Skip to main content
Erschienen in: Diabetologia 8/2017

22.05.2017 | Article

Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells

Erschienen in: Diabetologia | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Pancreatic beta-like cells generated from human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells (hESCs) offer an appealing donor tissue source. However, differentiation protocols that mainly use growth factors are costly. Therefore, in this study, we aimed to establish efficient differentiation protocols to change hiPSCs/hESCs to insulin (INS)+ cells using novel small-molecule inducers.

Methods

We screened small molecules that increased the induction rate of INS+ cells from hESC-derived pancreatic and duodenal homeobox 1 (PDX1)+ pancreatic progenitor cells. The differentiation protocol to generate INS+ cells from hiPSCs/hESCs was optimised using hit compounds, and INS+ cells induced with the compounds were characterised for their in vitro and in vivo functions. The inducing activity of the hit compounds was also examined using mouse embryonic pancreatic tissues in an explant culture system. Finally, RNA sequencing analyses were performed on the INS+ cells to elucidate the mechanisms of action by which the hit compounds induced pancreatic endocrine differentiation.

Results

One hit compound, sodium cromoglicate (SCG), was identified out of approximately 1250 small molecules screened. When SCG was combined with a previously described protocol, the induction rate of INS+ cells increased from a mean ± SD of 5.9 ± 1.5% (n = 3) to 16.5 ± 2.1% (n = 3). SCG induced neurogenin 3-positive cells at a mean ± SD of 32.6 ± 4.6% (n = 3) compared with 14.2 ± 3.6% (n = 3) for control treatment without SCG, resulting in an increased generation of endocrine cells including insulin-producing cells. Similar induction by SCG was confirmed using mouse embryonic pancreatic explants. We also confirmed that the mechanisms of action by which SCG induced pancreatic endocrine differentiation included the inhibition of bone morphogenetic protein 4 signalling.

Conclusions/interpretation

SCG improves the generation of pancreatic endocrine cells from multiple hiPSC/hESC lines and mouse embryonic pancreatic explants by facilitating the differentiation of endocrine precursors. This discovery will contribute to elucidating the mechanisms of pancreatic endocrine development and facilitate cost-effective generation of INS+ cells from hiPSCs/hESCs.

Data availability

The RNA sequencing data generated during the current study are available in the Gene Expression Omnibus (www.​ncbi.​nlm.​nih.​gov/​geo) with series accession number GSE89973.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069CrossRefPubMed Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069CrossRefPubMed
2.
Zurück zum Zitat Speight J, Reaney MD, Woodcock AJ, Smith RM, Shaw JW (2010) Patient-reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in type 1 diabetes: a systematic review. Diabet Med 27:812–822CrossRefPubMed Speight J, Reaney MD, Woodcock AJ, Smith RM, Shaw JW (2010) Patient-reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in type 1 diabetes: a systematic review. Diabet Med 27:812–822CrossRefPubMed
3.
Zurück zum Zitat Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330CrossRefPubMed Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330CrossRefPubMed
4.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMed
5.
Zurück zum Zitat Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412CrossRefPubMed Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412CrossRefPubMed
6.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMed
7.
Zurück zum Zitat D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRefPubMed D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRefPubMed
8.
Zurück zum Zitat Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953CrossRefPubMed Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953CrossRefPubMed
9.
Zurück zum Zitat Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMed Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMed
10.
Zurück zum Zitat Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607CrossRefPubMed Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607CrossRefPubMed
11.
Zurück zum Zitat Maehr R, Chen S, Snitow M et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106:15768–15773CrossRefPubMedPubMedCentral Maehr R, Chen S, Snitow M et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106:15768–15773CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chen S, Borowiak M, Fox JL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265CrossRefPubMed Chen S, Borowiak M, Fox JL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265CrossRefPubMed
13.
Zurück zum Zitat Thatava T, Nelson TJ, Edukulla R et al (2011) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 18:283–293CrossRefPubMed Thatava T, Nelson TJ, Edukulla R et al (2011) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 18:283–293CrossRefPubMed
14.
Zurück zum Zitat Kelly OG, Chan MY, Martinson LA et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29:750–756CrossRefPubMed Kelly OG, Chan MY, Martinson LA et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29:750–756CrossRefPubMed
15.
Zurück zum Zitat Nostro MC, Sarangi F, Ogawa S et al (2011) Stage-specific signalling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871CrossRefPubMedPubMedCentral Nostro MC, Sarangi F, Ogawa S et al (2011) Stage-specific signalling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7:e37004CrossRefPubMedPubMedCentral Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7:e37004CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8:274–284CrossRefPubMed Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8:274–284CrossRefPubMed
18.
Zurück zum Zitat Rezania A, Bruin JE, Riedel MJ et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029CrossRefPubMedPubMedCentral Rezania A, Bruin JE, Riedel MJ et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRefPubMed Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRefPubMed
21.
Zurück zum Zitat Bruin JE, Erener S, Vela J, Hu X (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12:194–208CrossRefPubMed Bruin JE, Erener S, Vela J, Hu X (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12:194–208CrossRefPubMed
22.
Zurück zum Zitat Toyoda T, Mae S, Tanaka H et al (2015) Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 14:185–197CrossRefPubMed Toyoda T, Mae S, Tanaka H et al (2015) Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 14:185–197CrossRefPubMed
23.
Zurück zum Zitat Araoka T, Mae S, Kurose Y et al (2014) Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One 9:e84881CrossRefPubMedPubMedCentral Araoka T, Mae S, Kurose Y et al (2014) Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One 9:e84881CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Kajiwara M, Aoi T, Okita K et al (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:12538–12543CrossRefPubMedPubMedCentral Kajiwara M, Aoi T, Okita K et al (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:12538–12543CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N (2006) Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun 345:926–932CrossRefPubMed Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N (2006) Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun 345:926–932CrossRefPubMed
26.
Zurück zum Zitat Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. Am J Physiol Endocrinol Metab 284:e177–e183CrossRefPubMed Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. Am J Physiol Endocrinol Metab 284:e177–e183CrossRefPubMed
27.
Zurück zum Zitat Mae S, Shono A, Shiota F et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367CrossRefPubMedPubMedCentral Mae S, Shono A, Shiota F et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Gotoh M, Maki T, Satomi S et al (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725–730CrossRefPubMed Gotoh M, Maki T, Satomi S et al (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725–730CrossRefPubMed
29.
Zurück zum Zitat Yuengsrigul A, Chin TW, Nussbaum E (1999) Immunosuppressive and cytotoxic effects of furosemide on human peripheral blood mononuclear cells. Ann Allergy Asthma Immunol 83:559–566CrossRefPubMed Yuengsrigul A, Chin TW, Nussbaum E (1999) Immunosuppressive and cytotoxic effects of furosemide on human peripheral blood mononuclear cells. Ann Allergy Asthma Immunol 83:559–566CrossRefPubMed
30.
Zurück zum Zitat Osafune K, Caron L, Borowiak M et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315CrossRefPubMed Osafune K, Caron L, Borowiak M et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315CrossRefPubMed
31.
Zurück zum Zitat Cox JS (1967) Disodium cromoglycate (FPL 670) (‘Intal’): a specific inhibitor of reaginic antibody-antigen mechanisms. Nature 216:1328–1329CrossRefPubMed Cox JS (1967) Disodium cromoglycate (FPL 670) (‘Intal’): a specific inhibitor of reaginic antibody-antigen mechanisms. Nature 216:1328–1329CrossRefPubMed
32.
Zurück zum Zitat Theoharides TC, Sieghart W, Greengard P, Douglas WW (1980) Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science 207:80–82CrossRefPubMed Theoharides TC, Sieghart W, Greengard P, Douglas WW (1980) Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science 207:80–82CrossRefPubMed
33.
Zurück zum Zitat Mazurek N, Berger G, Pecht I (1980) A binding site on mast cells and basophils for the anti-allergic drug cromolyn. Nature 286:722–723CrossRefPubMed Mazurek N, Berger G, Pecht I (1980) A binding site on mast cells and basophils for the anti-allergic drug cromolyn. Nature 286:722–723CrossRefPubMed
34.
Zurück zum Zitat Okada M, Itoh H, Hatakeyama T, Tokumitsu H, Kobayashi R (2003) Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Biochem J 374:433–441CrossRefPubMedPubMedCentral Okada M, Itoh H, Hatakeyama T, Tokumitsu H, Kobayashi R (2003) Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Biochem J 374:433–441CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Romanin C, Reinsprecht M, Pecht I, Schindler H (1991) Immunologically activated chloride channels involved in degranulation of rat mucosal mast cells. EMBO J 10:3603–3608PubMedPubMedCentral Romanin C, Reinsprecht M, Pecht I, Schindler H (1991) Immunologically activated chloride channels involved in degranulation of rat mucosal mast cells. EMBO J 10:3603–3608PubMedPubMedCentral
36.
Zurück zum Zitat Reinsprecht M, Pecht I, Schindler H, Romanin C (1992) Potent block of Cl- channels by antiallergic drugs. Biochem Biophys Res Commun 188:957–963CrossRefPubMed Reinsprecht M, Pecht I, Schindler H, Romanin C (1992) Potent block of Cl- channels by antiallergic drugs. Biochem Biophys Res Commun 188:957–963CrossRefPubMed
37.
Zurück zum Zitat Heinke S, Szücs G, Norris A, Droogmans G, Nilius B (1995) Inhibition of volume-activated chloride currents in endothelial cells by chromones. Br J Pharmacol 115:1393–1398CrossRefPubMedPubMedCentral Heinke S, Szücs G, Norris A, Droogmans G, Nilius B (1995) Inhibition of volume-activated chloride currents in endothelial cells by chromones. Br J Pharmacol 115:1393–1398CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Jenkins L, Brea J, Smith NJ et al (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem J 432:451–459CrossRefPubMed Jenkins L, Brea J, Smith NJ et al (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem J 432:451–459CrossRefPubMed
39.
Zurück zum Zitat Yang Y, Lu JY, Wu X et al (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86:1–5CrossRefPubMed Yang Y, Lu JY, Wu X et al (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86:1–5CrossRefPubMed
40.
Zurück zum Zitat Hrvatin S, O’Donnell CW, Deng F et al (2014) Differentiated human stem cells resemble fetal, not adult, β cells. Proc Natl Acad Sci U S A 111:3038–3043CrossRefPubMedPubMedCentral Hrvatin S, O’Donnell CW, Deng F et al (2014) Differentiated human stem cells resemble fetal, not adult, β cells. Proc Natl Acad Sci U S A 111:3038–3043CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in β cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5:207–219CrossRefPubMed Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in β cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5:207–219CrossRefPubMed
42.
Zurück zum Zitat Szabat M, Johnson JD, Piret JM (2010) Reciprocal modulation of adult beta cell maturity by activin A and follistatin. Diabetologia 53:1680–1689CrossRefPubMed Szabat M, Johnson JD, Piret JM (2010) Reciprocal modulation of adult beta cell maturity by activin A and follistatin. Diabetologia 53:1680–1689CrossRefPubMed
43.
Zurück zum Zitat Saito H, Takeuchi M, Chida K, Miyajima A (2011) Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One 6:e28209CrossRefPubMedPubMedCentral Saito H, Takeuchi M, Chida K, Miyajima A (2011) Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One 6:e28209CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Logothetopoulos J (1972) Islet cell regeneration and neogenesis. In: Geiger SR (ed) Handbook of physiology. American Physiological Society, Washington, p 67 Logothetopoulos J (1972) Islet cell regeneration and neogenesis. In: Geiger SR (ed) Handbook of physiology. American Physiological Society, Washington, p 67
45.
Zurück zum Zitat Bonner-Weir S, Weir GC (2005) New sources of pancreatic β-cells. Nat Biotechnol 23:857–861CrossRefPubMed Bonner-Weir S, Weir GC (2005) New sources of pancreatic β-cells. Nat Biotechnol 23:857–861CrossRefPubMed
46.
Zurück zum Zitat Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46CrossRefPubMed Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46CrossRefPubMed
47.
Zurück zum Zitat Wang S, Jensen JN, Seymour PA et al (2009) Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A 16:9715–9720CrossRef Wang S, Jensen JN, Seymour PA et al (2009) Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A 16:9715–9720CrossRef
48.
Zurück zum Zitat Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRefPubMed Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRefPubMed
49.
Zurück zum Zitat Bruin JE, Rezania A, Xu J et al (2013) Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56:1987–1998CrossRefPubMed Bruin JE, Rezania A, Xu J et al (2013) Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56:1987–1998CrossRefPubMed
Metadaten
Titel
Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells
Publikationsdatum
22.05.2017
Erschienen in
Diabetologia / Ausgabe 8/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4302-7

Weitere Artikel der Ausgabe 8/2017

Diabetologia 8/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.