Skip to main content
Erschienen in: Cellular Oncology 4/2018

20.04.2018 | Original Paper

Identification of subsets of actionable genetic alterations in KRAS-mutant lung cancers using association rule mining

verfasst von: Junior Tayou

Erschienen in: Cellular Oncology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Lung cancer is the leading cause of cancer-related death in both men and women. KRAS mutations occur in ~ 25% of patients with lung cancer, and the presence of these mutations is associated with a poor prognosis. Unfortunately, efforts to directly target KRAS or its associated downstream MAPK or PI3K/AKT/mTOR pathways have seen little or no benefits. Here, I hypothesize that KRAS-mutant tumors do not respond to KRAS pathway therapies due to the co-occurrence of other activated cell survival pathways and/or mechanisms.

Methods and results

To identify other potentially activated cell survival pathways in KRAS-mutant tumors, I performed association rule mining on somatic mutations in 725 metastatic lung cancer patient samples. I identified 67 additional genes that were mutated in at least 10% of the samples with KRAS mutations. This gene list was enriched with genes involved in the MAPK, AKT and STAT3 pathways, as well as in cell-cell adhesion, DNA repair, chromatin remodeling and the Wnt/β-catenin pathway. I also identified 160 overlapping subsets of three or more genes that code for oncogenic or tumor suppressive proteins that were mutated in at least 10% of the KRAS-mutant tumors.

Conclusions

I identified several genes that are co-mutated in primary KRAS-mutant lung cancer samples. I also identified subpopulations of KRAS-mutant lung cancers based on sets of genes that were co-mutated. Pre-clinical models that capture these subsets of KRAS-mutant tumors may enhance our understanding of lung cancer development and, in addition, facilitate the design of personalized treatment strategies for lung cancer patients carrying KRAS mutations.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015)CrossRefPubMed J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015)CrossRefPubMed
2.
Zurück zum Zitat R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015)CrossRefPubMed R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015)CrossRefPubMed
3.
Zurück zum Zitat M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)CrossRef M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)CrossRef
5.
Zurück zum Zitat Y. Wang, G. Schmid-Bindert, C. Zhou, Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther. Adv. Med. Oncol. 4, 19–29 (2012)CrossRefPubMedPubMedCentral Y. Wang, G. Schmid-Bindert, C. Zhou, Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther. Adv. Med. Oncol. 4, 19–29 (2012)CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat T.S. Mok, Y.L. Wu, S. Thongprasert, C.H. Yang, D.T. Chu, N. Saijo, P. Sunpaweravong, B. Han, B. Margono, Y. Ichinose, Y. Nishiwaki, Y. Ohe, J.J. Yang, B. Chewaskulyong, H. Jiang, E.L. Duffield, C.L. Watkins, A.A. Armour, M. Fukuoka, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New Eng. J. Med. 361, 947–957 (2009)CrossRefPubMed T.S. Mok, Y.L. Wu, S. Thongprasert, C.H. Yang, D.T. Chu, N. Saijo, P. Sunpaweravong, B. Han, B. Margono, Y. Ichinose, Y. Nishiwaki, Y. Ohe, J.J. Yang, B. Chewaskulyong, H. Jiang, E.L. Duffield, C.L. Watkins, A.A. Armour, M. Fukuoka, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New Eng. J. Med. 361, 947–957 (2009)CrossRefPubMed
7.
Zurück zum Zitat L.V. Sequist, J.C. Yang, N. Yamamoto, K. O'Byrne, V. Hirsh, T. Mok, S.L. Geater, S. Orlov, C.M. Tsai, M. Boyer, W.C. Su, J. Bennouna, T. Kato, V. Gorbunova, K.H. Lee, R. Shah, D. Massey, V. Zazulina, M. Shahidi, M. Schuler, Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013)CrossRefPubMed L.V. Sequist, J.C. Yang, N. Yamamoto, K. O'Byrne, V. Hirsh, T. Mok, S.L. Geater, S. Orlov, C.M. Tsai, M. Boyer, W.C. Su, J. Bennouna, T. Kato, V. Gorbunova, K.H. Lee, R. Shah, D. Massey, V. Zazulina, M. Shahidi, M. Schuler, Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013)CrossRefPubMed
8.
Zurück zum Zitat R. Katayama, C.M. Lovly, A.T. Shaw, Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin. Cancer Res. 21, 2227–2235 (2015)CrossRefPubMedPubMedCentral R. Katayama, C.M. Lovly, A.T. Shaw, Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin. Cancer Res. 21, 2227–2235 (2015)CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat T. Regad, Targeting RTK signaling pathways in cancer. Cancer 7, 1758–1784 (2015)CrossRef T. Regad, Targeting RTK signaling pathways in cancer. Cancer 7, 1758–1784 (2015)CrossRef
10.
Zurück zum Zitat Z. Lohinai, T. Klikovits, J. Moldvay, G. Ostoros, E. Raso, J. Timar, K. Fabian, I. Kovalszky, I. Kenessey, C. Aigner, F. Renyi-Vamos, W. Klepetko, B. Dome, B. Hegedus, KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis. Sci. Rep. 7, 39721 (2017)CrossRefPubMedPubMedCentral Z. Lohinai, T. Klikovits, J. Moldvay, G. Ostoros, E. Raso, J. Timar, K. Fabian, I. Kovalszky, I. Kenessey, C. Aigner, F. Renyi-Vamos, W. Klepetko, B. Dome, B. Hegedus, KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis. Sci. Rep. 7, 39721 (2017)CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat A.E. Karnoub, R.A. Weinberg, Ras oncogenes: split personalities. Nat. Rev. 9, 517–531 (2008)CrossRef A.E. Karnoub, R.A. Weinberg, Ras oncogenes: split personalities. Nat. Rev. 9, 517–531 (2008)CrossRef
12.
Zurück zum Zitat D.M. Feldser, S.E. Kern, Oncogenic levels of mitogen-activated protein kinase (MAPK) signaling of the dinucleotide KRAS2 mutations G12F and GG12-13VC. Hum. Mutat. 18, 357 (2001)CrossRefPubMed D.M. Feldser, S.E. Kern, Oncogenic levels of mitogen-activated protein kinase (MAPK) signaling of the dinucleotide KRAS2 mutations G12F and GG12-13VC. Hum. Mutat. 18, 357 (2001)CrossRefPubMed
13.
Zurück zum Zitat P.J. Roberts, C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007)CrossRefPubMed P.J. Roberts, C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007)CrossRefPubMed
14.
Zurück zum Zitat N. Mitin, K.L. Rossman, C.J. Der, Signaling interplay in Ras superfamily function. Curr. Biol. 15, R563–R574 (2005)CrossRefPubMed N. Mitin, K.L. Rossman, C.J. Der, Signaling interplay in Ras superfamily function. Curr. Biol. 15, R563–R574 (2005)CrossRefPubMed
15.
Zurück zum Zitat A. Matikas, D. Mistriotis, V. Georgoulias, A. Kotsakis, Targeting KRAS mutated non-small cell lung cancer: a history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol./Hematol. 110, 1–12 (2017)CrossRef A. Matikas, D. Mistriotis, V. Georgoulias, A. Kotsakis, Targeting KRAS mutated non-small cell lung cancer: a history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol./Hematol. 110, 1–12 (2017)CrossRef
16.
Zurück zum Zitat R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases. SIGMOD Rec. 22, 207–216 (1993)CrossRef R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases. SIGMOD Rec. 22, 207–216 (1993)CrossRef
17.
Zurück zum Zitat R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, 487–499, (1994) R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, 487–499, (1994)
18.
Zurück zum Zitat A. Zehir, R. Benayed, R.H. Shah, A. Syed, S. Middha, H.R. Kim, P. Srinivasan, J. Gao, D. Chakravarty, S.M. Devlin, M.D. Hellmann, D.A. Barron, A.M. Schram, M. Hameed, S. Dogan, D.S. Ross, J.F. Hechtman, D.F. DeLair, J. Yao, D.L. Mandelker, D.T. Cheng, R. Chandramohan, A.S. Mohanty, R.N. Ptashkin, G. Jayakumaran, M. Prasad, M.H. Syed, A.B. Rema, Z.Y. Liu, K. Nafa, L. Borsu, J. Sadowska, J. Casanova, R. Bacares, I.J. Kiecka, A. Razumova, J.B. Son, L. Stewart, T. Baldi, K.A. Mullaney, H. Al-Ahmadie, E. Vakiani, A.A. Abeshouse, A.V. Penson, P. Jonsson, N. Camacho, M.T. Chang, H.H. Won, B.E. Gross, R. Kundra, Z.J. Heins, H.W. Chen, S. Phillips, H. Zhang, J. Wang, A. Ochoa, J. Wills, M. Eubank, S.B. Thomas, S.M. Gardos, D.N. Reales, J. Galle, R. Durany, R. Cambria, W. Abida, A. Cercek, D.R. Feldman, M.M. Gounder, A.A. Hakimi, J.J. Harding, G. Iyer, Y.Y. Janjigian, E.J. Jordan, C.M. Kelly, M.A. Lowery, L.G.T. Morris, A.M. Omuro, N. Raj, P. Razavi, A.N. Shoushtari, N. Shukla, T.E. Soumerai, A.M. Varghese, R. Yaeger, J. Coleman, B. Bochner, G.J. Riely, L.B. Saltz, H.I. Scher, P.J. Sabbatini, M.E. Robson, D.S. Klimstra, B.S. Taylor, J. Baselga, N. Schultz, D.M. Hyman, M.E. Arcila, D.B. Solit, M. Ladanyi, M.F. Berger, Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017)CrossRefPubMedPubMedCentral A. Zehir, R. Benayed, R.H. Shah, A. Syed, S. Middha, H.R. Kim, P. Srinivasan, J. Gao, D. Chakravarty, S.M. Devlin, M.D. Hellmann, D.A. Barron, A.M. Schram, M. Hameed, S. Dogan, D.S. Ross, J.F. Hechtman, D.F. DeLair, J. Yao, D.L. Mandelker, D.T. Cheng, R. Chandramohan, A.S. Mohanty, R.N. Ptashkin, G. Jayakumaran, M. Prasad, M.H. Syed, A.B. Rema, Z.Y. Liu, K. Nafa, L. Borsu, J. Sadowska, J. Casanova, R. Bacares, I.J. Kiecka, A. Razumova, J.B. Son, L. Stewart, T. Baldi, K.A. Mullaney, H. Al-Ahmadie, E. Vakiani, A.A. Abeshouse, A.V. Penson, P. Jonsson, N. Camacho, M.T. Chang, H.H. Won, B.E. Gross, R. Kundra, Z.J. Heins, H.W. Chen, S. Phillips, H. Zhang, J. Wang, A. Ochoa, J. Wills, M. Eubank, S.B. Thomas, S.M. Gardos, D.N. Reales, J. Galle, R. Durany, R. Cambria, W. Abida, A. Cercek, D.R. Feldman, M.M. Gounder, A.A. Hakimi, J.J. Harding, G. Iyer, Y.Y. Janjigian, E.J. Jordan, C.M. Kelly, M.A. Lowery, L.G.T. Morris, A.M. Omuro, N. Raj, P. Razavi, A.N. Shoushtari, N. Shukla, T.E. Soumerai, A.M. Varghese, R. Yaeger, J. Coleman, B. Bochner, G.J. Riely, L.B. Saltz, H.I. Scher, P.J. Sabbatini, M.E. Robson, D.S. Klimstra, B.S. Taylor, J. Baselga, N. Schultz, D.M. Hyman, M.E. Arcila, D.B. Solit, M. Ladanyi, M.F. Berger, Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017)CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat G.I. Webb, Layered critical values: a powerful direct-adjustment approach to discovering significant patterns. Mach. Learn. 71, 307–323 (2008)CrossRef G.I. Webb, Layered critical values: a powerful direct-adjustment approach to discovering significant patterns. Mach. Learn. 71, 307–323 (2008)CrossRef
20.
Zurück zum Zitat G. Liu, H. Zhang, L. Wong, Controlling false positives in association rule mining, Proc. VLDB Endowment 5, 145–156 (2011)CrossRef G. Liu, H. Zhang, L. Wong, Controlling false positives in association rule mining, Proc. VLDB Endowment 5, 145–156 (2011)CrossRef
21.
Zurück zum Zitat C. Scoccianti, A. Vesin, G. Martel, M. Olivier, E. Brambilla, J.F. Timsit, L. Tavecchio, C. Brambilla, J.K. Field, P. Hainaut, European Early Lung Cancer Consortium, Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur. Respir. J. 40, 177–184 (2012)CrossRefPubMed C. Scoccianti, A. Vesin, G. Martel, M. Olivier, E. Brambilla, J.F. Timsit, L. Tavecchio, C. Brambilla, J.K. Field, P. Hainaut, European Early Lung Cancer Consortium, Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur. Respir. J. 40, 177–184 (2012)CrossRefPubMed
22.
Zurück zum Zitat L. Ding, G. Getz, D.A. Wheeler, E.R. Mardis, M.D. McLellan, K. Cibulskis, C. Sougnez, H. Greulich, D.M. Muzny, M.B. Morgan, L. Fulton, R.S. Fulton, Q. Zhang, M.C. Wendl, M.S. Lawrence, D.E. Larson, K. Chen, D.J. Dooling, A. Sabo, A.C. Hawes, H. Shen, S.N. Jhangiani, L.R. Lewis, O. Hall, Y. Zhu, T. Mathew, Y. Ren, J. Yao, S.E. Scherer, K. Clerc, G.A. Metcalf, B. Ng, A. Milosavljevic, M.L. Gonzalez-Garay, J.R. Osborne, R. Meyer, X. Shi, Y. Tang, D.C. Koboldt, L. Lin, R. Abbott, T.L. Miner, C. Pohl, G. Fewell, C. Haipek, H. Schmidt, B.H. Dunford-Shore, A. Kraja, S.D. Crosby, C.S. Sawyer, T. Vickery, S. Sander, J. Robinson, W. Winckler, J. Baldwin, L.R. Chirieac, A. Dutt, T. Fennell, M. Hanna, B.E. Johnson, R.C. Onofrio, R.K. Thomas, G. Tonon, B.A. Weir, X. Zhao, L. Ziaugra, M.C. Zody, T. Giordano, M.B. Orringer, J.A. Roth, M.R. Spitz, I.I. Wistuba, B. Ozenberger, P.J. Good, A.C. Chang, D.G. Beer, M.A. Watson, M. Ladanyi, S. Broderick, A. Yoshizawa, W.D. Travis, W. Pao, M.A. Province, G.M. Weinstock, H.E. Varmus, S.B. Gabriel, E.S. Lander, R.A. Gibbs, M. Meyerson, R.K. Wilson, Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)CrossRefPubMedPubMedCentral L. Ding, G. Getz, D.A. Wheeler, E.R. Mardis, M.D. McLellan, K. Cibulskis, C. Sougnez, H. Greulich, D.M. Muzny, M.B. Morgan, L. Fulton, R.S. Fulton, Q. Zhang, M.C. Wendl, M.S. Lawrence, D.E. Larson, K. Chen, D.J. Dooling, A. Sabo, A.C. Hawes, H. Shen, S.N. Jhangiani, L.R. Lewis, O. Hall, Y. Zhu, T. Mathew, Y. Ren, J. Yao, S.E. Scherer, K. Clerc, G.A. Metcalf, B. Ng, A. Milosavljevic, M.L. Gonzalez-Garay, J.R. Osborne, R. Meyer, X. Shi, Y. Tang, D.C. Koboldt, L. Lin, R. Abbott, T.L. Miner, C. Pohl, G. Fewell, C. Haipek, H. Schmidt, B.H. Dunford-Shore, A. Kraja, S.D. Crosby, C.S. Sawyer, T. Vickery, S. Sander, J. Robinson, W. Winckler, J. Baldwin, L.R. Chirieac, A. Dutt, T. Fennell, M. Hanna, B.E. Johnson, R.C. Onofrio, R.K. Thomas, G. Tonon, B.A. Weir, X. Zhao, L. Ziaugra, M.C. Zody, T. Giordano, M.B. Orringer, J.A. Roth, M.R. Spitz, I.I. Wistuba, B. Ozenberger, P.J. Good, A.C. Chang, D.G. Beer, M.A. Watson, M. Ladanyi, S. Broderick, A. Yoshizawa, W.D. Travis, W. Pao, M.A. Province, G.M. Weinstock, H.E. Varmus, S.B. Gabriel, E.S. Lander, R.A. Gibbs, M. Meyerson, R.K. Wilson, Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat H.O. Kilgoz, G. Bender, J.M. Scandura, A. Viale, B. Taneri, KRAS and the reality of personalized medicine in non-small cell lung cancer. Mol. Med. 22, 380–387 (2016)CrossRefPubMedCentralPubMed H.O. Kilgoz, G. Bender, J.M. Scandura, A. Viale, B. Taneri, KRAS and the reality of personalized medicine in non-small cell lung cancer. Mol. Med. 22, 380–387 (2016)CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat M. Paolo, S. Assunta, R. Antonio, S.P. Claudia, B.M. Anna, S. Clorinda, C. Francesca, C. Fortunato, G. Cesare, Selumetinib in advanced non small cell lung cancer (NSCLC) harbouring KRAS mutation: endless clinical challenge to KRAS-mutant NSCLC. Rev. Recent Clin. Trials 8, 93–100 (2013)CrossRefPubMed M. Paolo, S. Assunta, R. Antonio, S.P. Claudia, B.M. Anna, S. Clorinda, C. Francesca, C. Fortunato, G. Cesare, Selumetinib in advanced non small cell lung cancer (NSCLC) harbouring KRAS mutation: endless clinical challenge to KRAS-mutant NSCLC. Rev. Recent Clin. Trials 8, 93–100 (2013)CrossRefPubMed
25.
Zurück zum Zitat H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M.J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B.A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G.J. Riggins, D.D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J.W. Ho, S.Y. Leung, S.T. Yuen, B.L. Weber, H.F. Seigler, T.L. Darrow, H. Paterson, R. Marais, C.J. Marshall, R. Wooster, M.R. Stratton, P.A. Futreal, Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002)CrossRefPubMed H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M.J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B.A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G.J. Riggins, D.D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J.W. Ho, S.Y. Leung, S.T. Yuen, B.L. Weber, H.F. Seigler, T.L. Darrow, H. Paterson, R. Marais, C.J. Marshall, R. Wooster, M.R. Stratton, P.A. Futreal, Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002)CrossRefPubMed
26.
Zurück zum Zitat R. Seth, S. Crook, S. Ibrahem, W. Fadhil, D. Jackson, M. Ilyas, Concomitant mutations and splice variants in KRAS and BRAF demonstrate complex perturbation of the Ras/Raf signalling pathway in advanced colorectal cancer. Gut 58, 1234–1241 (2009)CrossRefPubMed R. Seth, S. Crook, S. Ibrahem, W. Fadhil, D. Jackson, M. Ilyas, Concomitant mutations and splice variants in KRAS and BRAF demonstrate complex perturbation of the Ras/Raf signalling pathway in advanced colorectal cancer. Gut 58, 1234–1241 (2009)CrossRefPubMed
27.
Zurück zum Zitat I.H. Sahin, S.M. Kazmi, J.T. Yorio, N.A. Bhadkamkar, B.K. Kee, C.R. Garrett, Rare though not mutually exclusive: a report of three cases of concomitant KRAS and BRAF mutation and a review of the literature. J. Cancer 4, 320–322 (2013)CrossRefPubMedPubMedCentral I.H. Sahin, S.M. Kazmi, J.T. Yorio, N.A. Bhadkamkar, B.K. Kee, C.R. Garrett, Rare though not mutually exclusive: a report of three cases of concomitant KRAS and BRAF mutation and a review of the literature. J. Cancer 4, 320–322 (2013)CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat C.H. Wilson, R.E. McIntyre, M.J. Arends, D.J. Adams, The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 29, 4567–4575 (2010)CrossRefPubMedPubMedCentral C.H. Wilson, R.E. McIntyre, M.J. Arends, D.J. Adams, The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 29, 4567–4575 (2010)CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat S. Donovan, K.M. Shannon, G. Bollag, GTPase activating proteins: critical regulators of intracellular signaling. Biochem. Biophys. Acta 1602, 23–45 (2002)PubMed S. Donovan, K.M. Shannon, G. Bollag, GTPase activating proteins: critical regulators of intracellular signaling. Biochem. Biophys. Acta 1602, 23–45 (2002)PubMed
30.
Zurück zum Zitat B.A. Cutts, A.K. Sjogren, K.M. Andersson, A.M. Wahlstrom, C. Karlsson, B. Swolin, M.O. Bergo, Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood 114, 3629–3632 (2009)CrossRefPubMed B.A. Cutts, A.K. Sjogren, K.M. Andersson, A.M. Wahlstrom, C. Karlsson, B. Swolin, M.O. Bergo, Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood 114, 3629–3632 (2009)CrossRefPubMed
31.
Zurück zum Zitat H. Cheng, M. Shcherba, G. Pendurti, Y. Liang, B. Piperdi, R. Perez-Soler, Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 3, 67–75 (2014)CrossRefPubMedPubMedCentral H. Cheng, M. Shcherba, G. Pendurti, Y. Liang, B. Piperdi, R. Perez-Soler, Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 3, 67–75 (2014)CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat S. Umemura, S. Mimaki, H. Makinoshima, S. Tada, G. Ishii, H. Ohmatsu, S. Niho, K. Yoh, S. Matsumoto, A. Takahashi, M. Morise, Y. Nakamura, A. Ochiai, K. Nagai, R. Iwakawa, T. Kohno, J. Yokota, Y. Ohe, H. Esumi, K. Tsuchihara, K. Goto, Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J. Thorac. Oncol. 9, 1324–1331 (2014)CrossRefPubMedPubMedCentral S. Umemura, S. Mimaki, H. Makinoshima, S. Tada, G. Ishii, H. Ohmatsu, S. Niho, K. Yoh, S. Matsumoto, A. Takahashi, M. Morise, Y. Nakamura, A. Ochiai, K. Nagai, R. Iwakawa, T. Kohno, J. Yokota, Y. Ohe, H. Esumi, K. Tsuchihara, K. Goto, Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J. Thorac. Oncol. 9, 1324–1331 (2014)CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat C. Li Chew, A. Lunardi, F. Gulluni, D.T. Ruan, M. Chen, L. Salmena, M. Nishino, A. Papa, C. Ng, J. Fung, J.G. Clohessy, J. Sasaki, T. Sasaki, R.T. Bronson, E. Hirsch, P.P. Pandolfi, In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K-AKT signaling at endosomes. Cancer Discov. 5, 740–751 (2015)CrossRefPubMed C. Li Chew, A. Lunardi, F. Gulluni, D.T. Ruan, M. Chen, L. Salmena, M. Nishino, A. Papa, C. Ng, J. Fung, J.G. Clohessy, J. Sasaki, T. Sasaki, R.T. Bronson, E. Hirsch, P.P. Pandolfi, In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K-AKT signaling at endosomes. Cancer Discov. 5, 740–751 (2015)CrossRefPubMed
34.
Zurück zum Zitat J.A. Gasser, H. Inuzuka, A.W. Lau, W. Wei, R. Beroukhim, A. Toker, SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol. Cell 56, 595–607 (2014)CrossRefPubMedPubMedCentral J.A. Gasser, H. Inuzuka, A.W. Lau, W. Wei, R. Beroukhim, A. Toker, SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol. Cell 56, 595–607 (2014)CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat P. Karuman, O. Gozani, R.D. Odze, X.C. Zhou, H. Zhu, R. Shaw, T.P. Brien, C.D. Bozzuto, D. Ooi, L.C. Cantley, J. Yuan, The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307–1319 (2001)CrossRefPubMed P. Karuman, O. Gozani, R.D. Odze, X.C. Zhou, H. Zhu, R. Shaw, T.P. Brien, C.D. Bozzuto, D. Ooi, L.C. Cantley, J. Yuan, The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307–1319 (2001)CrossRefPubMed
36.
Zurück zum Zitat S.C. Stein, A. Woods, N.A. Jones, M.D. Davison, D. Carling, The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 (2000)CrossRefPubMedPubMedCentral S.C. Stein, A. Woods, N.A. Jones, M.D. Davison, D. Carling, The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 (2000)CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003)CrossRefPubMed A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003)CrossRefPubMed
38.
Zurück zum Zitat N. Pecuchet, P. Laurent-Puig, A. Mansuet-Lupo, A. Legras, M. Alifano, K. Pallier, A. Didelot, L. Gibault, C. Danel, P.A. Just, M. Riquet, F. Le Pimpec-Barthes, D. Damotte, E. Fabre, H. Blons, Different prognostic impact of STK11 mutations in non-squamous non-small-cell lung cancer. Oncotarget 8, 23831–23840 (2017)CrossRefPubMed N. Pecuchet, P. Laurent-Puig, A. Mansuet-Lupo, A. Legras, M. Alifano, K. Pallier, A. Didelot, L. Gibault, C. Danel, P.A. Just, M. Riquet, F. Le Pimpec-Barthes, D. Damotte, E. Fabre, H. Blons, Different prognostic impact of STK11 mutations in non-squamous non-small-cell lung cancer. Oncotarget 8, 23831–23840 (2017)CrossRefPubMed
39.
Zurück zum Zitat M.B. Schabath, E.A. Welsh, W.J. Fulp, L. Chen, J.K. Teer, Z.J. Thompson, B.E. Engel, M. Xie, A.E. Berglund, B.C. Creelan, S.J. Antonia, J.E. Gray, S.A. Eschrich, D.T. Chen, W.D. Cress, E.B. Haura, A.A. Beg, Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35, 3209–3216 (2016)CrossRefPubMed M.B. Schabath, E.A. Welsh, W.J. Fulp, L. Chen, J.K. Teer, Z.J. Thompson, B.E. Engel, M. Xie, A.E. Berglund, B.C. Creelan, S.J. Antonia, J.E. Gray, S.A. Eschrich, D.T. Chen, W.D. Cress, E.B. Haura, A.A. Beg, Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35, 3209–3216 (2016)CrossRefPubMed
40.
Zurück zum Zitat F. Skoulidis, M.D. Hellmann, M.M. Awad, H. Rizvi, B.W. Carter, W. Denning, Y. Elamin, J. Zhang, G.C. Leonardi, D. Halpenny, A. Plodkowski, N. Long, J.J. Erasmus, V. Papadimitrakopoulou, K. Wong, I.I. Wistuba, P.A. Janne, C.M. Rudin, J. Heymach, STK11/LKB1 co-mutations to predict for de novo resistance to PD-1/PD-L1 axis blockade in KRAS-mutant lung adenocarcinoma. J. Clin. Oncol. 35, 9016–9016 (2017)CrossRef F. Skoulidis, M.D. Hellmann, M.M. Awad, H. Rizvi, B.W. Carter, W. Denning, Y. Elamin, J. Zhang, G.C. Leonardi, D. Halpenny, A. Plodkowski, N. Long, J.J. Erasmus, V. Papadimitrakopoulou, K. Wong, I.I. Wistuba, P.A. Janne, C.M. Rudin, J. Heymach, STK11/LKB1 co-mutations to predict for de novo resistance to PD-1/PD-L1 axis blockade in KRAS-mutant lung adenocarcinoma. J. Clin. Oncol. 35, 9016–9016 (2017)CrossRef
41.
Zurück zum Zitat S.G. Julien, N. Dube, S. Hardy, M.L. Tremblay, Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 11, 35–49 (2011)CrossRefPubMed S.G. Julien, N. Dube, S. Hardy, M.L. Tremblay, Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 11, 35–49 (2011)CrossRefPubMed
42.
Zurück zum Zitat S. Zhao, D. Sedwick, Z. Wang, Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34, 3885–3894 (2015)CrossRefPubMed S. Zhao, D. Sedwick, Z. Wang, Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34, 3885–3894 (2015)CrossRefPubMed
43.
Zurück zum Zitat X. Zhang, A. Guo, J. Yu, A. Possemato, Y. Chen, W. Zheng, R.D. Polakiewicz, K.W. Kinzler, B. Vogelstein, V.E. Velculescu, Z.J. Wang, Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc. Natl. Acad. Sci. U. S. A. 104, 4060–4064 (2007)CrossRefPubMedPubMedCentral X. Zhang, A. Guo, J. Yu, A. Possemato, Y. Chen, W. Zheng, R.D. Polakiewicz, K.W. Kinzler, B. Vogelstein, V.E. Velculescu, Z.J. Wang, Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc. Natl. Acad. Sci. U. S. A. 104, 4060–4064 (2007)CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat T.A. Chan, A. Heguy, The protein tyrosine phosphatase receptor D, a broadly inactivated tumor suppressor regulating STAT function. Cell Cycle 8, 3063–3064 (2009)CrossRefPubMed T.A. Chan, A. Heguy, The protein tyrosine phosphatase receptor D, a broadly inactivated tumor suppressor regulating STAT function. Cell Cycle 8, 3063–3064 (2009)CrossRefPubMed
45.
Zurück zum Zitat N.D. Peyser, Y. Du, H. Li, V. Lui, X. Xiao, T.A. Chan, J.R. Grandis, Loss-of-function PTPRD mutations lead to increased STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. PLoS One 10, e0135750 (2015)CrossRefPubMedPubMedCentral N.D. Peyser, Y. Du, H. Li, V. Lui, X. Xiao, T.A. Chan, J.R. Grandis, Loss-of-function PTPRD mutations lead to increased STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. PLoS One 10, e0135750 (2015)CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat B. Ortiz, A.W. Fabius, W.H. Wu, A. Pedraza, C.W. Brennan, N. Schultz, K.L. Pitter, J.F. Bromberg, J.T. Huse, E.C. Holland, T.A. Chan, Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 8149–8154 (2014)CrossRefPubMedPubMedCentral B. Ortiz, A.W. Fabius, W.H. Wu, A. Pedraza, C.W. Brennan, N. Schultz, K.L. Pitter, J.F. Bromberg, J.T. Huse, E.C. Holland, T.A. Chan, Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 8149–8154 (2014)CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat V.W. Lui, N.D. Peyser, P.K. Ng, J. Hritz, Y. Zeng, Y. Lu, H. Li, L. Wang, B.R. Gilbert, I.J. General, I. Bahar, Z. Ju, Z. Wang, K.P. Pendleton, X. Xiao, Y. Du, J.K. Vries, P.S. Hammerman, L.A. Garraway, G.B. Mills, D.E. Johnson, J.R. Grandis, Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc. Natl. Acad. Sci. U. S. A. 111, 1114–1119 (2014)CrossRefPubMedPubMedCentral V.W. Lui, N.D. Peyser, P.K. Ng, J. Hritz, Y. Zeng, Y. Lu, H. Li, L. Wang, B.R. Gilbert, I.J. General, I. Bahar, Z. Ju, Z. Wang, K.P. Pendleton, X. Xiao, Y. Du, J.K. Vries, P.S. Hammerman, L.A. Garraway, G.B. Mills, D.E. Johnson, J.R. Grandis, Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc. Natl. Acad. Sci. U. S. A. 111, 1114–1119 (2014)CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat D. Harada, N. Takigawa, K. Kiura, The role of STAT3 in non-small cell lung cancer. Cancer 6, 708–722 (2014)CrossRef D. Harada, N. Takigawa, K. Kiura, The role of STAT3 in non-small cell lung cancer. Cancer 6, 708–722 (2014)CrossRef
49.
Zurück zum Zitat B.D. Looyenga, D. Hutchings, I. Cherni, C. Kingsley, G.J. Weiss, J.P. Mackeigan, STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One 7, e30820 (2012)CrossRefPubMedPubMedCentral B.D. Looyenga, D. Hutchings, I. Cherni, C. Kingsley, G.J. Weiss, J.P. Mackeigan, STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One 7, e30820 (2012)CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat K.C. Arbour, E.J. Jordan, H.R. Kim, J. Dienstag, H. Yu, F. Sanchez-Vega, P. Lito, M.F. Berger, D.B. Solit, M.D. Hellmann, M.G. Kris, C.M. Rudin, A. Ni, M.E. Arcila, M. Ladanyi, G.J. Riely, Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin. Cancer Res. 24, 334–340 (2017)CrossRefPubMed K.C. Arbour, E.J. Jordan, H.R. Kim, J. Dienstag, H. Yu, F. Sanchez-Vega, P. Lito, M.F. Berger, D.B. Solit, M.D. Hellmann, M.G. Kris, C.M. Rudin, A. Ni, M.E. Arcila, M. Ladanyi, G.J. Riely, Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin. Cancer Res. 24, 334–340 (2017)CrossRefPubMed
52.
Zurück zum Zitat E.B. Krall, B. Wang, D.M. Munoz, N. Ilic, S. Raghavan, M.J. Niederst, K. Yu, D.A. Ruddy, A.J. Aguirre, J.W. Kim, A.J. Redig, J.F. Gainor, J.A. Williams, J.M. Asara, J.G. Doench, P.A. Janne, A.T. Shaw, R.E. McDonald Iii, J.A. Engelman, F. Stegmeier, M.R. Schlabach, W.C. Hahn, KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. elife 6, e18970 (2017)PubMedPubMedCentralCrossRef E.B. Krall, B. Wang, D.M. Munoz, N. Ilic, S. Raghavan, M.J. Niederst, K. Yu, D.A. Ruddy, A.J. Aguirre, J.W. Kim, A.J. Redig, J.F. Gainor, J.A. Williams, J.M. Asara, J.G. Doench, P.A. Janne, A.T. Shaw, R.E. McDonald Iii, J.A. Engelman, F. Stegmeier, M.R. Schlabach, W.C. Hahn, KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. elife 6, e18970 (2017)PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat R. Romero, V.I. Sayin, S.M. Davidson, M.R. Bauer, S.X. Singh, S.E. LeBoeuf, T.R. Karakousi, D.C. Ellis, A. Bhutkar, F.J. Sanchez-Rivera, L. Subbaraj, B. Martinez, R.T. Bronson, J.R. Prigge, E.E. Schmidt, C.J. Thomas, C. Goparaju, A. Davies, I. Dolgalev, A. Heguy, V. Allaj, J.T. Poirier, A.L. Moreira, C.M. Rudin, H.I. Pass, M.G. Vander Heiden, T. Jacks, T. Papagiannakopoulos, Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017)PubMedPubMedCentral R. Romero, V.I. Sayin, S.M. Davidson, M.R. Bauer, S.X. Singh, S.E. LeBoeuf, T.R. Karakousi, D.C. Ellis, A. Bhutkar, F.J. Sanchez-Rivera, L. Subbaraj, B. Martinez, R.T. Bronson, J.R. Prigge, E.E. Schmidt, C.J. Thomas, C. Goparaju, A. Davies, I. Dolgalev, A. Heguy, V. Allaj, J.T. Poirier, A.L. Moreira, C.M. Rudin, H.I. Pass, M.G. Vander Heiden, T. Jacks, T. Papagiannakopoulos, Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017)PubMedPubMedCentral
55.
Zurück zum Zitat P.M. Reaper, M.R. Griffiths, J.M. Long, J.D. Charrier, S. Maccormick, P.A. Charlton, J.M. Golec, J.R. Pollard, Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011)CrossRefPubMed P.M. Reaper, M.R. Griffiths, J.M. Long, J.D. Charrier, S. Maccormick, P.A. Charlton, J.M. Golec, J.R. Pollard, Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011)CrossRefPubMed
56.
Zurück zum Zitat H.C. Reinhardt, A.S. Aslanian, J.A. Lees, M.B. Yaffe, p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007)CrossRefPubMedPubMedCentral H.C. Reinhardt, A.S. Aslanian, J.A. Lees, M.B. Yaffe, p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007)CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat A. Al-Hendy, A. Laknaur, M.P. Diamond, N. Ismail, T.G. Boyer, S.K. Halder, Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/beta-catenin signaling pathway. Endocrinology 158, 592–603 (2017)PubMed A. Al-Hendy, A. Laknaur, M.P. Diamond, N. Ismail, T.G. Boyer, S.K. Halder, Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/beta-catenin signaling pathway. Endocrinology 158, 592–603 (2017)PubMed
59.
Zurück zum Zitat L.N. Micel, J.J. Tentler, P.G. Smith, G.S. Eckhardt, Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J. Clin. Oncol. 31, 1231–1238 (2013)CrossRefPubMedPubMedCentral L.N. Micel, J.J. Tentler, P.G. Smith, G.S. Eckhardt, Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J. Clin. Oncol. 31, 1231–1238 (2013)CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat S.B. Lee, J.J. Kim, H.J. Nam, B. Gao, P. Yin, B. Qin, S.Y. Yi, H. Ham, D. Evans, S.H. Kim, J. Zhang, M. Deng, T. Liu, H. Zhang, D.D. Billadeau, L. Wang, E. Giaime, J. Shen, Y.P. Pang, J. Jen, J.M. van Deursen, Z. Lou, Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol. Cell 60, 21–34 (2015)CrossRefPubMedPubMedCentral S.B. Lee, J.J. Kim, H.J. Nam, B. Gao, P. Yin, B. Qin, S.Y. Yi, H. Ham, D. Evans, S.H. Kim, J. Zhang, M. Deng, T. Liu, H. Zhang, D.D. Billadeau, L. Wang, E. Giaime, J. Shen, Y.P. Pang, J. Jen, J.M. van Deursen, Z. Lou, Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol. Cell 60, 21–34 (2015)CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat S. Lee, J. She, B. Deng, J. Kim, M. de Andrade, J. Na, Z. Sun, J.A. Wampfler, J.M. Cunningham, Y. Wu, A.H. Limper, M.C. Aubry, C. Wendt, P. Biterman, P. Yang, Z. Lou, Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease. Oncotarget 7, 44211–44223 (2016)PubMedPubMedCentral S. Lee, J. She, B. Deng, J. Kim, M. de Andrade, J. Na, Z. Sun, J.A. Wampfler, J.M. Cunningham, Y. Wu, A.H. Limper, M.C. Aubry, C. Wendt, P. Biterman, P. Yang, Z. Lou, Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease. Oncotarget 7, 44211–44223 (2016)PubMedPubMedCentral
62.
Zurück zum Zitat D. Dornan, I. Wertz, H. Shimizu, D. Arnott, G.D. Frantz, P. Dowd, K. O'Rourke, H. Koeppen, V.M. Dixit, The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004)CrossRefPubMed D. Dornan, I. Wertz, H. Shimizu, D. Arnott, G.D. Frantz, P. Dowd, K. O'Rourke, H. Koeppen, V.M. Dixit, The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004)CrossRefPubMed
63.
Zurück zum Zitat K.S. Nair, R. Naidoo, R. Chetty, Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 58, 343–351 (2005)CrossRefPubMedPubMedCentral K.S. Nair, R. Naidoo, R. Chetty, Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 58, 343–351 (2005)CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat S. Kase, K. Sugio, K. Yamazaki, T. Okamoto, T. Yano, K. Sugimachi, Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin. Cancer Res. 6, 4789–4796 (2000)PubMed S. Kase, K. Sugio, K. Yamazaki, T. Okamoto, T. Yano, K. Sugimachi, Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin. Cancer Res. 6, 4789–4796 (2000)PubMed
65.
Zurück zum Zitat M. Fanjul-Fernandez, V. Quesada, R. Cabanillas, J. Cadinanos, T. Fontanil, A. Obaya, A.J. Ramsay, J.L. Llorente, A. Astudillo, S. Cal, C. Lopez-Otin, Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat. Commun. 4, 2531 (2013)CrossRefPubMed M. Fanjul-Fernandez, V. Quesada, R. Cabanillas, J. Cadinanos, T. Fontanil, A. Obaya, A.J. Ramsay, J.L. Llorente, A. Astudillo, S. Cal, C. Lopez-Otin, Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat. Commun. 4, 2531 (2013)CrossRefPubMed
66.
Zurück zum Zitat J.P. Koivunen, J. Kim, J. Lee, A.M. Rogers, J.O. Park, X. Zhao, K. Naoki, I. Okamoto, K. Nakagawa, B.Y. Yeap, M. Meyerson, K.K. Wong, W.G. Richards, D.J. Sugarbaker, B.E. Johnson, P.A. Janne, Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Brit. J. Cancer 99, 245–252 (2008)CrossRefPubMed J.P. Koivunen, J. Kim, J. Lee, A.M. Rogers, J.O. Park, X. Zhao, K. Naoki, I. Okamoto, K. Nakagawa, B.Y. Yeap, M. Meyerson, K.K. Wong, W.G. Richards, D.J. Sugarbaker, B.E. Johnson, P.A. Janne, Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Brit. J. Cancer 99, 245–252 (2008)CrossRefPubMed
67.
Zurück zum Zitat H. Ji, M.R. Ramsey, D.N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M.C. Wu, T. Shimamura, S.A. Perera, M.C. Liang, D. Cai, G.N. Naumov, L. Bao, C.M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L.R. Chirieac, R.F. Padera, R.T. Bronson, N.I. Lindeman, D.C. Christiani, X. Lin, G.I. Shapiro, P.A. Janne, B.E. Johnson, M. Meyerson, D.J. Kwiatkowski, D.H. Castrillon, N. Bardeesy, N.E. Sharpless, K.K. Wong, LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007)CrossRefPubMed H. Ji, M.R. Ramsey, D.N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M.C. Wu, T. Shimamura, S.A. Perera, M.C. Liang, D. Cai, G.N. Naumov, L. Bao, C.M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L.R. Chirieac, R.F. Padera, R.T. Bronson, N.I. Lindeman, D.C. Christiani, X. Lin, G.I. Shapiro, P.A. Janne, B.E. Johnson, M. Meyerson, D.J. Kwiatkowski, D.H. Castrillon, N. Bardeesy, N.E. Sharpless, K.K. Wong, LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007)CrossRefPubMed
68.
Zurück zum Zitat N.D. Peyser, M. Freilino, L. Wang, Y. Zeng, H. Li, D.E. Johnson, J.R. Grandis, Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. Oncogene 35, 1163–1169 (2016)CrossRefPubMed N.D. Peyser, M. Freilino, L. Wang, Y. Zeng, H. Li, D.E. Johnson, J.R. Grandis, Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. Oncogene 35, 1163–1169 (2016)CrossRefPubMed
69.
Zurück zum Zitat H. Kitai, H. Ebi, Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases 8, 172–176 (2017)CrossRefPubMed H. Kitai, H. Ebi, Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases 8, 172–176 (2017)CrossRefPubMed
70.
Zurück zum Zitat E. Manchado, S. Weissmueller, J.P. Morris 4th, C.C. Chen, R. Wullenkord, A. Lujambio, E. de Stanchina, J.T. Poirier, J.F. Gainor, R.B. Corcoran, J.A. Engelman, C.M. Rudin, N. Rosen, S.W. Lowe, A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016)CrossRefPubMedPubMedCentral E. Manchado, S. Weissmueller, J.P. Morris 4th, C.C. Chen, R. Wullenkord, A. Lujambio, E. de Stanchina, J.T. Poirier, J.F. Gainor, R.B. Corcoran, J.A. Engelman, C.M. Rudin, N. Rosen, S.W. Lowe, A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016)CrossRefPubMedPubMedCentral
Metadaten
Titel
Identification of subsets of actionable genetic alterations in KRAS-mutant lung cancers using association rule mining
verfasst von
Junior Tayou
Publikationsdatum
20.04.2018
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 4/2018
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0377-5

Weitere Artikel der Ausgabe 4/2018

Cellular Oncology 4/2018 Zur Ausgabe

Neu im Fachgebiet Pathologie