Skip to main content
Erschienen in: Thrombosis Journal 1/2014

Open Access 01.12.2014 | Review

Hypothermia: effects on platelet function and hemostasis

verfasst von: Sven Van Poucke, Kris Stevens, Abraham Emanuel Marcus, Marcus Lancé

Erschienen in: Thrombosis Journal | Ausgabe 1/2014

Abstract

Mild therapeutic hypothermia is considered standard care in the treatment of patients resuscitated from cardiac arrest. With increasingly more frequent concomitant use of platelet-inhibiting drugs, clinicians must be cognizant of the ramifications of hypothermia on platelet function as part of hemostasis. The effects of hypothermia on platelet function have been studied for more than 50 years, but the results are inconsistent and may be related to the circumstances during which hypothermia is achieved. This review summarizes current knowledge of platelet function during hypothermia and the impact on hemostasis.
Hinweise

Competing interest

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.
Abkürzungen
°
Degrees
C
Celsius
F
Fahrenheit
L
Liter
kDa
kilodalton
GP
Glycoprotein
vWF
von Willebrand factor
α
alpha
β
beta
FTIR
Fourier transform infrared spectroscopy
CR3
Complement receptor type 3
ADAMTS
A disintegrin and metalloproteinase with thrombospondin motifs
TRAP
Thrombin receptor activating peptide
ADP
Adenosine diphosphate
FeCl3
Ferric chloride
CPA
Cone and platelet analyzer
NO
Nitric oxide
PAF
Platelet-activating factor
BH
Bcl-2 homology domain
PT
Prothrombin time
APTT
Activated partial thromboplastin time
ACT
Activated clotting time
TEG
Thromboelastography
ROTEM
Rotational thromboelastometry
MA
Maximal amplitude
MCF
Maximum clot firmness
PFA
Platelet function analysis
PAC-1
Monoclonal antibody against GP IIb-IIIa

Introduction

Although humans are homeothermic, significant body-temperature changes can result in life-threatening situations (including bleeding and thrombosis), particularly in association with certain medical conditions [1]-[10].
Platelets lack nuclei, but perform multiple vital functions of nucleated cells. Platelets can generate new cell bodies packed with respiring mitochondria and α-granules [11]. Whereas platelets were once considered to function exclusively during hemostasis and thrombosis, they are now considered to function as circulating sentinels in the activation, modulation of the host immune response [12]-[14].
This review summarizes current knowledge of platelet function during hemostasis under various hypothermic conditions. The review will not discuss the effect of systemic hypothermia on the pharmacokinetics and pharmacodynamics of anti-platelet drugs [15]-[19].

Review

Fundamental aspects of hypothermia

The research on hemostasis in the setting of hypothermic reveals inconsistent, even conflicting results, ranging from seasonal increase in thromboembolic disease in winter to excessive surgical bleeding in hypothermic patients.
The effects of hypothermia [20] on coagulation and platelet function is influenced by
the actual body temperature during sampling
the pre-analytical and analytical temperature and sample type (in-vivo, ex-vivo, in-vitro; whole blood, washed platelet preparation)
temperature changes during the sampling time (induction, maintenance, and rewarming)
the moment of sampling in relation to agonist stimulation
the duration of hypothermia
the cause of hypothermia (spontaneous, whether induced externally or internally)
coexisting factors (extracorporeal circulation [21], comorbidity, drugs)
the modality of induced hypothermia (local, regional, or general) [2]
Hypothermia can be caused by metabolic dysfunction in association with decreased heat production (hypothyroidism, hypoglycemia, or hypoadrenalism) or disturbed thermoregulation (intracranial tumor or degenerative neurological disorders). Accidental hypothermia is an unintentional decrease of core temperature caused by prolonged exposure to cold [22]. Hypothermia acts as a natural survival strategy in some animals that hibernate, and actively suppresses metabolism. [4],[23],[24].
In trauma patients, extra precautions are required based on inherent bias due to absolute or relative hypovolemia and acidosis [25].
Since the early 1950s, active therapeutic cooling has been used during specific surgical procedures to reduce oxygen requirements of organs such as the brain, heart, and kidney [26],[27]. The use of hypothermia has recently been extended to post-resuscitation care based on results from more intensive and innovative monitoring techniques [28]-[31]. While precluding the current guidelines for platelet storage, research on chilled platelets (at 4°C, ex-vivo) should be differentiated from research on deep hypothermic circulatory arrest at in-vivo temperatures of 15-18°C and from research on cardiopulmonary bypass and post-resuscitation at temperatures > =28°C.
Hypothermia has been shown to result in hemoconcentration, leukopenia and thrombocytopenia, slowing down of coagulation enzymes, disordered fibrinolysis, and disruption of platelet function [6],[32]-[34]. Some hematologic diseases are directly influenced by temperature changes; for example, cold agglutination disease exhibits an increase in cold agglutinin titers [35].
With more frequent use of hypothermia in clinical practice and concomitant use of platelet-inhibiting drugs, there is a growing need to understand the ramifications of platelet-inhibiting drugs on coagulation and platelet function [36],[37].

Effect of hypothermia on platelets

Platelet morphology

Chilling platelets (4°C) in vitro results in volume increase, spherical deformation, and the formation of lose marginal microtubules and pseudopods [38],[39]. The chilling-induced (0°C, ice water), reversible shape-change in platelets correlates with phosphorylation of myosin, subsequent interaction on actin filaments and free cytosolic calcium increase [40]. Human platelets can be maintained in a discoid shape in the cold, in vitro, using a cell-permeable calcium chelator to attenuate calcium mobilization and cytochalasin B to prevent barbed-end actin assembly [39]. FTIR spectroscopy in northern elephant seals confirms three different thermotropic membrane phase transitions [1]. The microtubules of hibernating mammals are more tolerant to cold, which facilitates the rapid shift from a thrombocytopenic, anticoagulant state during torpor to a normal state [3],[4].

Platelet function

Platelet adhesion and activation leads to their aggregation and ultimately to the formation of a fibrin-rich hemostatic plug [41]. Hypothermia promotes platelet margination by increasing hematocrit, changing platelet shape, lowering blood flow rate, and increasing the expression of adhesion molecules.
Low temperature enhances shear-induced platelet aggregation
Platelets interacting with the vessel wall are influenced by the small-scale motions of neighboring erythrocytes, which allows platelets to move across flow streamlines in a form of enhanced diffusion. Platelets contact each other via collisions driven by blood-flow velocity gradients [42]. Adhesive interactions between platelets and the extracellular matrix are strongly influenced by local rheological conditions. Blood is considered a two-phase liquid with a solid–liquid suspension. The viscosity of a liquid is temperature-dependent, and blood viscosity increases with decreasing temperature [43]. Thus low temperature may enhance shear-induced platelet aggregation by increasing blood viscosity [44].
Hypothermia and life span of platelets
Chilled platelets subjected to refrigeration before transfusion rapidly leave circulation. Therefore, blood banks store platelets at room temperature [32],[45]. The normal in vivo lifespan of platelets (7–10 days) does not appear to be affected by hypothermia. A surface-induced deep hypothermia study (20°C) on dogs reported that the mean survival of platelets (4.9 days) is slightly but significantly longer in the hypothermic group compared to that in the control group (4.2 days) [46].
Storage, clearance and release underlies the (reversible) thrombocytopenia
The decrease in platelet count observed in vivo during hypothermia is reversible as normal body temperature is restored. This change in platelet count is explained by hepatic and splenic sequestration, and possibly margination of platelets, relative to hypothermic depth and duration, and with a maximum decline between 25-30°C [47]-[49]. Under mild hypothermia, the reduction in platelet count is modest and remains within the normal range [45]. As core body temperature drops below 37°C, platelets become more susceptible to activation by thrombotic stimuli, a phenomenon known as priming. Therefore, platelets can act as thermosensors. The ability for priming at peripheral body sites, where temperatures are lower and chances for trauma higher evolved as a protective effect against bleeding, whereas more central body sites (brain and coronary vessels) are more protected against thrombosis [39].
Subjecting platelets to chilling changes its surface configuration. In response to cooling, the GPIbα subunit of the vWf receptor complex undergoes clustering and becomes a target for recognition by hepatic macrophage complement receptor type 3 (CR3), which is strongly expressed in liver macrophages, and leads to platelet phagocytosis and clearance. Compared to mice that are CR3-deficient, mice overexpressing CR3 demonstrate a rapid reduction in platelets counts when exposed to cold leading to platelet phagocytosis and clearance in the liver [47].
vWF retention is prolonged on the cell surface at low temperatures
vWF is a protein that circulates in a globular form under conditions of low shear-stress, but changes into an elongated form under the influence of stronger hydrodynamic shear forces [50],[51]. Expression of vWF in endothelial cells is higher at low temperature than at normal temperature [52]. The kinetics of vWF proteolysis by the cleaving metalloprotease ADAMTS-13 is temperature-dependent, with slower but complete activity at 4°C and at 22°C. A sub-physiological temperature might influence the proteolysis kinetics due to minor variations in ADAMTS-13 structure, or further modification of the vWF substrate [53]. The failure of secreted vWF to form long cell-surface strings following its secretion at low temperatures (≤17°C) results in formation of predominantly globular deposits. This failure of vWF to unfurl at lower temperatures, combined with its reduced thermal motions, may interfere with the prolonged retention of this protein on the cell surface, and may result in hemostatic disorders [54].
The recognition of vWF with factor VIII is sensitive to temperature changes
Closely related to vWF is factor VIII which, after its extracellular release, forms a complex with vWF [51]. Thermodynamic analysis reveals that the recognition process of factor VIII with vWF is very sensitive to temperature changes. Generally, interactions between proteins with pre-optimized binding sites are stimulated by increases in the system kinetic energy (temperature). By contrast, interactions between proteins driven by conformational changes are generally reduced by temperature increases. The stimulatory effect of higher temperatures on the association kinetics and affinity of factor VIII for vWF suggests that this interaction does not require significant conformational changes [55]. The impact of body temperature changes on the recognition process of factor VIII with vWF is currently unknown.
Hypothermia increases the ability of platelets to respond to activating stimuli
Moderate hypothermia results in a minor increase in spontaneous platelet activation but a significant rise in agonist- induced responsiveness. In-vitro research in mice demonstrates that with incubation at temperatures of 34°C and 31°C, spontaneous expression of P-selectin and the activated conformation of GPIIb-IIIa does not change markedly. A small yet statistically significant increase in PAC-1 binding in unstimulated samples at 31°C suggested spontaneous hypothermia-induced activation. TRAP exposure during hypothermia causes an increase of PAC-1 binding with increased activation during hypothermia. In line with this, binding of fluorescent-labeled fibrinogen increases at 34°C and 31°C after TRAP exposure [56].
Although early research only referred to cold effects on platelets as “activation,” chilled platelets do not resemble platelets activated by classical agonists such as thrombin, ADP, or collagen. Whole blood aggregation assays demonstrated that platelet aggregation and P-selectin expression are enhanced under hypothermic temperatures but the effect depends on the agonist used. The potency of the agonist does not seem to be related to the susceptibility of platelets to the effects of temperature [57]-[68].
Interestingly, the platelet intrinsic function is maintained throughout torpor/arousal in hibernators as well as throughout cooling/rewarming and pharmacological induced torpor, as demonstrated by P-selectin expression and platelet aggregometry. P-selectin expression on circulating platelets, however, are significantly decreased in torpid hamsters, but restores to normal euthermic levels shortly after arousal [49].
Factors regulating thrombus formation may be tissue and temperature dependent
Mechanisms that limit or prevent the process of thrombus growth are essential in the balance between prothrombotic and antithrombotic forces. Cold-induced vasodilatation mediates cyclic regulation of blood flow during prolonged cooling of protruding limbs, reducing localized cold injury [69]. The protective effect of NO and prostacyclin on platelet aggregation during temperature-dependent vasoconstriction and vasodilation, is currently unknown but might be tissue and temperature dependent [70].
The machinery for executing platelet apoptosis is temperature dependent
Studies on the effects of chemotherapeutic drugs revealed that apoptosis in platelets, as determined by mitochondrial inner membrane potential depolarization is much more efficient at 37°C than at room temperature [71]. Cold-storage of platelets followed by rewarming has been shown to trigger apoptosis through a GN-sensitive GPIbα-change indicative of receptor clustering [72].

Conclusion

The impact of hypothermia on platelet function and its effect on hemostasis has been studied for more than 50 years, yet its effects and the mechanisms behind the observed phenomena have not been fully elucidated. Studies differ in the circumstances under which hypothermia is achieved, and in the duration and extent of temperature decrease. Comparative studies are challenging as the parameters defining sufficient platelet function have not been clearly identified, and experimental studies have not used standardized techniques and platelet-stimulating agents. Conflicting results suggest that the heterogeneous techniques do not accurately reflect in vivo hemostatic function, which involves platelets, coagulation factors, plasma proteins, endothelial and other cells and flow characteristics. Animal models may not be directly translatable to humans as demonstrated in hibernating mammals. The hypothermia-associated coagulopathy is more likely related to a reduced availability of platelet activators, rather than a consequence of an intrinsic defect in platelet function. More research is required to elucidate the activation of platelets, the interaction of platelets and leukocytes and the production of proinflammatory cytokines at different temperatures are required.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interest

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Field CL, Tablin F: Response of Northern Elephant Seal platelets to pressure and temperature changes: a comparison with human platelets. Comp Biochem Physiol A Mol Integr Physiol. 2012, 162: 289-295. 10.1016/j.cbpa.2012.01.023.CrossRefPubMed Field CL, Tablin F: Response of Northern Elephant Seal platelets to pressure and temperature changes: a comparison with human platelets. Comp Biochem Physiol A Mol Integr Physiol. 2012, 162: 289-295. 10.1016/j.cbpa.2012.01.023.CrossRefPubMed
2.
Zurück zum Zitat Hurd PL, van Anders SM: Latitude, digit ratios, and Allen’s and Bergmann’s rules: a comment on Loehlin, McFadden, Medland, and Martin (2006). Arch Sex Behav. 2007, 36: 139-141. 10.1007/s10508-006-9149-9. author reply 143CrossRefPubMed Hurd PL, van Anders SM: Latitude, digit ratios, and Allen’s and Bergmann’s rules: a comment on Loehlin, McFadden, Medland, and Martin (2006). Arch Sex Behav. 2007, 36: 139-141. 10.1007/s10508-006-9149-9. author reply 143CrossRefPubMed
3.
Zurück zum Zitat Cooper ST, Richters KE, Melin TE, Liu Z, Hordyk PJ, Benrud RR, Geiser LR, Cash SE, Shelley CS, Howard DR, Ereth MH, Sola-Visner MC: The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R1202-R1208. 10.1152/ajpregu.00018.2012.PubMedCentralCrossRefPubMed Cooper ST, Richters KE, Melin TE, Liu Z, Hordyk PJ, Benrud RR, Geiser LR, Cash SE, Shelley CS, Howard DR, Ereth MH, Sola-Visner MC: The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R1202-R1208. 10.1152/ajpregu.00018.2012.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Lee S, Alston T: A little hypothermia goes a long way. Crit Care Med. 2012, 40: 1369-1370. 10.1097/CCM.0b013e31823b8b6a.CrossRefPubMed Lee S, Alston T: A little hypothermia goes a long way. Crit Care Med. 2012, 40: 1369-1370. 10.1097/CCM.0b013e31823b8b6a.CrossRefPubMed
6.
Zurück zum Zitat Díaz M, Becker DE: Thermoregulation: physiological and clinical considerations during sedation and general anesthesia. Anesth Prog. 2010, 57: 25-32. 10.2344/0003-3006-57.1.25. quiz 33–4PubMedCentralCrossRefPubMed Díaz M, Becker DE: Thermoregulation: physiological and clinical considerations during sedation and general anesthesia. Anesth Prog. 2010, 57: 25-32. 10.2344/0003-3006-57.1.25. quiz 33–4PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Horosz B, Malec-Milewska M: Inadvertent intraoperative hypothermia. Anaesthesiol Intensive Ther. 2013, 45: 38-43. 10.5603/AIT.2013.0009.CrossRefPubMed Horosz B, Malec-Milewska M: Inadvertent intraoperative hypothermia. Anaesthesiol Intensive Ther. 2013, 45: 38-43. 10.5603/AIT.2013.0009.CrossRefPubMed
9.
Zurück zum Zitat Bratincsák A, Palkovits M: Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience. 2004, 127: 385-397. 10.1016/j.neuroscience.2004.05.016.CrossRefPubMed Bratincsák A, Palkovits M: Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience. 2004, 127: 385-397. 10.1016/j.neuroscience.2004.05.016.CrossRefPubMed
10.
Zurück zum Zitat Kurz A: Physiology of thermoregulation. Best Pract Res Clin Anaesthesiol. 2008, 22: 627-644. 10.1016/j.bpa.2008.06.004.CrossRefPubMed Kurz A: Physiology of thermoregulation. Best Pract Res Clin Anaesthesiol. 2008, 22: 627-644. 10.1016/j.bpa.2008.06.004.CrossRefPubMed
11.
Zurück zum Zitat Schwertz H, Rowley JW, Tolley ND, Campbell RA, Weyrich AS: Assessing protein synthesis by platelets. Methods Mol Biol. 2012, 788: 141-153. 10.1007/978-1-61779-307-3_11. [Methods in Molecular Biology]CrossRefPubMed Schwertz H, Rowley JW, Tolley ND, Campbell RA, Weyrich AS: Assessing protein synthesis by platelets. Methods Mol Biol. 2012, 788: 141-153. 10.1007/978-1-61779-307-3_11. [Methods in Molecular Biology]CrossRefPubMed
12.
Zurück zum Zitat Jenne CN, Urrutia R, Kubes P: Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013, 35: 254-261. 10.1111/ijlh.12084.CrossRefPubMed Jenne CN, Urrutia R, Kubes P: Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013, 35: 254-261. 10.1111/ijlh.12084.CrossRefPubMed
13.
Zurück zum Zitat Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A: Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation. 2010, 7: 10-10.1186/1742-2094-7-10.PubMedCentralCrossRefPubMed Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A: Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation. 2010, 7: 10-10.1186/1742-2094-7-10.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Jurk K, Kehrel BE: Platelets: physiology and biochemistry. Semin Thromb Hemost. 2005, 31: 381-392. 10.1055/s-2005-916671.CrossRefPubMed Jurk K, Kehrel BE: Platelets: physiology and biochemistry. Semin Thromb Hemost. 2005, 31: 381-392. 10.1055/s-2005-916671.CrossRefPubMed
15.
Zurück zum Zitat Gawaz M: Intelligent platelet inhibitors are on the horizon. Arterioscler Thromb Vasc Biol. 2011, 31: 1949-1950. 10.1161/ATVBAHA.111.232173.CrossRefPubMed Gawaz M: Intelligent platelet inhibitors are on the horizon. Arterioscler Thromb Vasc Biol. 2011, 31: 1949-1950. 10.1161/ATVBAHA.111.232173.CrossRefPubMed
16.
Zurück zum Zitat Topcic D, Kim W, Holien JK, Jia F, Armstrong PC, Hohmann JD, Straub A, Krippner G, Haller CA, Domeij H, Hagemeyer CE, Parker MW, Chaikof EL, Peter K: An activation-specific platelet inhibitor that can be turned on/off by medically used hypothermia. Arter Thromb Vasc Biol. 2011, 31: 2015-2023. 10.1161/ATVBAHA.111.226241.CrossRef Topcic D, Kim W, Holien JK, Jia F, Armstrong PC, Hohmann JD, Straub A, Krippner G, Haller CA, Domeij H, Hagemeyer CE, Parker MW, Chaikof EL, Peter K: An activation-specific platelet inhibitor that can be turned on/off by medically used hypothermia. Arter Thromb Vasc Biol. 2011, 31: 2015-2023. 10.1161/ATVBAHA.111.226241.CrossRef
17.
Zurück zum Zitat Han HS, Park J, Kim J-H, Suk K: Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol. 2012, 10: 80-87. 10.2174/157015912799362751.PubMedCentralCrossRefPubMed Han HS, Park J, Kim J-H, Suk K: Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol. 2012, 10: 80-87. 10.2174/157015912799362751.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Hall R, Mazer CD: Antiplatelet drugs: a review of their pharmacology and management in the perioperative period. Anesth Analg. 2011, 112: 292-318. 10.1213/ANE.0b013e318203f38d.CrossRefPubMed Hall R, Mazer CD: Antiplatelet drugs: a review of their pharmacology and management in the perioperative period. Anesth Analg. 2011, 112: 292-318. 10.1213/ANE.0b013e318203f38d.CrossRefPubMed
19.
Zurück zum Zitat Johansson BW: Drugs affect and are affected by body temperature. Lakartidningen. 2001, 98: 2178-2181.PubMed Johansson BW: Drugs affect and are affected by body temperature. Lakartidningen. 2001, 98: 2178-2181.PubMed
20.
Zurück zum Zitat Mackowiak PA, Wasserman SS, Levine MM: A critical appraisal of 98.6°F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992, 268: 1578-1580. 10.1001/jama.1992.03490120092034.CrossRefPubMed Mackowiak PA, Wasserman SS, Levine MM: A critical appraisal of 98.6°F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992, 268: 1578-1580. 10.1001/jama.1992.03490120092034.CrossRefPubMed
21.
Zurück zum Zitat Krajewski S, Kurz J, Geisler T, Peter K, Wendel HP, Straub A: Combined blockade of ADP receptors and PI3-kinase p110beta fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation. PLoS One. 2012, 7: e38455-10.1371/journal.pone.0038455.PubMedCentralCrossRefPubMed Krajewski S, Kurz J, Geisler T, Peter K, Wendel HP, Straub A: Combined blockade of ADP receptors and PI3-kinase p110beta fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation. PLoS One. 2012, 7: e38455-10.1371/journal.pone.0038455.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Marx J: Rosen’s emergency medicine: concepts and clinical practice. Mosby/Elsevier; 2006:2239. Marx J: Rosen’s emergency medicine: concepts and clinical practice. Mosby/Elsevier; 2006:2239.
23.
Zurück zum Zitat Fröbert O, Christensen K, Fahlman A, Brunberg S, Josefsson J, Särndahl E, Swenson JE, Arnemo JM: Platelet function in brown bear (Ursus arctos) compared to man. Thromb J. 2010, 8: 11-10.1186/1477-9560-8-11.PubMedCentralCrossRefPubMed Fröbert O, Christensen K, Fahlman A, Brunberg S, Josefsson J, Särndahl E, Swenson JE, Arnemo JM: Platelet function in brown bear (Ursus arctos) compared to man. Thromb J. 2010, 8: 11-10.1186/1477-9560-8-11.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Storey KB: Out cold: biochemical regulation of mammalian hibernation - a mini-review. Gerontology. 2010, 56: 220-230. 10.1159/000228829.CrossRefPubMed Storey KB: Out cold: biochemical regulation of mammalian hibernation - a mini-review. Gerontology. 2010, 56: 220-230. 10.1159/000228829.CrossRefPubMed
25.
Zurück zum Zitat Morrison JJ, Ross JD, Poon H, Midwinter MJ, Jansen JO: Intra-operative correction of acidosis, coagulopathy and hypothermia in combat casualties with severe haemorrhagic shock. Anaesthesia. 2013, 68: 846-850. 10.1111/anae.12316.CrossRefPubMed Morrison JJ, Ross JD, Poon H, Midwinter MJ, Jansen JO: Intra-operative correction of acidosis, coagulopathy and hypothermia in combat casualties with severe haemorrhagic shock. Anaesthesia. 2013, 68: 846-850. 10.1111/anae.12316.CrossRefPubMed
26.
Zurück zum Zitat Mohr J, Ruchholtz S, Hildebrand F, Flohé S, Frink M, Witte I, Weuster M, Fröhlich M, van Griensven M, Keibl C, Mommsen P: Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J Trauma Acute Care Surg. 2013, 74: 1014-1020. 10.1097/TA.0b013e3182826edd.CrossRefPubMed Mohr J, Ruchholtz S, Hildebrand F, Flohé S, Frink M, Witte I, Weuster M, Fröhlich M, van Griensven M, Keibl C, Mommsen P: Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J Trauma Acute Care Surg. 2013, 74: 1014-1020. 10.1097/TA.0b013e3182826edd.CrossRefPubMed
27.
Zurück zum Zitat Kheirbek T, Kochanek AR, Alam HB: Hypothermia in bleeding trauma: a friend or a foe?. Scand J Trauma Resusc Emerg Med. 2009, 17: 1-15. 10.1186/1757-7241-17-65.CrossRef Kheirbek T, Kochanek AR, Alam HB: Hypothermia in bleeding trauma: a friend or a foe?. Scand J Trauma Resusc Emerg Med. 2009, 17: 1-15. 10.1186/1757-7241-17-65.CrossRef
28.
Zurück zum Zitat Meex I, Dens J, Jans F, Boer W, Vanhengel K, Vundelinckx G, Heylen R, De Deyne C: Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013, 84: 788-793. 10.1016/j.resuscitation.2013.01.003.CrossRefPubMed Meex I, Dens J, Jans F, Boer W, Vanhengel K, Vundelinckx G, Heylen R, De Deyne C: Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013, 84: 788-793. 10.1016/j.resuscitation.2013.01.003.CrossRefPubMed
29.
Zurück zum Zitat Absalom AR, Scheeren TWL: NIRS during therapeutic hypothermia: cool or hot?. Resuscitation. 2013, 2013: 95-96. Absalom AR, Scheeren TWL: NIRS during therapeutic hypothermia: cool or hot?. Resuscitation. 2013, 2013: 95-96.
30.
Zurück zum Zitat Frink M, Flohé S, Van Griensven M, Mommsen P, Hildebrand F: Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediat Inflamm. 2012, 2012: 762840-CrossRef Frink M, Flohé S, Van Griensven M, Mommsen P, Hildebrand F: Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediat Inflamm. 2012, 2012: 762840-CrossRef
31.
Zurück zum Zitat Broessner G, Fisher M, Schubert G, Metzler B, Schmutzhard E: Update on therapeutic temperature management. Crit Care. 2012, 16 (Suppl 2): 1-42. Broessner G, Fisher M, Schubert G, Metzler B, Schmutzhard E: Update on therapeutic temperature management. Crit Care. 2012, 16 (Suppl 2): 1-42.
32.
Zurück zum Zitat Palmiere C, Bardy D, Letovanec I, Mangin P, Augsburger M, Ventura F, Iglesias K, Werner D: Biochemical markers of fatal hypothermia. Forensic Sci Int. 2013, 226: 54-61. 10.1016/j.forsciint.2012.12.007.CrossRefPubMed Palmiere C, Bardy D, Letovanec I, Mangin P, Augsburger M, Ventura F, Iglesias K, Werner D: Biochemical markers of fatal hypothermia. Forensic Sci Int. 2013, 226: 54-61. 10.1016/j.forsciint.2012.12.007.CrossRefPubMed
33.
Zurück zum Zitat Brändström H, Eriksson A, Giesbrecht G, Angquist K-A, Haney M: Fatal hypothermia: an analysis from a sub-arctic region. Int J Circumpolar Health. 2012, 71: 1-7. 10.3402/ijch.v71i0.18502.CrossRefPubMed Brändström H, Eriksson A, Giesbrecht G, Angquist K-A, Haney M: Fatal hypothermia: an analysis from a sub-arctic region. Int J Circumpolar Health. 2012, 71: 1-7. 10.3402/ijch.v71i0.18502.CrossRefPubMed
34.
Zurück zum Zitat Escalda A, Marques M, Silva-Carvalho L, Barradas MA, Silva-Carvalho J, Cruz JM, Mikhailidis DP: Hypothermia-induced haemostatic and biochemical phenomena. An experimental model. Platelets. 1993, 4: 17-22. 10.3109/09537109309013191.CrossRefPubMed Escalda A, Marques M, Silva-Carvalho L, Barradas MA, Silva-Carvalho J, Cruz JM, Mikhailidis DP: Hypothermia-induced haemostatic and biochemical phenomena. An experimental model. Platelets. 1993, 4: 17-22. 10.3109/09537109309013191.CrossRefPubMed
35.
Zurück zum Zitat Heni M, Saur SJ: Blood clotting at room temperature in cold agglutinin disease. Blood. 2013, 121: 4975-4975. 10.1182/blood-2012-12-472324.CrossRefPubMed Heni M, Saur SJ: Blood clotting at room temperature in cold agglutinin disease. Blood. 2013, 121: 4975-4975. 10.1182/blood-2012-12-472324.CrossRefPubMed
36.
Zurück zum Zitat Penela D, Magaldi M, Fontanals J, Martin V, Regueiro A, Ortiz JT, Bosch X, Sabaté M, Heras M: Hypothermia in acute coronary syndrome: brain salvage versus stent thrombosis?. J Am Coll Cardiol. 2013, 61: 686-687. 10.1016/j.jacc.2012.10.029.CrossRefPubMed Penela D, Magaldi M, Fontanals J, Martin V, Regueiro A, Ortiz JT, Bosch X, Sabaté M, Heras M: Hypothermia in acute coronary syndrome: brain salvage versus stent thrombosis?. J Am Coll Cardiol. 2013, 61: 686-687. 10.1016/j.jacc.2012.10.029.CrossRefPubMed
38.
Zurück zum Zitat Andrews RK, Berndt MC: Platelet physiology: in cold blood. Curr Biol. 2003, 13: R282-R284. 10.1016/S0960-9822(03)00202-1.CrossRefPubMed Andrews RK, Berndt MC: Platelet physiology: in cold blood. Curr Biol. 2003, 13: R282-R284. 10.1016/S0960-9822(03)00202-1.CrossRefPubMed
39.
Zurück zum Zitat Winokur R, Hartwig JH: Mechanism of shape change in chilled human platelets. Blood. 1995, 85: 1796-1804.PubMed Winokur R, Hartwig JH: Mechanism of shape change in chilled human platelets. Blood. 1995, 85: 1796-1804.PubMed
40.
Zurück zum Zitat Kawakami H, Higashihara M, Ohsaka M, Miyazaki K, Ikebe M, Hirano H: Myosin light chain phosphorylation is correlated with cold-induced changes in platelet shape. J Smooth Muscle Res. 2001, 37: 113-122. 10.1540/jsmr.37.113.CrossRefPubMed Kawakami H, Higashihara M, Ohsaka M, Miyazaki K, Ikebe M, Hirano H: Myosin light chain phosphorylation is correlated with cold-induced changes in platelet shape. J Smooth Muscle Res. 2001, 37: 113-122. 10.1540/jsmr.37.113.CrossRefPubMed
41.
Zurück zum Zitat Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H: Platelets at work in primary hemostasis. Blood Rev. 2011, 25: 155-167. 10.1016/j.blre.2011.03.002.CrossRefPubMed Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H: Platelets at work in primary hemostasis. Blood Rev. 2011, 25: 155-167. 10.1016/j.blre.2011.03.002.CrossRefPubMed
42.
Zurück zum Zitat Grabowski EF, Yam K, Gerace M: Evaluation of hemostasis in flowing blood. Am J Hematol. 2012, 87 (Suppl 1): S51-S55. 10.1002/ajh.23207.CrossRefPubMed Grabowski EF, Yam K, Gerace M: Evaluation of hemostasis in flowing blood. Am J Hematol. 2012, 87 (Suppl 1): S51-S55. 10.1002/ajh.23207.CrossRefPubMed
43.
Zurück zum Zitat Baskurt OK, Meiselman HJ: Blood rheology and hemodynamics. Semin Thromb Hemost. 2003, 29: 435-450. 10.1055/s-2003-44551.CrossRefPubMed Baskurt OK, Meiselman HJ: Blood rheology and hemodynamics. Semin Thromb Hemost. 2003, 29: 435-450. 10.1055/s-2003-44551.CrossRefPubMed
44.
Zurück zum Zitat Zhang J, Wood J, Bergeron AL, McBride L, Ball C, Yu Q, Pusiteri AE, Holcomb JB, Dong J: Effects of low temperature on shear-induced platelet aggregation and activation. J Trauma Inj Infect Crit Care. 2004, 57: 216-223. 10.1097/01.TA.0000093366.98819.FE.CrossRef Zhang J, Wood J, Bergeron AL, McBride L, Ball C, Yu Q, Pusiteri AE, Holcomb JB, Dong J: Effects of low temperature on shear-induced platelet aggregation and activation. J Trauma Inj Infect Crit Care. 2004, 57: 216-223. 10.1097/01.TA.0000093366.98819.FE.CrossRef
45.
Zurück zum Zitat Egidi MG, D’Alessandro A, Mandarello G, Zolla L: Troubleshooting in platelet storage temperature and new perspectives through proteomics. Blood Transfus. 2010, 8 (Suppl 3): s73-s81.PubMedCentralPubMed Egidi MG, D’Alessandro A, Mandarello G, Zolla L: Troubleshooting in platelet storage temperature and new perspectives through proteomics. Blood Transfus. 2010, 8 (Suppl 3): s73-s81.PubMedCentralPubMed
46.
Zurück zum Zitat Hessel EA, Schmer G, Dillard DH: Kinetics during Deep Hypothermia. J Surg Res. 1980, 34: 23-34. 10.1016/0022-4804(80)90078-5.CrossRef Hessel EA, Schmer G, Dillard DH: Kinetics during Deep Hypothermia. J Surg Res. 1980, 34: 23-34. 10.1016/0022-4804(80)90078-5.CrossRef
47.
Zurück zum Zitat Hoffmeister KM, Felbinger TW, Denis V, Bergmeier W, Mayadas TN, Von Andrian UH, Wagner DD, Stossel TP, Hartwig JH: The clearance mechanism of chilled blood platelets Brigham and women’ s hospital. Cell. 2003, 112: 87-97. 10.1016/S0092-8674(02)01253-9.CrossRefPubMed Hoffmeister KM, Felbinger TW, Denis V, Bergmeier W, Mayadas TN, Von Andrian UH, Wagner DD, Stossel TP, Hartwig JH: The clearance mechanism of chilled blood platelets Brigham and women’ s hospital. Cell. 2003, 112: 87-97. 10.1016/S0092-8674(02)01253-9.CrossRefPubMed
48.
Zurück zum Zitat Ao H, Moon JK, Tashiro M, Terasaki H: Delayed platelet dysfunction in prolonged induced canine hypothermia. Resuscitation. 2001, 51: 83-90. 10.1016/S0300-9572(01)00380-X.CrossRefPubMed Ao H, Moon JK, Tashiro M, Terasaki H: Delayed platelet dysfunction in prolonged induced canine hypothermia. Resuscitation. 2001, 51: 83-90. 10.1016/S0300-9572(01)00380-X.CrossRefPubMed
49.
Zurück zum Zitat De Vrij EL, Vogelaar PC, Goris M, Houwertjes MC, Herwig A, Dugbartey GJ, Boerema AS, Strijkstra AM, Bouma HR, Henning RH: Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS One. 2014, 9: e93218-10.1371/journal.pone.0093218.PubMedCentralCrossRefPubMed De Vrij EL, Vogelaar PC, Goris M, Houwertjes MC, Herwig A, Dugbartey GJ, Boerema AS, Strijkstra AM, Bouma HR, Henning RH: Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS One. 2014, 9: e93218-10.1371/journal.pone.0093218.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Tanaka KA, Key NS, Levy JH: Blood coagulation: hemostasis and thrombin regulation. Anesth Analg. 2009, 108: 1433-1446. 10.1213/ane.0b013e31819bcc9c.CrossRefPubMed Tanaka KA, Key NS, Levy JH: Blood coagulation: hemostasis and thrombin regulation. Anesth Analg. 2009, 108: 1433-1446. 10.1213/ane.0b013e31819bcc9c.CrossRefPubMed
51.
Zurück zum Zitat Lenting PJ, Casari C, Christophe OD, Denis CV: von Willebrand factor: the old, the new and the unknown. J Thromb Haemost. 2012, 10: 2428-2437. 10.1111/jth.12008.CrossRefPubMed Lenting PJ, Casari C, Christophe OD, Denis CV: von Willebrand factor: the old, the new and the unknown. J Thromb Haemost. 2012, 10: 2428-2437. 10.1111/jth.12008.CrossRefPubMed
52.
Zurück zum Zitat Ai X, Gu Y: The effect of low temperature on von Willbrand factor expression of cultured human umbilical vein endothelial cells. Chin J Surg. 1997, 35: 597-599.PubMed Ai X, Gu Y: The effect of low temperature on von Willbrand factor expression of cultured human umbilical vein endothelial cells. Chin J Surg. 1997, 35: 597-599.PubMed
53.
Zurück zum Zitat Perutelli P, Amato S, Molinari AC: Cleavage of von Willebrand factor by ADAMTS-13 in vitro: effect of temperature and barium ions on the proteolysis kinetics. Blood Coagul Fibrinolysis. 2005, 16: 607-611. 10.1097/01.mbc.0000187251.32630.1f.CrossRefPubMed Perutelli P, Amato S, Molinari AC: Cleavage of von Willebrand factor by ADAMTS-13 in vitro: effect of temperature and barium ions on the proteolysis kinetics. Blood Coagul Fibrinolysis. 2005, 16: 607-611. 10.1097/01.mbc.0000187251.32630.1f.CrossRefPubMed
54.
Zurück zum Zitat Carter T, Mashanov G, Ogden D, Zupančič G, Hannah MJ, Hewlett L, Knipe L: Temperature-dependence of weibel-palade body exocytosis and cell surface dispersal of von Willebrand factor and its propolypeptide. PLoS One. 2011, 6: e27314-10.1371/journal.pone.0019177.PubMedCentralCrossRefPubMed Carter T, Mashanov G, Ogden D, Zupančič G, Hannah MJ, Hewlett L, Knipe L: Temperature-dependence of weibel-palade body exocytosis and cell surface dispersal of von Willebrand factor and its propolypeptide. PLoS One. 2011, 6: e27314-10.1371/journal.pone.0019177.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Dimitrov JD, Christophe OD, Kang J, Repessé Y, Delignat S, Kaveri SV, Lacroix-Desmazes S: Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor. Biochemistry. 2012, 51: 4108-4116. 10.1021/bi300232d.CrossRefPubMed Dimitrov JD, Christophe OD, Kang J, Repessé Y, Delignat S, Kaveri SV, Lacroix-Desmazes S: Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor. Biochemistry. 2012, 51: 4108-4116. 10.1021/bi300232d.CrossRefPubMed
56.
Zurück zum Zitat Lindenblatt N, Menger MD, Klar E, Vollmar B: Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol. 2005, 289: H2680-H2687. 10.1152/ajpheart.00425.2005.CrossRefPubMed Lindenblatt N, Menger MD, Klar E, Vollmar B: Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol. 2005, 289: H2680-H2687. 10.1152/ajpheart.00425.2005.CrossRefPubMed
57.
Zurück zum Zitat Berger G, Hartwell DW, Wagner DD: P-Selectin and platelet clearance. Blood. 1998, 92: 4446-4452.PubMed Berger G, Hartwell DW, Wagner DD: P-Selectin and platelet clearance. Blood. 1998, 92: 4446-4452.PubMed
58.
Zurück zum Zitat Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR: Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost. 1994, 71: 633-640.PubMed Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR: Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost. 1994, 71: 633-640.PubMed
59.
Zurück zum Zitat Faraday N, Rosenfeld B: In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anesthesiology. 1998, 88: 1579-1585. 10.1097/00000542-199806000-00022.CrossRefPubMed Faraday N, Rosenfeld B: In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anesthesiology. 1998, 88: 1579-1585. 10.1097/00000542-199806000-00022.CrossRefPubMed
60.
Zurück zum Zitat Scharbert G, Kalb ML, Essmeister R, Kozek-Langenecker SA: Mild and moderate hypothermia increases platelet aggregation induced by various agonists: a whole blood in vitro study. Platelets. 2010, 21: 44-48. 10.3109/09537100903420269.CrossRefPubMed Scharbert G, Kalb ML, Essmeister R, Kozek-Langenecker SA: Mild and moderate hypothermia increases platelet aggregation induced by various agonists: a whole blood in vitro study. Platelets. 2010, 21: 44-48. 10.3109/09537100903420269.CrossRefPubMed
61.
Zurück zum Zitat Frelinger AL, Furman MI, Barnard MR, Krueger LA, Dae MW, Michelson AD: Combined effects of mild hypothermia and glycoprotein IIb/IIIa antagonists on platelet-platelet and leukocyte-platelet aggregation. Am J Cardiol. 2003, 92: 1099-1101. 10.1016/j.amjcard.2003.06.007.CrossRefPubMed Frelinger AL, Furman MI, Barnard MR, Krueger LA, Dae MW, Michelson AD: Combined effects of mild hypothermia and glycoprotein IIb/IIIa antagonists on platelet-platelet and leukocyte-platelet aggregation. Am J Cardiol. 2003, 92: 1099-1101. 10.1016/j.amjcard.2003.06.007.CrossRefPubMed
62.
Zurück zum Zitat Högberg C, Erlinge D, Braun OÖ: Mild hypothermia does not attenuate platelet aggregation and may even increase ADP-stimulated platelet aggregation after clopidogrel treatment. Thromb J. 2009, 7: 2-10.1186/1477-9560-7-2.PubMedCentralCrossRefPubMed Högberg C, Erlinge D, Braun OÖ: Mild hypothermia does not attenuate platelet aggregation and may even increase ADP-stimulated platelet aggregation after clopidogrel treatment. Thromb J. 2009, 7: 2-10.1186/1477-9560-7-2.PubMedCentralCrossRefPubMed
63.
Zurück zum Zitat Lantz N, Hechler B, Ravanat C, Cazenave J-P, Gachet C: A high concentration of ADP induces weak platelet granule secretion independently of aggregation and thromboxane A2 production. Thromb Haemost. 2007, 98: 1145-1147.PubMed Lantz N, Hechler B, Ravanat C, Cazenave J-P, Gachet C: A high concentration of ADP induces weak platelet granule secretion independently of aggregation and thromboxane A2 production. Thromb Haemost. 2007, 98: 1145-1147.PubMed
64.
Zurück zum Zitat Xavier RG, White AE, Fox SC, Wilcox RG, Heptinstall S: Enhanced platelet aggregation and activation under conditions of hypothermia. Thromb Haemost. 2007, 98: 1266-1275.PubMed Xavier RG, White AE, Fox SC, Wilcox RG, Heptinstall S: Enhanced platelet aggregation and activation under conditions of hypothermia. Thromb Haemost. 2007, 98: 1266-1275.PubMed
65.
Zurück zum Zitat Straub A, Krajewski S, Hohmann JD, Westein E, Jia F, Bassler N, Selan C, Kurz J, Wendel HP, Dezfouli S, Yuan Y, Nandurkar H, Jackson S, Hickey MJ, Peter K: Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. Arter Thromb Vasc Biol. 2011, 31: 1607-1616. 10.1161/ATVBAHA.111.226373.CrossRef Straub A, Krajewski S, Hohmann JD, Westein E, Jia F, Bassler N, Selan C, Kurz J, Wendel HP, Dezfouli S, Yuan Y, Nandurkar H, Jackson S, Hickey MJ, Peter K: Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. Arter Thromb Vasc Biol. 2011, 31: 1607-1616. 10.1161/ATVBAHA.111.226373.CrossRef
66.
Zurück zum Zitat Scharbert G, Kalb M, Marschalek C, Kozek-Langenecker SA: The effects of test temperature and storage temperature on platelet aggregation: a whole blood in vitro study. Anesth Analg. 2006, 102: 1280-1284. 10.1213/01.ane.0000199399.04496.6d.CrossRefPubMed Scharbert G, Kalb M, Marschalek C, Kozek-Langenecker SA: The effects of test temperature and storage temperature on platelet aggregation: a whole blood in vitro study. Anesth Analg. 2006, 102: 1280-1284. 10.1213/01.ane.0000199399.04496.6d.CrossRefPubMed
67.
Zurück zum Zitat Wang X: Comparative analysis of various platelet glycoprotein IIb/IIIa antagonists on shear-induced platelet activation and adhesion. Blood. 2002, 100: 61B- Wang X: Comparative analysis of various platelet glycoprotein IIb/IIIa antagonists on shear-induced platelet activation and adhesion. Blood. 2002, 100: 61B-
68.
Zurück zum Zitat Wolberg AS, Meng ZH, Monroe DM, Hoffman M: A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma Inj Infect Crit Care. 2004, 56: 1221-1228. 10.1097/01.TA.0000064328.97941.FC.CrossRef Wolberg AS, Meng ZH, Monroe DM, Hoffman M: A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma Inj Infect Crit Care. 2004, 56: 1221-1228. 10.1097/01.TA.0000064328.97941.FC.CrossRef
69.
Zurück zum Zitat Wallin BG: Neural control of human skin blood flow. J Auton Nerv Syst. 1990, 30 (Suppl): S185-S190. 10.1016/0165-1838(90)90128-6.CrossRefPubMed Wallin BG: Neural control of human skin blood flow. J Auton Nerv Syst. 1990, 30 (Suppl): S185-S190. 10.1016/0165-1838(90)90128-6.CrossRefPubMed
70.
Zurück zum Zitat Evora PRB, Cable DG, Chua YL, Rodrigues AJ, Pearson PJ, Schaff HV: Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology. 2007, 54: 106-113. 10.1016/j.cryobiol.2006.12.002.CrossRefPubMed Evora PRB, Cable DG, Chua YL, Rodrigues AJ, Pearson PJ, Schaff HV: Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology. 2007, 54: 106-113. 10.1016/j.cryobiol.2006.12.002.CrossRefPubMed
71.
Zurück zum Zitat Gyulkhandanyan AV, Mutlu A, Freedman J, Leytin V: Selective triggering of platelet apoptosis, platelet activation or both. Br J Haematol. 2013, 161: 245-254. 10.1111/bjh.12237.CrossRefPubMed Gyulkhandanyan AV, Mutlu A, Freedman J, Leytin V: Selective triggering of platelet apoptosis, platelet activation or both. Br J Haematol. 2013, 161: 245-254. 10.1111/bjh.12237.CrossRefPubMed
72.
Zurück zum Zitat van der Wal DE, Du VX, Lo KSL, Rasmussen JT, Verhoef S, Akkerman JWN: Platelet apoptosis by cold-induced glycoprotein Ibα clustering. J Thromb Haemost. 2010, 8 (11): 2554-2562. 10.1111/j.1538-7836.2010.04043.x.CrossRefPubMed van der Wal DE, Du VX, Lo KSL, Rasmussen JT, Verhoef S, Akkerman JWN: Platelet apoptosis by cold-induced glycoprotein Ibα clustering. J Thromb Haemost. 2010, 8 (11): 2554-2562. 10.1111/j.1538-7836.2010.04043.x.CrossRefPubMed
Metadaten
Titel
Hypothermia: effects on platelet function and hemostasis
verfasst von
Sven Van Poucke
Kris Stevens
Abraham Emanuel Marcus
Marcus Lancé
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Thrombosis Journal / Ausgabe 1/2014
Elektronische ISSN: 1477-9560
DOI
https://doi.org/10.1186/s12959-014-0031-z

Weitere Artikel der Ausgabe 1/2014

Thrombosis Journal 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.