Skip to main content
main-content

24.09.2018 | Original Research | Ausgabe 4/2019

Journal of Clinical Monitoring and Computing 4/2019

Identify and monitor clinical variation using machine intelligence: a pilot in colorectal surgery

Zeitschrift:
Journal of Clinical Monitoring and Computing > Ausgabe 4/2019
Autoren:
Kamal Maheshwari, Jacek Cywinski, Piyush Mathur, Kenneth C. Cummings III, Rafi Avitsian, Timothy Crone, David Liska, Francis X. Campion, Kurt Ruetzler, Andrea Kurz

Abstract

Standardized clinical pathways are useful tool to reduce variation in clinical management and may improve quality of care. However the evidence supporting a specific clinical pathway for a patient or patient population is often imperfect limiting adoption and efficacy of clinical pathway. Machine intelligence can potentially identify clinical variation and may provide useful insights to create and optimize clinical pathways. In this quality improvement project we analyzed the inpatient care of 1786 patients undergoing colorectal surgery from 2015 to 2016 across multiple Ohio hospitals in the Cleveland Clinic System. Data from four information subsystems was loaded in the Clinical Variation Management (CVM) application (Ayasdi, Inc., Menlo Park, CA). The CVM application uses machine intelligence and topological data analysis methods to identify groups of similar patients based on the treatment received. We defined “favorable performance” as groups with lower direct variable cost, lower length of stay, and lower 30-day readmissions. The software auto-generated 9 distinct groups of patients based on similarity analysis. Overall, favorable performance was seen with ketorolac use, lower intra-operative fluid use (< 2000 cc) and surgery for cancer. Multiple sub-groups were easily created and analyzed. Adherence reporting tools were easy to use enabling almost real time monitoring. Machine intelligence provided useful insights to create and monitor care pathways with several advantages over traditional analytic approaches including: (1) analysis across disparate data sets, (2) unsupervised discovery, (3) speed and auto-generation of clinical pathways, (4) ease of use by team members, and (5) adherence reporting.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Journal of Clinical Monitoring and Computing 4/2019 Zur Ausgabe

Neu im Fachgebiet AINS

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update AINS und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise