Skip to main content
Erschienen in: Inflammation 5/2018

09.07.2018 | ORIGINAL ARTICLE

IDH2 Deficiency in Microglia Decreases the Pro-inflammatory Response via the ERK and NF-κB Pathways

verfasst von: Unbin Chae, Han Seop Kim, Kyung-Min Kim, Heejin Lee, Hyun-Shik Lee, Jeen-Woo Park, Dong-Seok Lee

Erschienen in: Inflammation | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

In various neuronal diseases, the activation of microglia contributes to the production of excessive neurotoxic factors, such as pro-inflammatory mediators. In particular, the overproduction of pro-inflammatory cytokines and nitric oxide (NO) has critical effects on the development of neurodegenerative diseases and gliomas in the brain. Recent studies have suggested that isocitrate dehydrogenase 2 (IDH2) plays a key role in inducing gliomas and neurodegeneration. IDH2 dysfunction has been linked to various cancers and neurodegenerative diseases associated with uncontrolled inflammatory responses, such as the excessive generation of pro-inflammatory cytokines. In this study, we demonstrate that IDH2 contributes to the regulation of pro-inflammatory mediators in microglia. The downregulation of IDH2 decreased the lipopolysaccharide (LPS)-induced pro-inflammatory response in BV-2 and primary microglial cells. Furthermore, IDH2 deficiency downregulated pro-inflammatory mediators via modulation of the ERK and NF-κB pathways. These results indicate that IDH2 is a potential target for the regulation of pro-inflammatory responses in LPS-activated microglial cells. Our findings also provide a basis for the development of new therapies for pro-inflammatory responses in dysfunction-associated neuronal diseases.
Literatur
1.
Zurück zum Zitat Smolkova, K., and P. Jezek. 2012. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. International Journal of Cell Biology 2012: 273947.CrossRefPubMedPubMedCentral Smolkova, K., and P. Jezek. 2012. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. International Journal of Cell Biology 2012: 273947.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Yang, E.S., J.H. Lee, and J.W. Park. 2008. Ethanol induces peroxynitrite-mediated toxicity through inactivation of NADP+-dependent isocitrate dehydrogenase and superoxide dismutase. Biochimie 90: 1316–1324.CrossRefPubMed Yang, E.S., J.H. Lee, and J.W. Park. 2008. Ethanol induces peroxynitrite-mediated toxicity through inactivation of NADP+-dependent isocitrate dehydrogenase and superoxide dismutase. Biochimie 90: 1316–1324.CrossRefPubMed
3.
Zurück zum Zitat Megova, M., J. Drabek, V. Koudelakova, R. Trojanec, O. Kalita, and M. Hajduch. 2014. Isocitrate dehydrogenase 1 and 2 mutations in gliomas. Journal of Neuroscience Research 92: 1611–1620.CrossRefPubMed Megova, M., J. Drabek, V. Koudelakova, R. Trojanec, O. Kalita, and M. Hajduch. 2014. Isocitrate dehydrogenase 1 and 2 mutations in gliomas. Journal of Neuroscience Research 92: 1611–1620.CrossRefPubMed
4.
Zurück zum Zitat Chen, C., Y. Liu, C. Lu, J.R. Cross, J.P.t. Morris, A.S. Shroff, P.S. Ward, J.E. Bradner, C. Thompson, and S.W. Lowe. 2013. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes & Development 27: 1974–1985. Chen, C., Y. Liu, C. Lu, J.R. Cross, J.P.t. Morris, A.S. Shroff, P.S. Ward, J.E. Bradner, C. Thompson, and S.W. Lowe. 2013. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes & Development 27: 1974–1985.
5.
Zurück zum Zitat Wang, P.F., H.W. Song, H.Q. Cai, L.W. Kong, K. Yao, T. Jiang, S.W. Li, and C.X. Yan. 2017. Preoperative inflammation markers and IDH mutation status predict glioblastoma patient survival. Oncotarget 8: 50117–50123.PubMedPubMedCentral Wang, P.F., H.W. Song, H.Q. Cai, L.W. Kong, K. Yao, T. Jiang, S.W. Li, and C.X. Yan. 2017. Preoperative inflammation markers and IDH mutation status predict glioblastoma patient survival. Oncotarget 8: 50117–50123.PubMedPubMedCentral
7.
Zurück zum Zitat Shih, R.H., C.Y. Wang, and C.M. Yang. 2015. NF-kappaB signaling pathways in neurological inflammation: a mini review. Frontiers in Molecular Neuroscience 8: 77.CrossRefPubMedPubMedCentral Shih, R.H., C.Y. Wang, and C.M. Yang. 2015. NF-kappaB signaling pathways in neurological inflammation: a mini review. Frontiers in Molecular Neuroscience 8: 77.CrossRefPubMedPubMedCentral
8.
9.
Zurück zum Zitat Xanthos, D.N., and J. Sandkuhler. 2014. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Reviews Neuroscience 15: 43–53.CrossRefPubMed Xanthos, D.N., and J. Sandkuhler. 2014. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Reviews Neuroscience 15: 43–53.CrossRefPubMed
10.
Zurück zum Zitat Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585: 3798–3805.CrossRefPubMed Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585: 3798–3805.CrossRefPubMed
11.
Zurück zum Zitat Stoll, G., S. Jander, and M. Schroeter. 2000. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. Journal of Neural Transmission. Supplementum 59: 81–89.PubMed Stoll, G., S. Jander, and M. Schroeter. 2000. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. Journal of Neural Transmission. Supplementum 59: 81–89.PubMed
12.
Zurück zum Zitat W.Y. Wang, M.S. Tan, J.T. Yu, L. Tan. 2015. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of Translational Medicine 3: 136. W.Y. Wang, M.S. Tan, J.T. Yu, L. Tan. 2015. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of Translational Medicine 3: 136.
13.
Zurück zum Zitat Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann. 2016. The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience 19: 20–27.CrossRefPubMedPubMedCentral Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann. 2016. The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience 19: 20–27.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Santa-Cecilia, F.V., B. Socias, M.O. Ouidja, J.E. Sepulveda-Diaz, L. Acuna, R.L. Silva, P.P. Michel, E. Del-Bel, T.M. Cunha, and R. Raisman-Vozari. 2016. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotoxicity Research 29: 447–459.CrossRefPubMed Santa-Cecilia, F.V., B. Socias, M.O. Ouidja, J.E. Sepulveda-Diaz, L. Acuna, R.L. Silva, P.P. Michel, E. Del-Bel, T.M. Cunha, and R. Raisman-Vozari. 2016. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotoxicity Research 29: 447–459.CrossRefPubMed
15.
Zurück zum Zitat Surh, Y.J., H.K. Na, J.Y. Lee, and Y.S. Keum. 2001. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer. Journal of Korean Medical Science 16 (Suppl): S38–S41.CrossRefPubMedPubMedCentral Surh, Y.J., H.K. Na, J.Y. Lee, and Y.S. Keum. 2001. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer. Journal of Korean Medical Science 16 (Suppl): S38–S41.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kim, S., S.Y. Kim, H.J. Ku, Y.H. Jeon, H.W. Lee, J. Lee, T.K. Kwon, K.M. Park, and J.W. Park. 2014. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice. Biochemical and Biophysical Research Communications 1842: 135–143. Kim, S., S.Y. Kim, H.J. Ku, Y.H. Jeon, H.W. Lee, J. Lee, T.K. Kwon, K.M. Park, and J.W. Park. 2014. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice. Biochemical and Biophysical Research Communications 1842: 135–143.
17.
Zurück zum Zitat Brewer, G.J., and J.R. Torricelli. 2007. Isolation and culture of adult neurons and neurospheres. Nature Protocols 2: 1490–1498.CrossRefPubMed Brewer, G.J., and J.R. Torricelli. 2007. Isolation and culture of adult neurons and neurospheres. Nature Protocols 2: 1490–1498.CrossRefPubMed
18.
Zurück zum Zitat Saura, J., J.M. Tusell, and J. Serratosa. 2003. High-yield isolation of murine microglia by mild trypsinization. Glia 44: 183–189.CrossRefPubMed Saura, J., J.M. Tusell, and J. Serratosa. 2003. High-yield isolation of murine microglia by mild trypsinization. Glia 44: 183–189.CrossRefPubMed
19.
Zurück zum Zitat Kim, T.S., H.S. Choi, B.Y. Ryu, G.T. Gang, S.U. Kim, D.B. Koo, J.M. Kim, J.H. Han, C.K. Park, S. Her, and D.S. Lee. 2010. Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis. Theriogenology 73: 129–138.CrossRefPubMed Kim, T.S., H.S. Choi, B.Y. Ryu, G.T. Gang, S.U. Kim, D.B. Koo, J.M. Kim, J.H. Han, C.K. Park, S. Her, and D.S. Lee. 2010. Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis. Theriogenology 73: 129–138.CrossRefPubMed
20.
Zurück zum Zitat Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience 8: 57–69.CrossRefPubMed Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience 8: 57–69.CrossRefPubMed
21.
Zurück zum Zitat Perry, V.H., J.A. Nicoll, and C. Holmes. 2010. Microglia in neurodegenerative disease. Nature Reviews Neurology 6: 193–201.CrossRefPubMed Perry, V.H., J.A. Nicoll, and C. Holmes. 2010. Microglia in neurodegenerative disease. Nature Reviews Neurology 6: 193–201.CrossRefPubMed
22.
Zurück zum Zitat Vijitruth, R., M. Liu, D.Y. Choi, X.V. Nguyen, R.L. Hunter, and G. Bing. 2006. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. Journal of Neuroinflammation 3: 6.CrossRefPubMedPubMedCentral Vijitruth, R., M. Liu, D.Y. Choi, X.V. Nguyen, R.L. Hunter, and G. Bing. 2006. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. Journal of Neuroinflammation 3: 6.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Dawson, V.L., and T.M. Dawson. 1996. Nitric oxide neurotoxicity. Journal of Chemical Neuroanatomy 10: 179–190.CrossRefPubMed Dawson, V.L., and T.M. Dawson. 1996. Nitric oxide neurotoxicity. Journal of Chemical Neuroanatomy 10: 179–190.CrossRefPubMed
24.
Zurück zum Zitat Strauss, K.I. 2008. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain, Behavior, and Immunity 22: 285–298.CrossRefPubMed Strauss, K.I. 2008. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain, Behavior, and Immunity 22: 285–298.CrossRefPubMed
25.
Zurück zum Zitat Kim, S.H., C.J. Smith, and L.J. Van Eldik. 2004. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiology of Aging 25: 431–439.CrossRefPubMed Kim, S.H., C.J. Smith, and L.J. Van Eldik. 2004. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiology of Aging 25: 431–439.CrossRefPubMed
26.
Zurück zum Zitat Chen, W.W., X. Zhang, and W.J. Huang. 2016. Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports 13: 3391–3396.CrossRefPubMedPubMedCentral Chen, W.W., X. Zhang, and W.J. Huang. 2016. Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports 13: 3391–3396.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Rock, R.B., G. Gekker, S. Hu, W.S. Sheng, M. Cheeran, J.R. Lokensgard, and P.K. Peterson. 2004. Role of microglia in central nervous system infections. Clinical Microbiology Reviews 17: 942–964.CrossRefPubMedPubMedCentral Rock, R.B., G. Gekker, S. Hu, W.S. Sheng, M. Cheeran, J.R. Lokensgard, and P.K. Peterson. 2004. Role of microglia in central nervous system infections. Clinical Microbiology Reviews 17: 942–964.CrossRefPubMedPubMedCentral
28.
29.
Zurück zum Zitat Mattson, M.P., and S. Camandola. 2001. NF-kappaB in neuronal plasticity and neurodegenerative disorders. Journal of Clinical Investigation 107: 247–254.CrossRefPubMedPubMedCentral Mattson, M.P., and S. Camandola. 2001. NF-kappaB in neuronal plasticity and neurodegenerative disorders. Journal of Clinical Investigation 107: 247–254.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.CrossRefPubMed Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.CrossRefPubMed
31.
32.
Zurück zum Zitat Chanmee, T., P. Ontong, K. Konno, and N. Itano. 2014. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6: 1670–1690.CrossRef Chanmee, T., P. Ontong, K. Konno, and N. Itano. 2014. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6: 1670–1690.CrossRef
33.
Zurück zum Zitat Ku, H.J., Y. Ahn, J.H. Lee, K.M. Park, and J.W. Park. 2015. IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice. Free Radical Biology & Medicine 80: 84–92.CrossRef Ku, H.J., Y. Ahn, J.H. Lee, K.M. Park, and J.W. Park. 2015. IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice. Free Radical Biology & Medicine 80: 84–92.CrossRef
34.
Zurück zum Zitat Park, J., J.S. Min, B. Kim, U.B. Chae, J.W. Yun, M.S. Choi, I.K. Kong, K.T. Chang, and D.S. Lee. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappa B pathways. Neuroscience Letters 584: 191–196.CrossRefPubMed Park, J., J.S. Min, B. Kim, U.B. Chae, J.W. Yun, M.S. Choi, I.K. Kong, K.T. Chang, and D.S. Lee. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappa B pathways. Neuroscience Letters 584: 191–196.CrossRefPubMed
35.
Zurück zum Zitat Turner, M.D., B. Nedjai, T. Hurst, and D.J. Pennington. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta 1843: 2563–2582.CrossRefPubMed Turner, M.D., B. Nedjai, T. Hurst, and D.J. Pennington. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta 1843: 2563–2582.CrossRefPubMed
Metadaten
Titel
IDH2 Deficiency in Microglia Decreases the Pro-inflammatory Response via the ERK and NF-κB Pathways
verfasst von
Unbin Chae
Han Seop Kim
Kyung-Min Kim
Heejin Lee
Hyun-Shik Lee
Jeen-Woo Park
Dong-Seok Lee
Publikationsdatum
09.07.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0840-5

Weitere Artikel der Ausgabe 5/2018

Inflammation 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.