat Avezaat CJJ, Eijndhoven JHM (1984). Cerebrospinal fluid pulse pressure and craniospinal dynamics: A theoretical, clinical and experimental study. the Netherlands: The Hague: Jongbloed en Zoon. Avezaat CJJ, Eijndhoven JHM (1984). Cerebrospinal fluid pulse pressure and craniospinal dynamics: A theoretical, clinical and experimental study. the Netherlands: The Hague: Jongbloed en Zoon.
14.
Zurück zum Zitat van Eijndhoven JH, Avezaat CJ. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery. 1986;19:507–22.CrossRef van Eijndhoven JH, Avezaat CJ. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery. 1986;19:507–22.CrossRef
15.
Zurück zum Zitat Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial doppler recordings in humans. Stroke. 1991;22:1148–54.CrossRef Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial doppler recordings in humans. Stroke. 1991;22:1148–54.CrossRef
16.
Zurück zum Zitat Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care. 2014;20:142–57.CrossRef Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care. 2014;20:142–57.CrossRef
17.
Zurück zum Zitat Smielewski P, Steiner L, Puppo C, Budohoski K, Varsos GV, Czosnyka M. Effect of mild hypocapnia on critical closing pressure and other mechanoelastic parameters of the cerebrospinal system. Acta Neurochir Suppl. 2018;126:139–42.CrossRef Smielewski P, Steiner L, Puppo C, Budohoski K, Varsos GV, Czosnyka M. Effect of mild hypocapnia on critical closing pressure and other mechanoelastic parameters of the cerebrospinal system. Acta Neurochir Suppl. 2018;126:139–42.CrossRef
18.
Zurück zum Zitat Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.CrossRef Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.CrossRef
19.
Zurück zum Zitat Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W. Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke. 1999;30:1070–5.CrossRef Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W. Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke. 1999;30:1070–5.CrossRef
20.
Zurück zum Zitat Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41.CrossRef Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41.CrossRef
21.
Zurück zum Zitat Hoiland RL, Ainslie PN. CrossTalk proposal: the middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;1(594):4073–5.CrossRef Hoiland RL, Ainslie PN. CrossTalk proposal: the middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;1(594):4073–5.CrossRef
22.
Zurück zum Zitat Coverdale NS, Lalande S, Perrotta A, Shoemaker JK. Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol Heart Circ Physiol. 2015;308:H1030–8.CrossRef Coverdale NS, Lalande S, Perrotta A, Shoemaker JK. Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol Heart Circ Physiol. 2015;308:H1030–8.CrossRef
Metadaten
Titel
Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation?
verfasst von
Corina Puppo
Magdalena Kasprowicz
Luzius A. Steiner
Bernardo Yelicich
Despina Afrodite Lalou
Peter Smielewski
Marek Czosnyka
Publikationsdatum
07.06.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 3/2020
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00331-x

Weitere Artikel der Ausgabe 3/2020

Journal of Clinical Monitoring and Computing 3/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.