Skip to main content
Erschienen in: World Journal of Urology 2/2018

15.11.2017 | Original Article

Identification of key genes and construction of microRNA–mRNA regulatory networks in bladder smooth muscle cell response to mechanical stimuli using microarray expression profiles and bioinformatics analysis

verfasst von: Liao Peng, De-Yi Luo

Erschienen in: World Journal of Urology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To identify keys genes and elucidate miRNA–mRNA regulatory networks in Bladder smooth muscle cell (BSMC) response to mechanical stimuli.

Methods

Human BSMCs, seeded on a silicone membrane, were subjected to mechanical stretch or without stretch. Microarray was used to analyze the differential expression of mRNAs and miRNAs between human BSMCs under mechanical stretch and control static control group. Differentially expressed genes(DEGs) and miRNAs (DEMs) in these two groups were identified. Subsequently, differentially expressed DEGs were conducted with functional analysis, and then PPI network was constructed. Finally, miRNA–mRNA regulatory network was visualized using Cytoscape.

Results

1639 significant DEGs and three DEMs were identified between the stretch group and control static group. The PPI network of DEGs was constructed by STRING, which was composed of 1459 nodes and 1481 edges, including 188 upregulated genes and 255 downregulated genes. Moreover, 36 genes in the PPI network were identified as hub genes in BSMCs response to mechanical stretch, e.g. CCNH, CPSF2, TSNAX, ARPC5 and PSMD3 genes. Subsequently, 39 clusters were selected from PPI network using MCODE, and it was shown that the most significant cluster consisted of 14 nodes and 91 edges. Besides, miR-503HG was the most significantly downregulated miRNA and was predicted to target five upregulated genes, including SMAD7, CCND3, WIPI2, NYNRIN and PVRL1.

Conclusions

Our data mining and integration help reveal the mechanotransduction mechanism of BSMCs’ response to mechanical stimulation and contribute to the early diagnosis of bladder outlet obstruction (BOO) as well as the improvement of pathogenesis of BOO treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J (2006) Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng 12(4):635–644CrossRefPubMed Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J (2006) Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng 12(4):635–644CrossRefPubMed
2.
Zurück zum Zitat Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 116(5):377–389CrossRef Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 116(5):377–389CrossRef
3.
Zurück zum Zitat Coplen DE, Macarak EJ, Howard PS (2003) Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency. Vitro Cell Dev Biol Anim 39(3–4):157–162CrossRef Coplen DE, Macarak EJ, Howard PS (2003) Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency. Vitro Cell Dev Biol Anim 39(3–4):157–162CrossRef
4.
Zurück zum Zitat Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–C11CrossRefPubMed Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–C11CrossRefPubMed
6.
Zurück zum Zitat Luo DY, Wazir R, Du C, Tian Y, Yue X, Wei TQ, Wang KJ (2015) Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol 33(11):1881–1887CrossRefPubMed Luo DY, Wazir R, Du C, Tian Y, Yue X, Wei TQ, Wang KJ (2015) Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol 33(11):1881–1887CrossRefPubMed
7.
Zurück zum Zitat Chen S, Peng C, Wei X, Luo D, Lin Y, Yang T, Jin X, Gong L, Li H, Wang K (2017) Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway. World J Urol 35(8):1247–1254CrossRefPubMed Chen S, Peng C, Wei X, Luo D, Lin Y, Yang T, Jin X, Gong L, Li H, Wang K (2017) Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway. World J Urol 35(8):1247–1254CrossRefPubMed
8.
Zurück zum Zitat Luo DY, Wazir R, Tian Y, Yue X, Wei TQ, Wang KJ (2013) Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol 190(4):1421–1429CrossRefPubMed Luo DY, Wazir R, Tian Y, Yue X, Wei TQ, Wang KJ (2013) Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol 190(4):1421–1429CrossRefPubMed
10.
Zurück zum Zitat Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, Wein AJ, Chacko S (2014) Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol 307(6):C542–C553CrossRefPubMedPubMedCentral Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, Wein AJ, Chacko S (2014) Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol 307(6):C542–C553CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Tagaya M, Oka M, Ueda M, Takagaki K, Tanaka M, Ohgi T, Yano J (2009) Eviprostat suppresses proinflammatory gene expression in the prostate of rats with partial bladder-outlet obstruction: a genome-wide DNA microarray analysis. Cytokine 47(3):185–193CrossRefPubMed Tagaya M, Oka M, Ueda M, Takagaki K, Tanaka M, Ohgi T, Yano J (2009) Eviprostat suppresses proinflammatory gene expression in the prostate of rats with partial bladder-outlet obstruction: a genome-wide DNA microarray analysis. Cytokine 47(3):185–193CrossRefPubMed
12.
Zurück zum Zitat Duan LJ, Cao QF, Xu D, Liu HL, Qi J (2017) Bioinformatic analysis of microRNA-mRNA expression profiles of bladder tissue induced by bladder outlet obstruction in a rat model. Mol Med Rep 16(4):4803–4810CrossRefPubMed Duan LJ, Cao QF, Xu D, Liu HL, Qi J (2017) Bioinformatic analysis of microRNA-mRNA expression profiles of bladder tissue induced by bladder outlet obstruction in a rat model. Mol Med Rep 16(4):4803–4810CrossRefPubMed
13.
Zurück zum Zitat Andersen G, Busso D, Poterszman A, Hwang JR, Wurtz JM, Ripp R, Thierry JC, Egly JM, Moras D (1997) The structure of cyclin H: common mode of kinase activation and specific features. EMBO J 16(5):958–967CrossRefPubMedPubMedCentral Andersen G, Busso D, Poterszman A, Hwang JR, Wurtz JM, Ripp R, Thierry JC, Egly JM, Moras D (1997) The structure of cyclin H: common mode of kinase activation and specific features. EMBO J 16(5):958–967CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Jordan P, Cunha C, Carmo-Fonseca M (1997) The cdk7-cyclin H-MAT1 complex associated with TFIIH is localized in coiled bodies. Mol Biol Cell 8(7):1207–1217CrossRefPubMedPubMedCentral Jordan P, Cunha C, Carmo-Fonseca M (1997) The cdk7-cyclin H-MAT1 complex associated with TFIIH is localized in coiled bodies. Mol Biol Cell 8(7):1207–1217CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Wang KC, Nguyen P, Weiss A, Yeh YT, Chien HS, Lee A, Teng D, Subramaniam S, Li YS, Chien S (2014) MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol 34(7):1437–1445CrossRefPubMedPubMedCentral Wang KC, Nguyen P, Weiss A, Yeh YT, Chien HS, Lee A, Teng D, Subramaniam S, Li YS, Chien S (2014) MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol 34(7):1437–1445CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zhang J, Zhu J, Yang L, Guan C, Ni R, Wang Y, Ji L, Tian Y (2015) Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression. Tumour Biol 36(9):6701–6714CrossRefPubMed Zhang J, Zhu J, Yang L, Guan C, Ni R, Wang Y, Ji L, Tian Y (2015) Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression. Tumour Biol 36(9):6701–6714CrossRefPubMed
17.
Zurück zum Zitat Singh S, Powell DW, Rane MJ, Millard TH, Trent JO, Pierce WM, Klein JB, Machesky LM, McLeish KR (2003) Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J Biol Chem 278(38):36410–36417CrossRefPubMed Singh S, Powell DW, Rane MJ, Millard TH, Trent JO, Pierce WM, Klein JB, Machesky LM, McLeish KR (2003) Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J Biol Chem 278(38):36410–36417CrossRefPubMed
18.
Zurück zum Zitat Millard TH, Behrendt B, Launay S, Fütterer K, Machesky LM (2003) Identification and characterisation of a novel human isoform of Arp2/3 complex subunit p16-ARC/ARPC5. Cell Motil Cytoskelet 54(1):81–90CrossRef Millard TH, Behrendt B, Launay S, Fütterer K, Machesky LM (2003) Identification and characterisation of a novel human isoform of Arp2/3 complex subunit p16-ARC/ARPC5. Cell Motil Cytoskelet 54(1):81–90CrossRef
19.
Zurück zum Zitat Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, Fujimura L, Fuse M, Yamasaki T, Enokida H, Nakagawa M, Hanazawa T, Okamoto Y, Seki N (2012) Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol 40(6):1770–1778PubMed Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, Fujimura L, Fuse M, Yamasaki T, Enokida H, Nakagawa M, Hanazawa T, Okamoto Y, Seki N (2012) Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol 40(6):1770–1778PubMed
20.
Zurück zum Zitat Silverman-Gavrila R, Silverman-Gavrila L, Hou G, Zhang M, Charlton M, Bendeck MP (2011) Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM. Am J Pathol 178(2):895–910CrossRefPubMedPubMedCentral Silverman-Gavrila R, Silverman-Gavrila L, Hou G, Zhang M, Charlton M, Bendeck MP (2011) Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM. Am J Pathol 178(2):895–910CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD (2001) Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell 8(5):1041–1052CrossRefPubMed Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD (2001) Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell 8(5):1041–1052CrossRefPubMed
23.
Zurück zum Zitat Engels BM, Hutvagner G (2006) Principles and effects of microRNA mediated post-transcriptional gene regulation. Oncogene 25(46):6163–6169CrossRefPubMed Engels BM, Hutvagner G (2006) Principles and effects of microRNA mediated post-transcriptional gene regulation. Oncogene 25(46):6163–6169CrossRefPubMed
24.
26.
Zurück zum Zitat Calin GA, Croce CM (2006) MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25(46):6202–6210CrossRefPubMed Calin GA, Croce CM (2006) MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25(46):6202–6210CrossRefPubMed
27.
Zurück zum Zitat Muys BR, Lorenzi JC, Zanette DL, Lima e Bueno Rde B, de Araújo LF, Dinarte-Santos AR, Alves CP, Ramão A, de Molfetta GA, Vidal DO, Silva WA Jr (2016) Placenta-Enriched LincRNAs MIR503HG and LINC00629 Decrease migration and invasion potential of JEG-3 cell line. PLoS One 11(3):e0151560CrossRefPubMedPubMedCentral Muys BR, Lorenzi JC, Zanette DL, Lima e Bueno Rde B, de Araújo LF, Dinarte-Santos AR, Alves CP, Ramão A, de Molfetta GA, Vidal DO, Silva WA Jr (2016) Placenta-Enriched LincRNAs MIR503HG and LINC00629 Decrease migration and invasion potential of JEG-3 cell line. PLoS One 11(3):e0151560CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22(6):707–716CrossRefPubMed Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22(6):707–716CrossRefPubMed
Metadaten
Titel
Identification of key genes and construction of microRNA–mRNA regulatory networks in bladder smooth muscle cell response to mechanical stimuli using microarray expression profiles and bioinformatics analysis
verfasst von
Liao Peng
De-Yi Luo
Publikationsdatum
15.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
World Journal of Urology / Ausgabe 2/2018
Print ISSN: 0724-4983
Elektronische ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-017-2132-3

Weitere Artikel der Ausgabe 2/2018

World Journal of Urology 2/2018 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.