Skip to main content
Erschienen in: Inflammation 2/2020

11.12.2019 | Original Article

Identification of Biomarkers of Sepsis-Associated Acute Kidney Injury in Pediatric Patients Based on UPLC-QTOF/MS

verfasst von: Sa Wang, Changxue Xiao, Chengjun Liu, Jing Li, Fang Fang, Xue Lu, Chao Zhang, Feng Xu

Erschienen in: Inflammation | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Sepsis or septic shock is often accompanied by organ dysfunction, among which acute kidney injury (AKI) is the most frequent event that appears early during sepsis. To harness urinary metabolic profiling to discover potential biomarkers of septic acute kidney injury in pediatric patients at intensive care units, we collected urine samples from 27 septic children with AKI and 30 septic children without AKI. We used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling and multiple regression analysis to explore the potential biomarkers of sepsis with AKI. We identified a clear distinction in the UPLC-QTOF/MS results for septic children with and without AKI after the development of sepsis, specifically 18 and 17 metabolites with different levels at 12 and 24 h, respectively. Metabolic pathways associated with septic AKI included lipid metabolism, particularly processes involving glycerophospholipid metabolism. L-Histidine, DL-indole-3-lactic acid, trimethylamine N-oxide, and caprylic acid were uncovered as potential biomarkers of septic AKI at 12 h, while gentisaldehyde, 3-ureidopropionate, N4-acetylcytidine, and 3-methoxy-4-hydroxyphenylglycol sulfate were identified as potential candidates at 24 h. We further found that combinations of metabolites were more effective diagnostic marker compared with individual metabolites, with an area under the receiver operating characteristics curve of 0.905 and 0.97 at 12 and 24 h, respectively. Our results indicated that metabolomic analysis could be a promising approach for identifying diagnostic biomarkers of pediatric septic AKI and helped elucidate the pathological mechanisms involved.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.CrossRefPubMedCentralPubMed Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Vincent, J.L., Y. Sakr, C.L. Sprung, V.M. Ranieri, K. Reinhart, H. Gerlach, R. Moreno, J. Carlet, J.R. Le Gall, and D. Payen. 2006. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine 34: 344–353.CrossRefPubMed Vincent, J.L., Y. Sakr, C.L. Sprung, V.M. Ranieri, K. Reinhart, H. Gerlach, R. Moreno, J. Carlet, J.R. Le Gall, and D. Payen. 2006. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine 34: 344–353.CrossRefPubMed
4.
Zurück zum Zitat Fitzgerald, J.C., R.K. Basu, A. Akcan-Arikan, L.M. Izquierdo, B.E. Piñeres Olave, A.B. Hassinger, M. Szczepanska, A. Deep, D. Williams, A. Sapru, J.A. Roy, V.M. Nadkarni, N.J. Thomas, S.L. Weiss, S. Furth, and Sepsis PRevalence, OUtcomes, and Therapies Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators Network. 2016. Acute kidney injury in pediatric severe Sepsis: an independent risk factor for death and new disability. Critical Care Medicine 44: 2241–2250.CrossRefPubMed Fitzgerald, J.C., R.K. Basu, A. Akcan-Arikan, L.M. Izquierdo, B.E. Piñeres Olave, A.B. Hassinger, M. Szczepanska, A. Deep, D. Williams, A. Sapru, J.A. Roy, V.M. Nadkarni, N.J. Thomas, S.L. Weiss, S. Furth, and Sepsis PRevalence, OUtcomes, and Therapies Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators Network. 2016. Acute kidney injury in pediatric severe Sepsis: an independent risk factor for death and new disability. Critical Care Medicine 44: 2241–2250.CrossRefPubMed
5.
Zurück zum Zitat Kellum, J.A., and N. Lameire. 2013. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Critical Care 17: 204.CrossRefPubMedCentralPubMed Kellum, J.A., and N. Lameire. 2013. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Critical Care 17: 204.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Umbro, I., G. Gentile, F. Tinti, P. Muiesan, and A.P. Mitterhofer. 2016. Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. The Journal of Infection 72: 131–142.CrossRefPubMed Umbro, I., G. Gentile, F. Tinti, P. Muiesan, and A.P. Mitterhofer. 2016. Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. The Journal of Infection 72: 131–142.CrossRefPubMed
7.
Zurück zum Zitat Kalim, S., and E.P. Rhee. 2017. An overview of renal metabolomics. Kidney International 91: 61–69.CrossRefPubMed Kalim, S., and E.P. Rhee. 2017. An overview of renal metabolomics. Kidney International 91: 61–69.CrossRefPubMed
9.
Zurück zum Zitat Goldstein, B., B. Giroir, and A. Randolph. 2005. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatric Critical Care Medicine 6: 2–8.CrossRefPubMed Goldstein, B., B. Giroir, and A. Randolph. 2005. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatric Critical Care Medicine 6: 2–8.CrossRefPubMed
10.
Zurück zum Zitat Corda, D., M.G. Mosca, N. Ohshima, L. Grauso, N. Yanaka, and S. Mariggiò. 2014. The emerging physiological roles of the glycerophosphodiesterase family. The FEBS Journal 281: 998–1016.CrossRefPubMed Corda, D., M.G. Mosca, N. Ohshima, L. Grauso, N. Yanaka, and S. Mariggiò. 2014. The emerging physiological roles of the glycerophosphodiesterase family. The FEBS Journal 281: 998–1016.CrossRefPubMed
11.
Zurück zum Zitat Tan, T.L., N.S. Ahmad, D.N. Nasuruddin, A. Ithnin, A.K. Tajul, I.Z. Zaini, and WZ. Wan Ngah. 2016. CD64 and group II secretory phospholipase A2 (sPLA2-IIA) as biomarkers for distinguishing adult sepsis and bacterial infections in the emergency department. PLoS One 11: e0152065.CrossRefPubMedCentralPubMed Tan, T.L., N.S. Ahmad, D.N. Nasuruddin, A. Ithnin, A.K. Tajul, I.Z. Zaini, and WZ. Wan Ngah. 2016. CD64 and group II secretory phospholipase A2 (sPLA2-IIA) as biomarkers for distinguishing adult sepsis and bacterial infections in the emergency department. PLoS One 11: e0152065.CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Van Wyngene, L., J. Vandewalle, and C. Libert. 2018. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last. EMBO Molecular Medicine 08: 10(8). Van Wyngene, L., J. Vandewalle, and C. Libert. 2018. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last. EMBO Molecular Medicine 08: 10(8).
13.
Zurück zum Zitat Wischmeyer, P.E. 2007. Glutamine: mode of action in critical illness. Critical Care Medicine 35: S541–S544.CrossRefPubMed Wischmeyer, P.E. 2007. Glutamine: mode of action in critical illness. Critical Care Medicine 35: S541–S544.CrossRefPubMed
14.
Zurück zum Zitat Cruzat, V., M. Macedo Rogero, K. Noel Keane, R. Curi, and P. Newsholme. 2018. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10 (11). Cruzat, V., M. Macedo Rogero, K. Noel Keane, R. Curi, and P. Newsholme. 2018. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10 (11).
15.
Zurück zum Zitat Wilmore, D.W. 2001. The effect of glutamine supplementation in patients following elective surgery and accidental injury. Journal of Nutrition 131: 2543S–2549S discussion 2550S-1S.CrossRef Wilmore, D.W. 2001. The effect of glutamine supplementation in patients following elective surgery and accidental injury. Journal of Nutrition 131: 2543S–2549S discussion 2550S-1S.CrossRef
16.
Zurück zum Zitat Hu, Y.M., Y.C. Hsiung, M.H. Pai, and S.L. Yeh. 2018. Glutamine administration in early or late septic phase downregulates lymphocyte PD-1/PD-L1 expression and the inflammatory response in mice with polymicrobial sepsis. Journal of Parenteral and Enteral Nutrition 42 (3): 538–549.PubMed Hu, Y.M., Y.C. Hsiung, M.H. Pai, and S.L. Yeh. 2018. Glutamine administration in early or late septic phase downregulates lymphocyte PD-1/PD-L1 expression and the inflammatory response in mice with polymicrobial sepsis. Journal of Parenteral and Enteral Nutrition 42 (3): 538–549.PubMed
17.
18.
Zurück zum Zitat Poon, I.K., K.K. Patel, D.S. Davis, C.R. Parish, and M.D. Hulett. 2011. Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma. Blood 117 (7). Poon, I.K., K.K. Patel, D.S. Davis, C.R. Parish, and M.D. Hulett. 2011. Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma. Blood 117 (7).
19.
Zurück zum Zitat Blank, M., and Y. Shoenfeld. 2008. Histidine-rich glycoprotein modulation of immune/autoimmune, vascular, and coagulation systems. Clinical Reviews in Allergy and Immunology 34: 307–312.CrossRefPubMed Blank, M., and Y. Shoenfeld. 2008. Histidine-rich glycoprotein modulation of immune/autoimmune, vascular, and coagulation systems. Clinical Reviews in Allergy and Immunology 34: 307–312.CrossRefPubMed
20.
Zurück zum Zitat Kuroda, K., H. Wake, S. Mori, S. Hinotsu, M. Nishibori, and H. Morimatsu. 2018. Decrease in histidine-rich glycoprotein as a novel biomarker to predict sepsis among systemic inflammatory response syndrome. Critical Care Medicine 46: 570–576.CrossRefPubMed Kuroda, K., H. Wake, S. Mori, S. Hinotsu, M. Nishibori, and H. Morimatsu. 2018. Decrease in histidine-rich glycoprotein as a novel biomarker to predict sepsis among systemic inflammatory response syndrome. Critical Care Medicine 46: 570–576.CrossRefPubMed
21.
Zurück zum Zitat Subramaniam, S., and C. Fletcher. 2018. Trimethylamine N-oxide (TMAO): breathe new life. British Journal of Pharmacology 04: 175(8). Subramaniam, S., and C. Fletcher. 2018. Trimethylamine N-oxide (TMAO): breathe new life. British Journal of Pharmacology 04: 175(8).
22.
Zurück zum Zitat Tomlinson, James A.P., and David C. Wheeler. 2017. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney International 92: 809–815.CrossRefPubMed Tomlinson, James A.P., and David C. Wheeler. 2017. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney International 92: 809–815.CrossRefPubMed
23.
Zurück zum Zitat Manna, S.K., A.D. Patterson, Q. Yang, K.W. Krausz, J.R. Idle, A.J. Fornace, and F.J. Gonzalez. 2011. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. Journal of Proteome Research 10: 4120–4133.CrossRefPubMedCentralPubMed Manna, S.K., A.D. Patterson, Q. Yang, K.W. Krausz, J.R. Idle, A.J. Fornace, and F.J. Gonzalez. 2011. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. Journal of Proteome Research 10: 4120–4133.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Lemarie, F., E. Beauchamp, G. Drouin, P. Legrand, and V. Rioux. 2018. Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: what is new in this nutritional field? Prostaglandins, Leukotrienes, and Essential Fatty Acids 135: 121–127.CrossRefPubMed Lemarie, F., E. Beauchamp, G. Drouin, P. Legrand, and V. Rioux. 2018. Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: what is new in this nutritional field? Prostaglandins, Leukotrienes, and Essential Fatty Acids 135: 121–127.CrossRefPubMed
25.
Zurück zum Zitat Hecker, M., N. Sommer, H. Voigtmann, O. Pak, A. Mohr, M. Wolf, I. Vadász, S. Herold, N. Weissmann, R.E. Morty, et al. 2014. Impact of short- and medium-chain fatty acids on mitochondrial function in severe inflammation. JPEN Journal of Parenteral and Enteral Nutrition 38: 587–594.CrossRefPubMed Hecker, M., N. Sommer, H. Voigtmann, O. Pak, A. Mohr, M. Wolf, I. Vadász, S. Herold, N. Weissmann, R.E. Morty, et al. 2014. Impact of short- and medium-chain fatty acids on mitochondrial function in severe inflammation. JPEN Journal of Parenteral and Enteral Nutrition 38: 587–594.CrossRefPubMed
26.
Zurück zum Zitat Janowitz, T., I. Ajonina, M. Perbandt, C. Woltersdorf, P. Hertel, E. Liebau, and U. Gigengack. 2010. The 3-ureidopropionase of Caenorhabditis elegans, an enzyme involved in pyrimidine degradation. The FEBS Journal 277: 4100–4109.CrossRefPubMed Janowitz, T., I. Ajonina, M. Perbandt, C. Woltersdorf, P. Hertel, E. Liebau, and U. Gigengack. 2010. The 3-ureidopropionase of Caenorhabditis elegans, an enzyme involved in pyrimidine degradation. The FEBS Journal 277: 4100–4109.CrossRefPubMed
Metadaten
Titel
Identification of Biomarkers of Sepsis-Associated Acute Kidney Injury in Pediatric Patients Based on UPLC-QTOF/MS
verfasst von
Sa Wang
Changxue Xiao
Chengjun Liu
Jing Li
Fang Fang
Xue Lu
Chao Zhang
Feng Xu
Publikationsdatum
11.12.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01144-5

Weitere Artikel der Ausgabe 2/2020

Inflammation 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.